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Today’s Lecture

• Real-time systems (RTS) basics
• Types of RTS

• Basic concepts & facts

• Resource sharing in RTS

• Scheduling overloaded RTS

• Mixed-criticality systems (MCS)
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Real-Time Basics
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Real-Time Systems
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What’s a Real-Time System?
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A real-time system is a system that is required to react to stimuli from the 
environment (including passage of physical time) within time intervals dictated by 
the environment. 

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the 

system is dependent not only on the results of computations, but on the time 

at which those results arrive. [Stankovic, IEEE Computer, 1988]

Issues:
• Correctness: What are the temporal requirements?
• Criticality: What are the consequences of failure?

Aka. events
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Core Challenge: Time Is Not Fungible
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Fungible Non Fungible

Chocolate chip cookie Human

$10 note Roman coin

Memory frame The seconds after you hit the brake

Fungible: easy to exchange or trade for something else 

of the same type and value

[Cambridge Dictionary]

Fungible Non Fungible

Chocolate chip cookie Human

$10 note Roman coin

Fungible Non Fungible

Chocolate chip cookie Human



© Gernot Heiser 2019 – CC BY 4.0

“Real Time” – Real Confusion

• “Real-time applications”

• “Real-time processing”
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Refers to apps that react to changes 
anywhere in a connected application’s 
system— not just those made by the 
current user.

 

Refers to processing data as soon as it 
becomes available, as opposed to 
some scheduled later processing time

 

Not real-time systems!
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Strictness of Temporal Requirements

• Hard real-time systems

• Weakly-hard real-time systems

• Firm real-time systems

• Soft real-time systems

• Best-effort systems
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Real-Time Tasks
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void main(void) {

    init(); // initialise system

    while (1) {

        wait();  // timer, device 

interrupt, signal

        doJob();

    }

}
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Real-time tasks have deadlines
• Usually stated relative to release time
• Frequently implicit: next release time
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Real Time ≠ Real Fast
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System Deadline Single Miss Conseq Ultimate Conseq.

Combustion engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality
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Example: Industrial Control
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Hard Real-Time Systems
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Deadline

Triggering

Event

Cost

Time

≈ ≈

• Deadline miss is catastrophic
• Steep and real cost function

• Safety-critical: Failure ⇒ death, serious injury
• Mission-critical: Failure ⇒ massive financial damage
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Challenge: Execution-Time Variance
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WCET/BCET 
may be orders 
of magnitude!

• Data-dependent execution paths
• Microarchitecture (caches)
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Weakly-Hard Real-Time Systems
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Tolerate small fraction 
of deadline misses

• Most feedback control systems (incl life-support!)
• Control compensates for occasional miss
• Becomes unstable if too many misses

• Typically integrated with fault tolerance for HW issues

Time

Triggering

Event

Deadline
Cost

In practice, certifiers  treat 
critical avionics as hard RT
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Firm Real-Time Systems
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Result obsolete if deadline 
missed (loss of revenue)

• Forecast systems
• Trading systems

Time

Triggering

Event

Deadline
Gain
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Soft Real-Time Systems
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Deadline miss undesirable 
but tolerable, affects QoS

TimeTriggering

Event

DeadlineCost

Time

DeadlineCost

Tardiness

Bounded
Tardiness

• Media players
• Web services
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Best-Effort Systems
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No deadline

In practice, duration is 
rarely totally irrelevant 

Time

Triggering

Event

Cost
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Real-Time Operating System (RTOS)

• Designed to support real-time operation
• Fast context switches, fast interrupt handling

• More importantly, predictable response time

• Main duty is scheduling tasks to meet their deadline
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Requires analysis of 
worst-case execution 
time (WCET)

Traditional RTOS is very primitive
• single-mode execution
• no memory protection
• inherently cooperative
• all code is trusted

RT vs OS terminology:
• “task” = thread
• “job” = execution of thread 

   resulting from event
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Real-Time Scheduling

• Ensuring all deadlines are met is harder than bin-packing

• Reason: time is not fungible
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Time

A: needs 1 

slot every 3

B: needs 3 

slots every 9

Deadline

missed!
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Real-Time Scheduling

• Ensuring all deadlines are met is harder than bin-packing

• Time is not fungible
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Terminology:
• A set of tasks is feasible if there is a known algorithm that 

will schedule them (i.e. all deadlines will be met).
• A scheduling algorithm is optimal if it can schedule all 

feasible task sets.
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Cyclic Executives

• Very simple, completely static, scheduler is just table

• Deadline analysis done off-line

• Fully deterministic
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t1 t2 t1 t3 t4 t1 t2 t1 t3 t4

Hyper-period (inverse base rate)

while (true) {

 wait_tick();

 job_1();

 wait_tick();

 job_2();

 wait_tick();

 job_1();

 wait_tick();

 job_3();

 wait_tick();

 job_4();

}

Drawback: Latency of event handling is hyper-period 
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Are Cyclic Executives Optimal?

• Theoretically yes if can slice (interleave) tasks

• Practically there are limitations:

• Might require very fine-grained slicing
(context switching)

• May introduce significant overhead
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t1 t2 t1 t3 t4 t1 t2 t1 t3 t4

Hyper-period (inverse base rate)

while (true) {

 wait_tick();

 job_1();

 wait_tick();

 job_2();

 wait_tick();

 job_1();

 wait_tick();

 job_3();

 wait_tick();

 job_4();

}



© Gernot Heiser 2019 – CC BY 4.0

On-Line RT Scheduling

• Scheduler is part of the OS, performs scheduling decision on-demand

• Execution order not pre-determined

• Can be preemptive or non-preemptive

• Priorities can be

• fixed: assigned at admission time

• scheduler doesn’t change prios

• system may support dynamic adjustment of prios

• dynamic: prios potentially different at each scheduler run
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Fixed-Priority Scheduling (FPS)

• Classic L4 scheduling is a typical example:
• always picks highest-prio runnable thread

• round-robin within prio level

• will preempt if higher-prio thread is unblocked or time slice depleted
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prio0 255

In general may or may not:
• preempt running threads
• require unique prios

FPS is not optimal, i.e. cannot schedule some feasible sets
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Rate Monotonic Priority Assignment (RMPA)

• Higher rate ⇒ higher priority:

• Ti<Tj ⇒ Pi>Pj

• Schedulability test: Can schedule task set with periods {T1…Tn} if

   U ≡ ∑ Ci/Ti

   U ≤ n(21/n-1)
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T:     period
1/T:  rate
P:    priority
U:    utilisation

Assumes “implicit” 
deadlines: release 
time of next job

n 1 2 3 4 5 10 ∞

U [%] 100 82.8 78.0 75.7 74.3 71.8 log(2) = 69.3

RMPA is optimal for FPS
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Rate-Monotonic Scheduling Example
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Task T P C U [%]

t3 20 3 10 50

t2 40 2 10 25

t1 80 1 20 25

100

WCET

RMPA schedulability bound is 
sufficient but not necessary

C/T

blocked 1 preempted 1

2 2

33 3 3

0 20 40 60 80
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Another RMPA Example
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P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline

Release

Preemption

Deadline
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Dynamic Prio: Earliest Deadline First (EDF)

• Job with closest deadline executes

• priority assigned at job level, not task (i.e. thread) level

• deadline-sorted release queue

• Schedulability test: Can schedule task set with periods {T1…Tn} if

   U ≡ ∑ Ci/Ti ≤ 1
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Preemptive EDF is optimal
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FPS vs EDF
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RMPA

EDF

t3

t2

t1

t3

t2

t1
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Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 40 30 0

82

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 40 40 37.5 0

89.5

FPS vs EDF
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RMPA t3

t2

t1

Misses 
deadline!



© Gernot Heiser 2019 – CC BY 4.0

FPS vs EDF
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RMPA t3

t2

t1

Misses 
deadline!

EDF 
schedules

EDF t3

t2

t1
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Resource Sharing
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Challenge: Sharing
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Vehicle control must 

see consistent state
Updates

Vehicle
Control

Shared Data 
(waypoints etc)

Navigation
Ground
Comms

Sharing 
introduces 

dependencies
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Critical Sections: Locking vs Delegation
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Client2

Client1

Shared
Buffer

Lock()

Unlock()

Server

Buffer

Send()

Lock()

Unlock()

Send()

RT terminology:

Resource Server

Receive()

or Poll()

Receive()

or Poll()
Shared data 

encapsulated 

– less trust!
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Implementing Delegation

Server2

Client2

Client1

Server1

serv_remote() {

   …

    while (1) {

 Wait(not_rq);

 /* critical 

section */

 Signal(not_ry);

 }

}

serv_local() {

   …

    Wait(ep);

    while (1) {

        /* critical 

section */

        

ReplyWait(ep);

 }

}

client() {

    while (1) {

          …

 Call(ep);

 …

 Signal(not_ry

);

 …

Wait(not_rq);

 }

}

Hoare-style monitor

Suitable intra-core

Semaphore synchronisation

Suitable inter-core
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Q

1 Q

Problem: Priority Inversion

36 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

• High-priority job is blocked by low-prio for a long time

• Long wait chain: t4→t1→t3→t2

• Worst-case blocking time of t4 bounded by total WCET: C1+C2+C3

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQQ

Preempted

Blocked!Critical
Section

3 V

4
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Solution 1: Priority Inheritance (“Helping”)

37 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQ

t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ
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Solution 1: Priority Inheritance (“Helping”)
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t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2
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Solution 1: Priority Inheritance (“Helping”)
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t5

t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

2 V 5 5 5

5 5V

Transitive

Inheritance

Long blocking 

chains!
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If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

Solution 1: Priority Inheritance (“Helping”)
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t5

t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

2 V 5 5 5

Deadlock!

?

Priority Inheritance:

• Easy to use

• Potential deadlocks

• Complex to implement

• Bad worst-case blocking times

5 5V
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Solution 2: Priority Ceiling Protocol (PCP)

• Aim: Block at most once, avoid deadlocks

• Idea: Associate ceiling priority with each resource

• Ceiling = Highest prio of jobs that may access the resource

• On access, bump prio of job to ceiling
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t4

t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

Immediate prio ceiling 
protocol (IPCP)
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IPCP vs PIP
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t4

t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

PIP
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ICPC Implementation With Delegation

Client2
P2

Client1
P1Server

prio Ps

PS = max (P1, P2) + 1

Each task must declare all resources at admission time

• System must maintain list of tasks using resource

• Defines ceiling priority

Easy to enforce 

with caps

Immediate Priority Ceiling:

• Requires correct prio config

• Deadlock-free

• Easy to implement

• Good worst-case blocking times
EDF: Floor 

of deadlines
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Comparison of Locking Protocols

Priority Inversion Bound

Im
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p
le

xi
ty Original Priority-

Ceiling Protocol

Immediate Priority-
Ceiling Protocol

Priority-Inheritance 
Protocol

Non-Preemptible 
Critical Sections

Raises prio only 
when needed
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Scheduling Overloaded
RT Systems
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Naïve Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:

• All WCETs known

• All jobs complete within WCET

• Everything is trusted

More realistic: Overloaded system:

• Total utilisation exceeds schedulability bound

• Cannot trust everything to obey declared WCET
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Which job 
will miss its 
deadline?
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Task P C T D U [%]

t1 3 5 20 20 25

t2 2 8 30 20 27

t3 1 15 50 50 30

82

Task P C T D U [%]

t3 3 5 20 20 25

t2 2 12 20 20 60

t1 1 15 50 50 30

115

Overload: FPS
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t3

t2

t1

Old

OldNew
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Overload: FPS
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t3

t2

t1

Old

New

t3

t2

t1
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Overload: FPS vs EDF
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t3

t2

t1

t3

t2

t1

FPS

EDF
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Overload: EDF
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t3

t2

t1

t3

t2

t1

“EDF behaves 
badly under 
overload”
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Mixed-Criticality Systems
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Mixed Criticality Systems
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Mixed Criticality
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Control 

loop

Sensor

readings
NW 

driver

NW

interrupts

NW driver must preempt control loop

• … to avoid packet loss

• Driver must run at high prio (i.e. RMPA)

• Driver must not monopolise CPU

Need temporal 

isolation!

Runs every 100 ms

for a few millisecods

Runs frequently but for 

short time (order of µs) Critical Uncritical
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Mixed Criticality
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NW driver must preempt control loop

• … to avoid packet loss

• Driver must run at high prio (i.e. RMPA)

• Driver must not monopolise CPU

Certification requirement:

More critical components must 

not depend on any less critical 

ones! [ARINC-653]

Critical system certification:

• expensive

• conservative assumptions

• eg highly pessimistic WCET

• Must minimise critical software

• Need temporal isolation: 

Budget enforcement
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Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:

• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities
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Remember: Delegation of Critical Sections

56

Client1     

Server

Running

Running

Client2

Client may frequently 
invoke server without 
using much of its own 

time!

How charge 
client for 

server time?

COMP9242 2025 T3 W05 Part 1: Real-Time Systems
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MCS Model: Scheduling Contexts

Classical thread attributes

• Priority

• Time slice

MCS thread attributes

• Priority

• Scheduling context capability
Not runnable 

if null

Not runnable 

if null

Scheduling context object

• T: period

• C: budget (≤ T)
Limits CPU 

access!
Per-core SchedControl capability 

conveys right to assign budgets 

(i.e. perform admission control)
C = 2

T = 3

C = 250

T = 1000

Capability 

for time

COMP9242 2025 T3 W05 Part 1: Real-Time Systems
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Delegation with Scheduling Contexts

Client1

Passive Server

Running

Running

Server runs on client’s 

scheduling context

Client is charged 

for server’s time

Client2

Scheduling-context capabilities: a principled, light-weight 

OS mechanism for managing time [Lyons et al, EuroSys’18]

Passive servers 

support migrating 

thread model!

COMP9242 2025 T3 W05 Part 1: Real-Time Systems
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Mixed-Criticality Support

For mixed-criticality systems (MCS), OS must provide:

• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities
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Solved by scheduling 
contexts

Client1
Passive Server

Client1
Crit: High

Crit: Low

What if budget expires while 

shared server executing on 

Low’s scheduling context?
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Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

• Provide emergency budget to leave critical section

• Cancel operation & roll-back server

• Reduce priority of low-crit client (with one of the above)

• Implement priority inheritance (if you must…)
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Arguable not ideal: better prevent timeout completely
Pending RFC against seL4: budget thresholds
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