
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 05 Part 1

Real-Time Systems Basics

@GernotHeiser

blocked 1 preempted 1

2 2

33 3 3

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:
• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture

• Real-time systems (RTS) basics
• Types of RTS

• Basic concepts & facts

• Resource sharing in RTS

• Scheduling overloaded RTS

• Mixed-criticality systems (MCS)

2 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Basics

3 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Systems

4 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

What’s a Real-Time System?

5 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals dictated by
the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the

system is dependent not only on the results of computations, but on the time

at which those results arrive. [Stankovic, IEEE Computer, 1988]

Issues:
• Correctness: What are the temporal requirements?
• Criticality: What are the consequences of failure?

Aka. events

© Gernot Heiser 2019 – CC BY 4.0

Core Challenge: Time Is Not Fungible

6 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Fungible Non Fungible

Chocolate chip cookie Human

$10 note Roman coin

Memory frame The seconds after you hit the brake

Fungible: easy to exchange or trade for something else

of the same type and value

[Cambridge Dictionary]

Fungible Non Fungible

Chocolate chip cookie Human

$10 note Roman coin

Fungible Non Fungible

Chocolate chip cookie Human

© Gernot Heiser 2019 – CC BY 4.0

“Real Time” – Real Confusion

• “Real-time applications”

• “Real-time processing”

7 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Refers to apps that react to changes
anywhere in a connected application’s
system— not just those made by the
current user.

Refers to processing data as soon as it
becomes available, as opposed to
some scheduled later processing time

Not real-time systems!

© Gernot Heiser 2019 – CC BY 4.0

Strictness of Temporal Requirements

• Hard real-time systems

• Weakly-hard real-time systems

• Firm real-time systems

• Soft real-time systems

• Best-effort systems

8 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

S
tr

ic
tn

e
s
s
 o

f
te

m
p
o
ra

l

re
q

u
ir
e

m
e

n
ts

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Tasks

9 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

void main(void) {

 init(); // initialise system

 while (1) {

 wait(); // timer, device

interrupt, signal

 doJob();

 }

}

T1

T2

TimeT0

E
v
e
n
t

R
e

le
a

s
e

T1

C
o
m

p
le

ti
o
n

T2

Processing

timeR
e

le
a

s
e

J
it
te

r

D
e

a
d

lin
e

Real-time tasks have deadlines
• Usually stated relative to release time
• Frequently implicit: next release time

© Gernot Heiser 2019 – CC BY 4.0

Real Time ≠ Real Fast

10 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

System Deadline Single Miss Conseq Ultimate Conseq.

Combustion engine ignition 2.5 ms Catastrophic Engine damage

Industrial robot 5 ms Recoverable? Machinery damage

Air bag 20 ms Catastrophic Injury or death

Aircraft control 50 ms Recoverable Crash

Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality

© Gernot Heiser 2019 – CC BY 4.0

Example: Industrial Control

11 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Hard Real-Time Systems

12 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Deadline

Triggering

Event

Cost

Time

≈ ≈

• Deadline miss is catastrophic
• Steep and real cost function

• Safety-critical: Failure ⇒ death, serious injury
• Mission-critical: Failure ⇒ massive financial damage

© Gernot Heiser 2019 – CC BY 4.0

Challenge: Execution-Time Variance

13 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

WCET/BCET
may be orders
of magnitude!

• Data-dependent execution paths
• Microarchitecture (caches)

© Gernot Heiser 2019 – CC BY 4.0

Weakly-Hard Real-Time Systems

14 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Tolerate small fraction
of deadline misses

• Most feedback control systems (incl life-support!)
• Control compensates for occasional miss
• Becomes unstable if too many misses

• Typically integrated with fault tolerance for HW issues

Time

Triggering

Event

Deadline
Cost

In practice, certifiers treat
critical avionics as hard RT

© Gernot Heiser 2019 – CC BY 4.0

Firm Real-Time Systems

15 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Result obsolete if deadline
missed (loss of revenue)

• Forecast systems
• Trading systems

Time

Triggering

Event

Deadline
Gain

© Gernot Heiser 2019 – CC BY 4.0

Soft Real-Time Systems

16 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Deadline miss undesirable
but tolerable, affects QoS

TimeTriggering

Event

DeadlineCost

Time

DeadlineCost

Tardiness

Bounded
Tardiness

• Media players
• Web services

© Gernot Heiser 2019 – CC BY 4.0

Best-Effort Systems

17 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

No deadline

In practice, duration is
rarely totally irrelevant

Time

Triggering

Event

Cost

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Operating System (RTOS)

• Designed to support real-time operation
• Fast context switches, fast interrupt handling

• More importantly, predictable response time

• Main duty is scheduling tasks to meet their deadline

18 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Requires analysis of
worst-case execution
time (WCET)

Traditional RTOS is very primitive
• single-mode execution
• no memory protection
• inherently cooperative
• all code is trusted

RT vs OS terminology:
• “task” = thread
• “job” = execution of thread

 resulting from event

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Scheduling

• Ensuring all deadlines are met is harder than bin-packing

• Reason: time is not fungible

19 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Time

A: needs 1

slot every 3

B: needs 3

slots every 9

Deadline

missed!

© Gernot Heiser 2019 – CC BY 4.0

Real-Time Scheduling

• Ensuring all deadlines are met is harder than bin-packing

• Time is not fungible

20 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Terminology:
• A set of tasks is feasible if there is a known algorithm that

will schedule them (i.e. all deadlines will be met).
• A scheduling algorithm is optimal if it can schedule all

feasible task sets.

© Gernot Heiser 2019 – CC BY 4.0

Cyclic Executives

• Very simple, completely static, scheduler is just table

• Deadline analysis done off-line

• Fully deterministic

21 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t1 t2 t1 t3 t4 t1 t2 t1 t3 t4

Hyper-period (inverse base rate)

while (true) {

 wait_tick();

 job_1();

 wait_tick();

 job_2();

 wait_tick();

 job_1();

 wait_tick();

 job_3();

 wait_tick();

 job_4();

}

Drawback: Latency of event handling is hyper-period

© Gernot Heiser 2019 – CC BY 4.0

Are Cyclic Executives Optimal?

• Theoretically yes if can slice (interleave) tasks

• Practically there are limitations:

• Might require very fine-grained slicing
(context switching)

• May introduce significant overhead

22 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t1 t2 t1 t3 t4 t1 t2 t1 t3 t4

Hyper-period (inverse base rate)

while (true) {

 wait_tick();

 job_1();

 wait_tick();

 job_2();

 wait_tick();

 job_1();

 wait_tick();

 job_3();

 wait_tick();

 job_4();

}

© Gernot Heiser 2019 – CC BY 4.0

On-Line RT Scheduling

• Scheduler is part of the OS, performs scheduling decision on-demand

• Execution order not pre-determined

• Can be preemptive or non-preemptive

• Priorities can be

• fixed: assigned at admission time

• scheduler doesn’t change prios

• system may support dynamic adjustment of prios

• dynamic: prios potentially different at each scheduler run

23 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Fixed-Priority Scheduling (FPS)

• Classic L4 scheduling is a typical example:
• always picks highest-prio runnable thread

• round-robin within prio level

• will preempt if higher-prio thread is unblocked or time slice depleted

24 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

prio0 255

In general may or may not:
• preempt running threads
• require unique prios

FPS is not optimal, i.e. cannot schedule some feasible sets

© Gernot Heiser 2019 – CC BY 4.0

Rate Monotonic Priority Assignment (RMPA)

• Higher rate ⇒ higher priority:

• Ti<Tj ⇒ Pi>Pj

• Schedulability test: Can schedule task set with periods {T1…Tn} if

 U ≡ ∑ Ci/Ti

 U ≤ n(21/n-1)

25 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

T: period
1/T: rate
P: priority
U: utilisation

Assumes “implicit”
deadlines: release
time of next job

n 1 2 3 4 5 10 ∞

U [%] 100 82.8 78.0 75.7 74.3 71.8 log(2) = 69.3

RMPA is optimal for FPS

© Gernot Heiser 2019 – CC BY 4.0

Rate-Monotonic Scheduling Example

26 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Task T P C U [%]

t3 20 3 10 50

t2 40 2 10 25

t1 80 1 20 25

100

WCET

RMPA schedulability bound is
sufficient but not necessary

C/T

blocked 1 preempted 1

2 2

33 3 3

0 20 40 60 80

© Gernot Heiser 2019 – CC BY 4.0

Another RMPA Example

27 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 50 30 0

82

t3

t2

t1

Deadline

Release

Preemption

Deadline

© Gernot Heiser 2019 – CC BY 4.0

Dynamic Prio: Earliest Deadline First (EDF)

• Job with closest deadline executes

• priority assigned at job level, not task (i.e. thread) level

• deadline-sorted release queue

• Schedulability test: Can schedule task set with periods {T1…Tn} if

 U ≡ ∑ Ci/Ti ≤ 1

28 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Preemptive EDF is optimal

© Gernot Heiser 2019 – CC BY 4.0

FPS vs EDF

29 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

RMPA

EDF

t3

t2

t1

t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 50 40 30 0

82

Task P C T D U [%] release

t3 3 5 20 20 25 5

t2 2 8 30 20 27 12

t1 1 15 40 40 37.5 0

89.5

FPS vs EDF

30 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

RMPA t3

t2

t1

Misses
deadline!

© Gernot Heiser 2019 – CC BY 4.0

FPS vs EDF

31 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

RMPA t3

t2

t1

Misses
deadline!

EDF
schedules

EDF t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0

Resource Sharing

32 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Challenge: Sharing

33 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Vehicle control must

see consistent state
Updates

Vehicle
Control

Shared Data
(waypoints etc)

Navigation
Ground
Comms

Sharing
introduces

dependencies

© Gernot Heiser 2019 – CC BY 4.0

Critical Sections: Locking vs Delegation

34 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Client2

Client1

Shared
Buffer

Lock()

Unlock()

Server

Buffer

Send()

Lock()

Unlock()

Send()

RT terminology:

Resource Server

Receive()

or Poll()

Receive()

or Poll()
Shared data

encapsulated

– less trust!

© Gernot Heiser 2019 – CC BY 4.035 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Implementing Delegation

Server2

Client2

Client1

Server1

serv_remote() {

 …

 while (1) {

 Wait(not_rq);

 /* critical

section */

 Signal(not_ry);

 }

}

serv_local() {

 …

 Wait(ep);

 while (1) {

 /* critical

section */

ReplyWait(ep);

 }

}

client() {

 while (1) {

 …

 Call(ep);

 …

 Signal(not_ry

);

 …

Wait(not_rq);

 }

}

Hoare-style monitor

Suitable intra-core

Semaphore synchronisation

Suitable inter-core

© Gernot Heiser 2019 – CC BY 4.0

Q

1 Q

Problem: Priority Inversion

36 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

• High-priority job is blocked by low-prio for a long time

• Long wait chain: t4→t1→t3→t2

• Worst-case blocking time of t4 bounded by total WCET: C1+C2+C3

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQQ

Preempted

Blocked!Critical
Section

3 V

4

© Gernot Heiser 2019 – CC BY 4.0

Solution 1: Priority Inheritance (“Helping”)

37 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t4

t3

t2

t1 1 Q Q 1

2

33 V V

4 4VQ

t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

© Gernot Heiser 2019 – CC BY 4.0

Solution 1: Priority Inheritance (“Helping”)

38 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

© Gernot Heiser 2019 – CC BY 4.0

Solution 1: Priority Inheritance (“Helping”)

39 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t5

t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

2 V 5 5 5

5 5V

Transitive

Inheritance

Long blocking

chains!

© Gernot Heiser 2019 – CC BY 4.0

If t1 blocks on a resource held by t2, and P1>P2, then

– t2 is temporarily given priority P1

– when tt releases the resource, its priority reverts to P2

Solution 1: Priority Inheritance (“Helping”)

40 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t5

t4

t3

t2

t1 1 Q 4 15

2

33

4 4Q

2 V 5 5 5

Deadlock!

?

Priority Inheritance:

• Easy to use

• Potential deadlocks

• Complex to implement

• Bad worst-case blocking times

5 5V

© Gernot Heiser 2019 – CC BY 4.0

Solution 2: Priority Ceiling Protocol (PCP)

• Aim: Block at most once, avoid deadlocks

• Idea: Associate ceiling priority with each resource

• Ceiling = Highest prio of jobs that may access the resource

• On access, bump prio of job to ceiling

41 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t4

t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

Immediate prio ceiling
protocol (IPCP)

© Gernot Heiser 2019 – CC BY 4.0

IPCP vs PIP

42 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t4

t3

t2

t1 1 4 1

2

33 V

4 4VQ

IPCP

t4

t3

t2

t1 1 Q 4 1

2

33 V V

4 4VQ

PIP

© Gernot Heiser 2019 – CC BY 4.043 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

ICPC Implementation With Delegation

Client2
P2

Client1
P1Server

prio Ps

PS = max (P1, P2) + 1

Each task must declare all resources at admission time

• System must maintain list of tasks using resource

• Defines ceiling priority

Easy to enforce

with caps

Immediate Priority Ceiling:

• Requires correct prio config

• Deadlock-free

• Easy to implement

• Good worst-case blocking times
EDF: Floor

of deadlines

© Gernot Heiser 2019 – CC BY 4.044 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Comparison of Locking Protocols

Priority Inversion Bound

Im
p

le
m

en
ta

ti
o

n
 C

o
m

p
le

xi
ty Original Priority-

Ceiling Protocol

Immediate Priority-
Ceiling Protocol

Priority-Inheritance
Protocol

Non-Preemptible
Critical Sections

Raises prio only
when needed

© Gernot Heiser 2019 – CC BY 4.0

Scheduling Overloaded
RT Systems

45 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Naïve Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:

• All WCETs known

• All jobs complete within WCET

• Everything is trusted

More realistic: Overloaded system:

• Total utilisation exceeds schedulability bound

• Cannot trust everything to obey declared WCET

46 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Which job
will miss its
deadline?

© Gernot Heiser 2019 – CC BY 4.0

Task P C T D U [%]

t1 3 5 20 20 25

t2 2 8 30 20 27

t3 1 15 50 50 30

82

Task P C T D U [%]

t3 3 5 20 20 25

t2 2 12 20 20 60

t1 1 15 50 50 30

115

Overload: FPS

47 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t3

t2

t1

Old

OldNew

© Gernot Heiser 2019 – CC BY 4.0

Overload: FPS

48 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t3

t2

t1

Old

New

t3

t2

t1

© Gernot Heiser 2019 – CC BY 4.0

Overload: FPS vs EDF

49 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t3

t2

t1

t3

t2

t1

FPS

EDF

© Gernot Heiser 2019 – CC BY 4.0

Overload: EDF

50 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

t3

t2

t1

t3

t2

t1

“EDF behaves
badly under
overload”

© Gernot Heiser 2019 – CC BY 4.0

Mixed-Criticality Systems

51 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Mixed Criticality Systems

52 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Mixed Criticality

53 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Control

loop

Sensor

readings
NW

driver

NW

interrupts

NW driver must preempt control loop

• … to avoid packet loss

• Driver must run at high prio (i.e. RMPA)

• Driver must not monopolise CPU

Need temporal

isolation!

Runs every 100 ms

for a few millisecods

Runs frequently but for

short time (order of µs) Critical Uncritical

© Gernot Heiser 2019 – CC BY 4.0

Mixed Criticality

54 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

NW driver must preempt control loop

• … to avoid packet loss

• Driver must run at high prio (i.e. RMPA)

• Driver must not monopolise CPU

Certification requirement:

More critical components must

not depend on any less critical

ones! [ARINC-653]

Critical system certification:

• expensive

• conservative assumptions

• eg highly pessimistic WCET

• Must minimise critical software

• Need temporal isolation:

Budget enforcement

© Gernot Heiser 2019 – CC BY 4.0

Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:

• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

55 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Remember: Delegation of Critical Sections

56

Client1

Server

Running

Running

Client2

Client may frequently
invoke server without
using much of its own

time!

How charge
client for

server time?

COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.057

MCS Model: Scheduling Contexts

Classical thread attributes

• Priority

• Time slice

MCS thread attributes

• Priority

• Scheduling context capability
Not runnable

if null

Not runnable

if null

Scheduling context object

• T: period

• C: budget (≤ T)
Limits CPU

access!
Per-core SchedControl capability

conveys right to assign budgets

(i.e. perform admission control)
C = 2

T = 3

C = 250

T = 1000

Capability

for time

COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.058

Delegation with Scheduling Contexts

Client1

Passive Server

Running

Running

Server runs on client’s

scheduling context

Client is charged

for server’s time

Client2

Scheduling-context capabilities: a principled, light-weight

OS mechanism for managing time [Lyons et al, EuroSys’18]

Passive servers

support migrating

thread model!

COMP9242 2025 T3 W05 Part 1: Real-Time Systems

© Gernot Heiser 2019 – CC BY 4.0

Mixed-Criticality Support

For mixed-criticality systems (MCS), OS must provide:

• Temporal isolation, to force jobs to adhere to declared WCET

• Mechanisms for safely sharing resources across criticalities

59 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Solved by scheduling
contexts

Client1
Passive Server

Client1
Crit: High

Crit: Low

What if budget expires while

shared server executing on

Low’s scheduling context?

© Gernot Heiser 2019 – CC BY 4.0

Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

• Provide emergency budget to leave critical section

• Cancel operation & roll-back server

• Reduce priority of low-crit client (with one of the above)

• Implement priority inheritance (if you must…)

60 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

Arguable not ideal: better prevent timeout completely
Pending RFC against seL4: budget thresholds

© Gernot Heiser 2019 – CC BY 4.061 COMP9242 2025 T3 W05 Part 1: Real-Time Systems

	Slide 0
	Slide 1: Copyright Notice
	Slide 2: Today’s Lecture
	Slide 3: Real-Time Basics
	Slide 4: Real-Time Systems
	Slide 5: What’s a Real-Time System?
	Slide 6: Core Challenge: Time Is Not Fungible
	Slide 7: “Real Time” – Real Confusion
	Slide 8: Strictness of Temporal Requirements
	Slide 9: Real-Time Tasks
	Slide 10: Real Time ≠ Real Fast
	Slide 11: Example: Industrial Control
	Slide 12: Hard Real-Time Systems
	Slide 13: Challenge: Execution-Time Variance
	Slide 14: Weakly-Hard Real-Time Systems
	Slide 15: Firm Real-Time Systems
	Slide 16: Soft Real-Time Systems
	Slide 17: Best-Effort Systems
	Slide 18: Real-Time Operating System (RTOS)
	Slide 19: Real-Time Scheduling
	Slide 20: Real-Time Scheduling
	Slide 21: Cyclic Executives
	Slide 22: Are Cyclic Executives Optimal?
	Slide 23: On-Line RT Scheduling
	Slide 24: Fixed-Priority Scheduling (FPS)
	Slide 25: Rate Monotonic Priority Assignment (RMPA)
	Slide 26: Rate-Monotonic Scheduling Example
	Slide 27: Another RMPA Example
	Slide 28: Dynamic Prio: Earliest Deadline First (EDF)
	Slide 29: FPS vs EDF
	Slide 30: FPS vs EDF
	Slide 31: FPS vs EDF
	Slide 32: Resource Sharing
	Slide 33: Challenge: Sharing
	Slide 34: Critical Sections: Locking vs Delegation
	Slide 35: Implementing Delegation
	Slide 36: Problem: Priority Inversion
	Slide 37: Solution 1: Priority Inheritance (“Helping”)
	Slide 38: Solution 1: Priority Inheritance (“Helping”)
	Slide 39: Solution 1: Priority Inheritance (“Helping”)
	Slide 40: Solution 1: Priority Inheritance (“Helping”)
	Slide 41: Solution 2: Priority Ceiling Protocol (PCP)
	Slide 42: IPCP vs PIP
	Slide 43: ICPC Implementation With Delegation
	Slide 44: Comparison of Locking Protocols
	Slide 45: Scheduling Overloaded RT Systems
	Slide 46: Naïve Assumption: Everything is Schedulable
	Slide 47: Overload: FPS
	Slide 48: Overload: FPS
	Slide 49: Overload: FPS vs EDF
	Slide 50: Overload: EDF
	Slide 51: Mixed-Criticality Systems
	Slide 52: Mixed Criticality Systems
	Slide 53: Mixed Criticality
	Slide 54: Mixed Criticality
	Slide 55: Mixed-Criticality Support
	Slide 56: Remember: Delegation of Critical Sections
	Slide 57: MCS Model: Scheduling Contexts
	Slide 58: Delegation with Scheduling Contexts
	Slide 59: Mixed-Criticality Support
	Slide 60: Timeout Exceptions
	Slide 61

