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Today’s Lecture
• Multicore cache coherency challenges
• Hardware-based cache coherency
• Memory ordering
• Locking primitives
• Locking in microkernels
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Speed gap still 
widens by approx 
18% per year!
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The Age of Multicores
• CPU Clock rates stopped growing early in the century
• Feature sizes kept shrinking
• Architects used chip area for increasing number of cores
• Can use for:

• increasing degree of multiprogramming
• parallelise applications
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Amdahl’s Law
• Given:

• Parallelisable fraction P
• Number of processor N
• Speed up S

• 𝑆 𝑁 = !
!"# $!"

• 𝑆 ∞ = !
!"#

• Parallel computing takeaway:
• Useful for small numbers of CPUs (N)
• Or, high values of P

5 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup vs. CPUs

0.5 0.9 0.99

OS has no choice 
– needs to 

support all cores!



© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Types of Multiprocessors
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Bus

Core
Cache

Core
Cache

Main 
Memory

Symmetric multi-
processor (SMP)

Bus

Core
Cache

Main 
Memory

Bus

Core
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Memory

On-Chip Interconnect

Non-uniform memory 
architecture (NUMA)

Bus

Core
Cache

Main 
Memory

Bus

Core
Cache Main 

Memory

Ethernet

Distributed
System

• Local caches
• Unified memory

• Local caches
• Local memory, globally accessible
• Locality reduces contention

• Local caches
• Local memory

Independent 
systems 

from OS PoV
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HW-Based Cache Coherency
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Cache Coherency
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Bus

Core

Cache

Core

Cache

Main 
Memory
X == 1

Time t0:
 x = 2

X == 1 X == 1

Time t1>t0:
 if (x == 1) ...

What will 
happen?

Cache
X == 2

Cache
X == ?

Main 
Memory
X == ?
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Problematic Example
CPU A
a = 1

if (b == 0) then {

  /* critical section */
  a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

  /* critical section */
  b = 0

} else {

...
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Bus

Core
Cache

Core
Cache

Main 
Memory

Assume initially 
a=b=0

What can go wrong?
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Memory Model: Sequential Consistency
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“The result of any execution is the same as if the operations of all 
the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence 
in the order specified by its program.” [Lamport, 1979]
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With Sequential Consistency
CPU A
a = 1

if (b == 0) then {

  /* critical section */

  a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

  /* critical section */

  b = 0

} else {

...
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Bus

Core
Cache

Core
Cache

Main 
Memory

Sequential consistency
• ensures correct behaviour
• requires coherent caches
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Keeping Caches Coherent: Write-Through
CPU A
a = 1

if (b == 0) then {

  /* critical section */

  a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

  /* critical section */

  b = 0

} else {

...
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üCache coherent 
with memory

vLong write latency

Write immediately 
propagated to memory

Bus

Core Core

Main Memory
a == 0

Cache
a == 0

Cache
a == 0

Cache

Main Memory
a == 1

Cache
a == 1

Core snoops on bus, 
invalidates stale lines

a = 1

if (b == 0) then {

  /* critical section */

  a = 0

} else {

...
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How Keep Caches Coherent??
Snooping caches:

• Needs write-through caches
• Needs cheap “broadcast” to all cores 

Alternatives:
• Better performance by more complexity, less strict assumptions
• Use memory bus for messaging between local caches
• Example: MESI & variants

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks13
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MESI Cache Coherence Protocol
Each cache line is in one of four states:
• Invalid (I):

• Holds no useful data
• Exclusive (E):

• Line is only in this cache 
• Line is clean – consistent with RAM 

• Shared (S):
• Line is in at least one other cache
• Line is clean

• Modified (M):
• The line is only in only this cache
• Line is dirty – modified wrt RAM
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MESI (with snooping & broadcast invalidate)
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Events:
• RH = Read Hit
• RMS = Read miss, shared
• RME = Read miss, exclusive
• WH = Write hit
• WM = Write miss
• SHR = Snoop hit on read
• SHI = Snoop hit on invalidate
• LRU = LRU replacement

Bus Transactions:
• Push = Write cache line back to memory
• Invalidate = Broadcast invalidate
• Read = Read cache line from memory

Enables write-back caches 
⇒ less memory traffic
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NUMA Directory-Based Coherence

16 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Computer Architecture A Quantitative Approach Fifth 
Edition John L. Hennessy, David A. Patterson

Idea: Each node keeps 
per-line directory of 
caches that have a copy 
of the node’s memory 
(bitmap of cores)

Pro: Directed 
messages instead of 
snooping & broadcast

Con: High 
memory overhead
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Summary: Hardware-Based Coherency
üConsistent view of memory across the machine
üA dirty line is only cached once, clean lines can be replicated
üA read will get the result of the last write to the memory hierarchy
vScales poorly

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks17
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Memory Ordering
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Memory Ordering
A tail of a critical section:

 /* assuming lock already held */
   /* counter++ */
load r1, counter
add r1, r1, 1
store r1, counter
   /* unlock(mutex) */
store zero, mutex

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks19

Bus

Core
Cache

Core
Cache

Main 
MemoryAssumes all cores see 

update to counter 
before update to mutex
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Memory Model 1: Strong Ordering
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Traditional model

Core 1
store 1, y
load r2, x

Core 0
store 1, x
load r1, y

Assume initially x =  y = 0

Remember: Sequential consistency:
The result of any execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each individual processor 
appear in this sequence in the order specified by its program.
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Post-Lecture Comment
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Apologies for confusing myself 
on the next page in the lecture!
I’ve tried to clarify so even I can 
understand it (and will hopefully 
get it right next time!)
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Potential Interleavings
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store 1, X
load r1, Y
store 1, Y
load r2, X
r1=0, r2=1

store 1, X
store 1, Y
load r1, Y
load r2, X
r1=1,r1=1

store 1, Y
load r2, X
store 1, X
load r1, Y
r1=1, r2=0

store 1, Y
store 1, X
load r2, X
load r1, Y
r1=1,r2=1

store 1, X
store 1, Y
load r2, X
load r1, Y
r1=1,r2=1

store 1, Y
store 1, X
load r1, Y
load r2, X
r1=1,r2=1

Core 1

store 1, y
load r2, x

Core 0

store 1, x
load r1, y

At least one core must load 
other core’s new value – 
x0=0, y=0 impossible! 
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Remember the Write Buffer?
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Core

store 1, A
store 2, B
store 3, C
load  4, A

Core

Memory

store C
…

store B
…

store A
….

• Stores & invalidates go to 
write buffer to hide latency

• Loads read from write buffer
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Write Buffer and SMP
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Core 1

What does Core 1 
observe?

Core 0

store 1, A
store 2, B
store 3, C
load  4, A

Memory

Core 0

store C
…

store B
…

store A
…

Core 1

store Z
…

store Y
…

store X
…
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Total Store Ordering (eg x86)
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Core 1

A = 1
B = 2
C = 3

Core 0

store 1, A
store 2, B
store 3, C

Stores guaranteed to be 
observed in FIFO order

Memory

Core 0

store C
…

store B
…

store A
…

Core 1

store Z
…

store Y
…

store X
…
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Total Store Ordering (eg x86)

26 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0

store X

Core 1

store Y

Core 1

  store 1,  Y
  load  r2, X

Core 0

  store 1,  X
  load  r1, Y

load r1, Y
load r2, X
store 1, X
store 1, Y

• Stores buffered,
don’t appear on 
other core in time

• X=0, Y=0 is 
possible!
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Memory Fences (Barriers)
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Memory

Core 0

store X

Core 1

store Y

Core 1

  store 1,  Y
  fence
  load  r2, X

Core 0

  store 1,  X
  fence
  load  r1, Y

• Prevent re-ordering 
across fence

• Drains write buffer
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Partial Store Ordering (e.g. Arm) 

28 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0

store B
…

store A
…
…
…

Core 1

store Z
…

store Y
…

store X
…

…
store B

…
store A

…
…

store A
…

store B
…

store A
…

Redundant stores 
cancelled or merged!

Core 1 sees

  B = VAL
  A = IDLE

Core 0 does

  store BUSY, A
  store VAL,  B
  store IDLE, A

Stores go missing and appear out 
of order – need memory barrier
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Partial Store Ordering (e.g. Arm) 
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Memory

Core 0 Core 1

store Z
…

store Y
…

store X
…

Core 1 sees

  A = BUSY
  B = VAL
  A = IDLE

Core 0 does

  store BUSY, addr1
  store VAL,  addr2
  store IDLE, addr1

Core 0 does

  store BUSY, A
  fence
  store VAL,  B
  fence
  store IDLE, A

Reality more complex:
• Read barriers
• Write barriers
• …

store Astore Bstore A
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Memory-Ordering Zoo
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Type Alpha ARM
v7

Arm
v8

PA
RISC POWER RISC-V

RVWMO
SPARC
RMO

SPARC
PSO

SPARC
TSO x86 x86

oostore AMD64 IA-64 IBM
zSeries

Loads reord. aft. loads Y Y Y Y Y Y Y Y Y

Loads reord. aft. stores Y Y Y Y Y Y Y Y Y
Stores reord. aft. stores Y Y Y Y Y Y Y Y Y Y
Stores reord. aft. loads Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Atomic reord. w. loads Y Y opt. Y opt. Y Y
Atomic reord. w. stores Y Y opt. Y opt. Y Y Y
Depend. loads reord. Y
Incoherent instr.
cache pipeline Y Y opt. Y Y Y Y Y Y Y Y Y
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MP Hardware Take Away (1/2)
• Each core sees sequential execution of own code
• Other cores see execution affected by

• Store order and write buffers
• Cache coherence model
• Out-of-order execution

• Systems software needs to understand:
• Specific system (cache, coherence, etc..)
• Synch mechanisms (barriers, test&set, etc).

   … to build cooperative, correct, and scalable parallel code

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks31
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MP Hardware Take Away (2/2)
• Library sync primitives will be implemented as required by HW

• Using them you correctly can ignore memory model!
• However, racy code (eg lock-free algorithms) is dangerous!

• Must understand HW memory model
• Must add fences as required by HW
• Easy to get wrong with partial store order!
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Locking Primitives
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Locking Issues
• Exclusivity of lock-state update – how?
• Scalability – minimise coherency traffic

34 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks
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Mutual Exclusion Techniques 
• Disabling interrupts (CLI — STI)

• OK to prevent pre-emption intra-core
• Useless for avoiding inter-core concurrency

• Spin locks
• Busy-waiting wastes cycles
• May be ok for short critical sections

• Synchronisation objects (locks, semaphores)
• Flag (or a particular state) indicates object is locked.
• Manipulating lock requires mutual exclusion

35 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Not needed inside OS unless 
allow nested exceptions!
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Hardware-Provided Locking Primitives
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int test_and_set(lock *);

int compare_and_swap(int c, int v, lock *);

int exchange(int v, lock *)
int atomic_inc(lock *) Directly map onto instructions

• Bypass/flush cache, write buffer
• Lock bus (optimised on some 

recent processors)
⇒ generally scale poorly
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Hardware-Provided Locking Primitives
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v = load_linked (lock *)

bool store_conditional (int, lock *)

Any store & coherency traffic:
• Invalidate register if address matches value

• Save lock address in per-core register
• Load from address and return

• If address matches value perform store & return TRUE
• Else return FALSE

Need re-try loop ⇒ spinning!
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Spin Locks
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void lock (volatile lock_t *l) {

 while (test_and_set(l));

}
void unlock (volatile lock_t *l) {
 *l = 0;

}

Similar with LL/SC

Somewhat better:
• Test & test & set lock

Still scalability issues 
due to bus traffic!
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Scalable Spin Locks
• Issue: Spinning on shared location ⇒ non-scalable bus traffic

39 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Idea: Only spin on uncontented data
• Have queue of lines to spin locally
• Lock-holder advances queue
• Guarantees fairness (FIFO)
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Queueing – MCS Lock

40 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

John Mellor-Crummey and Michael Scott, “Algorithms for Scalable Synchronisation on Shared-
Memory Multiprocessors”, ACM Transactions on Computer Systems, Vol. 9, No. 1, 1991

Each core spins on private lock
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MCS Acquire
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Lock freeLL
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MCS Acquire
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Lock freeLLNode 1: acquire (L,I1) I1 Lock held 
by  Node 1
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MCS Acquire

43 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

LLNode 1: acquire (L,I1) I1 Lock held 
by  Node 1

Node 2: acquire (L,I2) I2

Node 3: acquire (L,I3) I3
Contention only 
between new arrivals!



© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Release
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LLNode 1: release (L,I1) Lock held 
by  Node 1

I3

I1

I2

Lock held 
by  Node 2

Contention once on 
clearing remote lock!
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Sample MCS Code for Arm
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I) 
{
    I->next = NULL;
    MEM_BARRIER;
    mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR( L, (void *)I);
    if (pred == NULL) { 
 /* lock was free */
 MEM_BARRIER;
 return;
    }
    I->waiting = 1; // word on which to spin
    MEM_BARRIER;
    pred->next = I; // make pred point to me
}

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks45

Atomic exchange:
• Returns prev value of L
• Sets L to I
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MCS Benchmarks
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48 . J M. Mellor-Crummey and M. L. Scott

Time
(p.s)

27 –

24 –
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18–
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9–

/(/
—test & test & set

* anderson

0 ❑ test k set, exp. backoff

e mcs

:~
O 2 4 6 8 10 12 14 16 18

Processors

Fig, 17. Performance of spm locks on the Symmetry (empty critical section)

available processor nodes. This modification distributes traffic evenly in the
interconnection network by causing each processor to spin on a location in a
different memory bank. Because the Butterfly lacks coherent caches, how-
ever, and because processors spin on statically unpredictable locations, it is
not in general possible with the array-based queuing locks to spin on local
locations. Linear regression yields a slope for the performance graph of 0.4 ps
per processor.

Three algorithms–the test. and.set lock with exponential backoff, the
ticket lock with proportional backoff, and the MCS lock— all scale extremely
well. Ignoring the data points below 10 processors (which helps us separate
throughput under heavy competition from latency under light competition),
we find slopes for these graphs of 0.025, 0.021, and 0.00025 ps per processor,
respectively. Since performance does not degrade appreciably for any of these
locks within the range of our tests, we would expect them to perform well
even with thousands of processors competing.

Figure 17 shows performance results for several spin lock algorithms on
the Symmetry. We adjusted data structures in minor ways to avoid the
unnecessary invalidations that would result from placing unrelated data
items in the same cache line. The test-and-test .and. set algorithm showed
the poorest scaling behavior, with the time to acquire and release the lock

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

Test & test & set

[Anderson ‘90]

Test & test w 
exp. backoff

MCS lock

John Mellor-Crummey and Michael Scott, “Algorithms for Scalable Synchronisation on Shared-
Memory Multiprocessors”, ACM Transactions on Computer Systems, Vol. 9, No. 1, 1991

Take-away
• MCS lock scales well under 

contention
• … but has higher overhead
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Locking and Microkernels
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Monolithic vs Microkernel Execution

48 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

0.3 µs

“For a microkernel, 
a big lock is fine!”
[Peters et al, APSys’15]

Even with 
many cores?

Monolithic kernels have 
long system calls ⇒ fine-
grained locking is essential

10s of ms 10s of ms

10s of ms

App

Kernel

10s of ms 10s of ms

10s of ms

App

Server

Kernel
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Highly Abstracted View of seL4 Syscall
1. save state
2. acquire kernel lock
3. look-up caps, destination state
4. if (can-proceed) {
5.     maybe update cap state
6.     maybe update thread state
7.     copy data [PPC only]
8. } else fail
9. release kernel lock
10. restore state
11. return

49 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Fast syscall accesses 
10-20ish cache lines, 
takes 500–1000 cycles

Fast syscall writes 
1–2 shared cache lines

What is the cost of 
writing shared data?
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Approximate Cost of Writing Shared Lines
Arm (shared L2 cache)
• ≤8 closely coupled cores
• Cache-line migration latency:

10–20 cycles
• 2 lines ≈ 2.5% of base syscall

Intel (private L2, sliced L3 cache)
• 100s loosely coupled cores
• Cache-line migration latency:

100s–1000s cycles
• 2 lines ≳ cost of base syscall
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Bus

Core
L1

Core
L1

Main 
Memory

L2

Token Ring

Core
L1

Core
L1

Main 
Memory

L2 L2

L3 slice L3 slice

No problem!
Insane!
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Microkernel Shared-State Take-Aways
1. Global state is no problem for small number of closely 

coupled cores (eg Arm)
2. Global state dominates syscall cost for loosely coupled 

cores – inevitable for large core counts
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Microkernel minimality principle:
A concept is tolerated inside the microkernel only if moving 
it outside the kernel, i.e. permitting competing 
implementations, would prevent the implementation of the 
system’s required functionality. [Liedtke SOSP’95]

Can we take shared 
state out of the kernel?
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(Clustered) Multikernel
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Bus

Main Memory

Core
L1

Core
L1

L2

Core
L1

Core
L1

L2

L3

Resource Management Layer

1 kernel image 
per cluster

Coordinate clusters 
in user mode

Present multicore as 
a NUMA system!


