
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 04
Multicore, Memory Ordering, Locking
Gernot Heiser

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Kevin Elphinstone, Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Today’s Lecture
• Multicore cache coherency challenges
• Hardware-based cache coherency
• Memory ordering
• Locking primitives
• Locking in microkernels

2 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

0.05

0.5

5

50

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

GHz
CPU & Memory clock rates

CPU Memory

Reminder: Memory Wall

3 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Speed gap still
widens by approx
18% per year!

0.05

0.5

5

50

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

GHz
CPU & Memory clock rates

CPU CPU × Cores Trend Memory

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

The Age of Multicores
• CPU Clock rates stopped growing early in the century
• Feature sizes kept shrinking
• Architects used chip area for increasing number of cores
• Can use for:

• increasing degree of multiprogramming
• parallelise applications

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks4

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Amdahl’s Law
• Given:

• Parallelisable fraction P
• Number of processor N
• Speed up S

• 𝑆 𝑁 = !
!"# $!"

• 𝑆 ∞ = !
!"#

• Parallel computing takeaway:
• Useful for small numbers of CPUs (N)
• Or, high values of P

5 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

0

5

10

15

20

25

0 5 10 15 20 25 30

Speedup vs. CPUs

0.5 0.9 0.99

OS has no choice
– needs to

support all cores!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Types of Multiprocessors

6 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core
Cache

Core
Cache

Main
Memory

Symmetric multi-
processor (SMP)

Bus

Core
Cache

Main
Memory

Bus

Core
Cache Main

Memory

On-Chip Interconnect

Non-uniform memory
architecture (NUMA)

Bus

Core
Cache

Main
Memory

Bus

Core
Cache Main

Memory

Ethernet

Distributed
System

• Local caches
• Unified memory

• Local caches
• Local memory, globally accessible
• Locality reduces contention

• Local caches
• Local memory

Independent
systems

from OS PoV

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

HW-Based Cache Coherency

7 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Cache Coherency

8 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core

Cache

Core

Cache

Main
Memory
X == 1

Time t0:
 x = 2

X == 1 X == 1

Time t1>t0:
 if (x == 1) ...

What will
happen?

Cache
X == 2

Cache
X == ?

Main
Memory
X == ?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Problematic Example
CPU A
a = 1

if (b == 0) then {

 /* critical section */
 a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

 /* critical section */
 b = 0

} else {

...

9 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core
Cache

Core
Cache

Main
Memory

Assume initially
a=b=0

What can go wrong?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory Model: Sequential Consistency

10 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

“The result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence
in the order specified by its program.” [Lamport, 1979]

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

With Sequential Consistency
CPU A
a = 1

if (b == 0) then {

 /* critical section */

 a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

 /* critical section */

 b = 0

} else {

...

11 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core
Cache

Core
Cache

Main
Memory

Sequential consistency
• ensures correct behaviour
• requires coherent caches

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Keeping Caches Coherent: Write-Through
CPU A
a = 1

if (b == 0) then {

 /* critical section */

 a = 0

} else {

...

CPU B
b = 1

if (a == 0) then {

 /* critical section */

 b = 0

} else {

...

12 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

üCache coherent
with memory

vLong write latency

Write immediately
propagated to memory

Bus

Core Core

Main Memory
a == 0

Cache
a == 0

Cache
a == 0

Cache

Main Memory
a == 1

Cache
a == 1

Core snoops on bus,
invalidates stale lines

a = 1

if (b == 0) then {

 /* critical section */

 a = 0

} else {

...

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

How Keep Caches Coherent??
Snooping caches:

• Needs write-through caches
• Needs cheap “broadcast” to all cores

Alternatives:
• Better performance by more complexity, less strict assumptions
• Use memory bus for messaging between local caches
• Example: MESI & variants

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks13

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MESI Cache Coherence Protocol
Each cache line is in one of four states:
• Invalid (I):

• Holds no useful data
• Exclusive (E):

• Line is only in this cache
• Line is clean – consistent with RAM

• Shared (S):
• Line is in at least one other cache
• Line is clean

• Modified (M):
• The line is only in only this cache
• Line is dirty – modified wrt RAM

14 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core

Cache

Core

Cache

Main
Memory

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MESI (with snooping & broadcast invalidate)

15 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Events:
• RH = Read Hit
• RMS = Read miss, shared
• RME = Read miss, exclusive
• WH = Write hit
• WM = Write miss
• SHR = Snoop hit on read
• SHI = Snoop hit on invalidate
• LRU = LRU replacement

Bus Transactions:
• Push = Write cache line back to memory
• Invalidate = Broadcast invalidate
• Read = Read cache line from memory

Enables write-back caches
⇒ less memory traffic

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

NUMA Directory-Based Coherence

16 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Computer Architecture A Quantitative Approach Fifth
Edition John L. Hennessy, David A. Patterson

Idea: Each node keeps
per-line directory of
caches that have a copy
of the node’s memory
(bitmap of cores)

Pro: Directed
messages instead of
snooping & broadcast

Con: High
memory overhead

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Summary: Hardware-Based Coherency
üConsistent view of memory across the machine
üA dirty line is only cached once, clean lines can be replicated
üA read will get the result of the last write to the memory hierarchy
vScales poorly

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks17

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory Ordering

18 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory Ordering
A tail of a critical section:

 /* assuming lock already held */
 /* counter++ */
load r1, counter
add r1, r1, 1
store r1, counter
 /* unlock(mutex) */
store zero, mutex

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks19

Bus

Core
Cache

Core
Cache

Main
MemoryAssumes all cores see

update to counter
before update to mutex

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory Model 1: Strong Ordering

20 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Traditional model

Core 1
store 1, y
load r2, x

Core 0
store 1, x
load r1, y

Assume initially x = y = 0

Remember: Sequential consistency:
The result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Post-Lecture Comment

21 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Apologies for confusing myself
on the next page in the lecture!
I’ve tried to clarify so even I can
understand it (and will hopefully
get it right next time!)

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Potential Interleavings

22 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

store 1, X
load r1, Y
store 1, Y
load r2, X
r1=0, r2=1

store 1, X
store 1, Y
load r1, Y
load r2, X
r1=1,r1=1

store 1, Y
load r2, X
store 1, X
load r1, Y
r1=1, r2=0

store 1, Y
store 1, X
load r2, X
load r1, Y
r1=1,r2=1

store 1, X
store 1, Y
load r2, X
load r1, Y
r1=1,r2=1

store 1, Y
store 1, X
load r1, Y
load r2, X
r1=1,r2=1

Core 1

store 1, y
load r2, x

Core 0

store 1, x
load r1, y

At least one core must load
other core’s new value –
x0=0, y=0 impossible!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Remember the Write Buffer?

23 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Core

store 1, A
store 2, B
store 3, C
load 4, A

Core

Memory

store C
…

store B
…

store A
….

• Stores & invalidates go to
write buffer to hide latency

• Loads read from write buffer

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Write Buffer and SMP

24 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Core 1

What does Core 1
observe?

Core 0

store 1, A
store 2, B
store 3, C
load 4, A

Memory

Core 0

store C
…

store B
…

store A
…

Core 1

store Z
…

store Y
…

store X
…

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Total Store Ordering (eg x86)

25 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Core 1

A = 1
B = 2
C = 3

Core 0

store 1, A
store 2, B
store 3, C

Stores guaranteed to be
observed in FIFO order

Memory

Core 0

store C
…

store B
…

store A
…

Core 1

store Z
…

store Y
…

store X
…

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Total Store Ordering (eg x86)

26 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0

store X

Core 1

store Y

Core 1

 store 1, Y
 load r2, X

Core 0

 store 1, X
 load r1, Y

load r1, Y
load r2, X
store 1, X
store 1, Y

• Stores buffered,
don’t appear on
other core in time

• X=0, Y=0 is
possible!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory Fences (Barriers)

27 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0

store X

Core 1

store Y

Core 1

 store 1, Y
 fence
 load r2, X

Core 0

 store 1, X
 fence
 load r1, Y

• Prevent re-ordering
across fence

• Drains write buffer

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Partial Store Ordering (e.g. Arm)

28 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0

store B
…

store A
…
…
…

Core 1

store Z
…

store Y
…

store X
…

…
store B

…
store A

…
…

store A
…

store B
…

store A
…

Redundant stores
cancelled or merged!

Core 1 sees

 B = VAL
 A = IDLE

Core 0 does

 store BUSY, A
 store VAL, B
 store IDLE, A

Stores go missing and appear out
of order – need memory barrier

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Partial Store Ordering (e.g. Arm)

29 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Memory

Core 0 Core 1

store Z
…

store Y
…

store X
…

Core 1 sees

 A = BUSY
 B = VAL
 A = IDLE

Core 0 does

 store BUSY, addr1
 store VAL, addr2
 store IDLE, addr1

Core 0 does

 store BUSY, A
 fence
 store VAL, B
 fence
 store IDLE, A

Reality more complex:
• Read barriers
• Write barriers
• …

store Astore Bstore A

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Memory-Ordering Zoo

30 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Type Alpha ARM
v7

Arm
v8

PA
RISC POWER RISC-V

RVWMO
SPARC
RMO

SPARC
PSO

SPARC
TSO x86 x86

oostore AMD64 IA-64 IBM
zSeries

Loads reord. aft. loads Y Y Y Y Y Y Y Y Y

Loads reord. aft. stores Y Y Y Y Y Y Y Y Y
Stores reord. aft. stores Y Y Y Y Y Y Y Y Y Y
Stores reord. aft. loads Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Atomic reord. w. loads Y Y opt. Y opt. Y Y
Atomic reord. w. stores Y Y opt. Y opt. Y Y Y
Depend. loads reord. Y
Incoherent instr.
cache pipeline Y Y opt. Y Y Y Y Y Y Y Y Y

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MP Hardware Take Away (1/2)
• Each core sees sequential execution of own code
• Other cores see execution affected by

• Store order and write buffers
• Cache coherence model
• Out-of-order execution

• Systems software needs to understand:
• Specific system (cache, coherence, etc..)
• Synch mechanisms (barriers, test&set, etc).

 … to build cooperative, correct, and scalable parallel code

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks31

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MP Hardware Take Away (2/2)
• Library sync primitives will be implemented as required by HW

• Using them you correctly can ignore memory model!
• However, racy code (eg lock-free algorithms) is dangerous!

• Must understand HW memory model
• Must add fences as required by HW
• Easy to get wrong with partial store order!

32 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Locking Primitives

33 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Locking Issues
• Exclusivity of lock-state update – how?
• Scalability – minimise coherency traffic

34 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Mutual Exclusion Techniques
• Disabling interrupts (CLI — STI)

• OK to prevent pre-emption intra-core
• Useless for avoiding inter-core concurrency

• Spin locks
• Busy-waiting wastes cycles
• May be ok for short critical sections

• Synchronisation objects (locks, semaphores)
• Flag (or a particular state) indicates object is locked.
• Manipulating lock requires mutual exclusion

35 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Not needed inside OS unless
allow nested exceptions!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Hardware-Provided Locking Primitives

36 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

int test_and_set(lock *);

int compare_and_swap(int c, int v, lock *);

int exchange(int v, lock *)
int atomic_inc(lock *) Directly map onto instructions

• Bypass/flush cache, write buffer
• Lock bus (optimised on some

recent processors)
⇒ generally scale poorly

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Hardware-Provided Locking Primitives

37 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

v = load_linked (lock *)

bool store_conditional (int, lock *)

Any store & coherency traffic:
• Invalidate register if address matches value

• Save lock address in per-core register
• Load from address and return

• If address matches value perform store & return TRUE
• Else return FALSE

Need re-try loop ⇒ spinning!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Spin Locks

38 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

void lock (volatile lock_t *l) {

 while (test_and_set(l));

}
void unlock (volatile lock_t *l) {
 *l = 0;

}

Similar with LL/SC

Somewhat better:
• Test & test & set lock

Still scalability issues
due to bus traffic!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scalable Spin Locks
• Issue: Spinning on shared location ⇒ non-scalable bus traffic

39 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Idea: Only spin on uncontented data
• Have queue of lines to spin locally
• Lock-holder advances queue
• Guarantees fairness (FIFO)

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Queueing – MCS Lock

40 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

John Mellor-Crummey and Michael Scott, “Algorithms for Scalable Synchronisation on Shared-
Memory Multiprocessors”, ACM Transactions on Computer Systems, Vol. 9, No. 1, 1991

Each core spins on private lock

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Acquire

41 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Lock freeLL

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Acquire

42 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Lock freeLLNode 1: acquire (L,I1) I1 Lock held
by Node 1

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Acquire

43 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

LLNode 1: acquire (L,I1) I1 Lock held
by Node 1

Node 2: acquire (L,I2) I2

Node 3: acquire (L,I3) I3
Contention only
between new arrivals!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Release

44 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

LLNode 1: release (L,I1) Lock held
by Node 1

I3

I1

I2

Lock held
by Node 2

Contention once on
clearing remote lock!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Sample MCS Code for Arm
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I)
{
 I->next = NULL;
 MEM_BARRIER;
 mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR(L, (void *)I);
 if (pred == NULL) {
 /* lock was free */
 MEM_BARRIER;
 return;
 }
 I->waiting = 1; // word on which to spin
 MEM_BARRIER;
 pred->next = I; // make pred point to me
}

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks45

Atomic exchange:
• Returns prev value of L
• Sets L to I

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

MCS Benchmarks

COMP9242 2025 T3 W04: Multicore, Memory Order, Locks46

48 . J M. Mellor-Crummey and M. L. Scott

Time
(p.s)

27 –

24 –

21 –

18–

15 –

12 –

9–

/(/
—test & test & set

* anderson

0 ❑ test k set, exp. backoff

e mcs

:~
O 2 4 6 8 10 12 14 16 18

Processors

Fig, 17. Performance of spm locks on the Symmetry (empty critical section)

available processor nodes. This modification distributes traffic evenly in the
interconnection network by causing each processor to spin on a location in a
different memory bank. Because the Butterfly lacks coherent caches, how-
ever, and because processors spin on statically unpredictable locations, it is
not in general possible with the array-based queuing locks to spin on local
locations. Linear regression yields a slope for the performance graph of 0.4 ps
per processor.

Three algorithms–the test. and.set lock with exponential backoff, the
ticket lock with proportional backoff, and the MCS lock— all scale extremely
well. Ignoring the data points below 10 processors (which helps us separate
throughput under heavy competition from latency under light competition),
we find slopes for these graphs of 0.025, 0.021, and 0.00025 ps per processor,
respectively. Since performance does not degrade appreciably for any of these
locks within the range of our tests, we would expect them to perform well
even with thousands of processors competing.

Figure 17 shows performance results for several spin lock algorithms on
the Symmetry. We adjusted data structures in minor ways to avoid the
unnecessary invalidations that would result from placing unrelated data
items in the same cache line. The test-and-test .and. set algorithm showed
the poorest scaling behavior, with the time to acquire and release the lock

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

Test & test & set

[Anderson ‘90]

Test & test w
exp. backoff

MCS lock

John Mellor-Crummey and Michael Scott, “Algorithms for Scalable Synchronisation on Shared-
Memory Multiprocessors”, ACM Transactions on Computer Systems, Vol. 9, No. 1, 1991

Take-away
• MCS lock scales well under

contention
• … but has higher overhead

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Locking and Microkernels

47 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Monolithic vs Microkernel Execution

48 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

0.3 µs

“For a microkernel,
a big lock is fine!”
[Peters et al, APSys’15]

Even with
many cores?

Monolithic kernels have
long system calls ⇒ fine-
grained locking is essential

10s of ms 10s of ms

10s of ms

App

Kernel

10s of ms 10s of ms

10s of ms

App

Server

Kernel

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Highly Abstracted View of seL4 Syscall
1. save state
2. acquire kernel lock
3. look-up caps, destination state
4. if (can-proceed) {
5. maybe update cap state
6. maybe update thread state
7. copy data [PPC only]
8. } else fail
9. release kernel lock
10. restore state
11. return

49 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Fast syscall accesses
10-20ish cache lines,
takes 500–1000 cycles

Fast syscall writes
1–2 shared cache lines

What is the cost of
writing shared data?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Approximate Cost of Writing Shared Lines
Arm (shared L2 cache)
• ≤8 closely coupled cores
• Cache-line migration latency:

10–20 cycles
• 2 lines ≈ 2.5% of base syscall

Intel (private L2, sliced L3 cache)
• 100s loosely coupled cores
• Cache-line migration latency:

100s–1000s cycles
• 2 lines ≳ cost of base syscall

50 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Core
L1

Core
L1

Main
Memory

L2

Token Ring

Core
L1

Core
L1

Main
Memory

L2 L2

L3 slice L3 slice

No problem!
Insane!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Microkernel Shared-State Take-Aways
1. Global state is no problem for small number of closely

coupled cores (eg Arm)
2. Global state dominates syscall cost for loosely coupled

cores – inevitable for large core counts

51 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Microkernel minimality principle:
A concept is tolerated inside the microkernel only if moving
it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of the
system’s required functionality. [Liedtke SOSP’95]

Can we take shared
state out of the kernel?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

(Clustered) Multikernel

52 COMP9242 2025 T3 W04: Multicore, Memory Order, Locks

Bus

Main Memory

Core
L1

Core
L1

L2

Core
L1

Core
L1

L2

L3

Resource Management Layer

1 kernel image
per cluster

Coordinate clusters
in user mode

Present multicore as
a NUMA system!

