School of Computer Science & Engineering
COMP9242 Advanced Operating Systems
UNSW

SYDNEY

Australia’s
Global
University

2025 T3 Week 02 Part 2
Threads vs or and Events?
Gernot Heiser

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

2

Today’s Lecture

* Present classical pitches in favour of Events and Threads
* Present an alternative design
« Summarise the models

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

VVVVVV

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout
Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Slide set courtesy of John Ousterhout, used with permission

Introduction

¢ Threads:
— Grew up 1n OS world (processes).
— Evolved into user-level tool.
— Proposed as solution for a variety of problems.
— Every programmer should be a threads programmer?

¢ Problem: threads are very hard to program.
¢ Alternative: events.

¢ Claims:
— For most purposes proposed for threads, events are
better.
— Threads should be used only when true CPU
concurrency 1s needed.

Why Threads Are A Bad Idea September 28, 1995, slide 2

What Are Threads?

Shared state
(memory, files, etc.)

| |
© 000 O mw

General-purpose solution for managing concurrency.

.

¢ Multiple independent execution streams.
¢ Shared state.

¢ Pre-emptive scheduling.

¢ Synchronization (e.g. locks, conditions).

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads Used For?

¢ Operating systems: one kernel thread for each user
process.

¢ Scientific applications: one thread per CPU (solve
problems more quickly).

¢ Distributed systems: process requests concurrently
(overlap 1/0s).

¢ GUIs:
— Threads correspond to user actions; can service
display during long-running computations.
— Multimedia, animations.

Why Threads Are A Bad Idea September 28, 1995, slide 4

What's Wrong With Threads?

casual all programmers legds

[
>

« Visual Basic programmers
«— Cprogrammers —

+— (C++ programmers —

Threads programmers

¢ Too hard for most programmers to use.

¢ Even for experts, development is painful.

Why Threads Are A Bad Idea September 28, 1995, slide 5

Why Threads Are Hard

¢ Synchronization:

— Must coordinate access to shared data with locks.
— Forget a lock? Corrupted data.

¢ Deadlock:
— Circular dependencies among locks.
— Each process waits for some other process: system

hangs.
Y
thread 1—> <— thread 2
N

Why Threads Are A Bad Idea September 28, 1995, slide 6

Why Threads Are Hard, cont'd

¢ Hard to debug: data dependencies, timing dependencies.

¢ Threads break abstraction: can't design modules
independently.

¢ Callbacks don't work with locks.

Tl T2 Tl
l l deadlock! l calls
[Module A] [Module A]
! ! [deadlock!
[Module B] [Module B]
callbacks
slgep wakeup TL

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

¢ Achieving good performance is hard:
— Simple locking (e.g. monitors) yields low concurrency.
— Fine-grain locking increases complexity, reduces
performance in normal case.
— OSes limit performance (scheduling, context switches).

¢ Timgads not well supported:
— Hard to Pes&threaded code (PCs? Maes?T.
— Standard libraries nOt#aggad=Saic.
— Kernel calls_ypa@Ow systems motsmaylti-threaded.
— Fouwsd®ugging tools (LockLint, debuggerS™

¢ Often don't want concurrency anyway (e.g. window
events).

Why Threads Are A Bad Idea September 28, 1995, slide §

Event-Driven Programmin

¢ One execution stream: no CPU

concurrency.

¢ Register interest in events Event
(callbacks). Loop

¢ Event loop waits for events, |
invokes handlers. [] [] []

¢ No preemption of event Event Handlers
handlers.

¢ Handlers generally short-lived.

Why Threads Are A Bad Idea September 28, 1995, slide 9

What Are Events Used For?

¢ Mostly GUIs:

— One handler for each event (press button, invoke menu
entry, etc.).

— Handler implements behavior (undo, delete file, etc.).

¢ Distributed systems:
— One handler for each source of mnput (socket, etc.).
— Handler processes incoming request, sends response.
— Event-driven I/0 for I/0O overlap.

Why Threads Are A Bad Idea September 28, 1995, slide 10

Problems With Events

¢ Long-running handlers make application non-
responsive.
— Fork off subprocesses for long-running things (e.g.
multimedia), use events to find out when done.
— Break up handlers (e.g. event-driven 1/0).
— Periodically call event loop in handler (reentrancy adds
complexity).

¢ Can't maintain local state across events (handler must
return).

¢ No CPU concurrency (not suitable for scientific apps).

¢ Event-driven I/O not always well supported (e.g. poor
write buffering).

Why Threads Are A Bad Idea September 28, 1995, slide 11

Events vs. Threads

¢ Events avoid concurrency as much as possible, threads
embrace:
— Easy to get started with events: no concurrency, no
preemption, no synchronization, no deadlock.
— Use complicated techniques only for unusual cases.
— With threads, even the simplest application faces the
full complexity.

¢ Debugging easier with events:
— Timing dependencies only related to events, not to
internal scheduling.
— Problems easier to track down: slow response to button

vs. corrupted memory.
Why Threads Are A Bad Idea September 28, 1995, slide 12

Events vs. Threads, cont'd

¢ Events faster than threads on single CPU:
— No locking overheads.
— No context switching.

et roreportapre-tiramrtirenras™

¢ Threads provide true concurrency:
— Can have long-running stateful handlers without
freezes.
— Scalable performance on multiple CPUs.

Why Threads Are A Bad Idea September 28, 1995, slide 13

Should You Abandon Threads?

¢ No: important for high-end servers (e.g. databases).

¢ But, avoid threads wherever possible:

— Use events, not threads, for GUIs,
distributed svstems. low-end servers.

— Only use threads where true CPU
opcurrency 1s needed.

— Where threads needed, 1solate usage
in threaded application kernel: keep
most of code single-threaded.

Event-Driven Handlers

[Threaded Kernel

Why Threads Are A Bad Idea September 28, 1995, slide 14

Conclusions

¢ Concurrency is fundamentally hard; avoid whenever
possible.

¢ Threads more powerful than events, but power is
rarely needed.

¢ Threads much harder to program than events; for
experts only.

¢ Use events as primary development tool (both GUIs
and distributed systems).

¢ Use threads only for performance-critical kernels.

Why Threads Are A Bad Idea September 28, 1995, slide 15

Why Events Are A Bad Idea

!'- (for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley
{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk at HotOS 2003

Slide set courtesy of Rob von Behren, used with permission

The Stage

= Highly concurrent applications
= Internet servers (Flash, Ninja, SEDA)

= Transaction processing databases

= Workload Ideal

= Operate “near the knee” — W
= Avoid thrashing! resource at max

= What makes concurrency hard?

Performance

= Race conditions Overload: some
. Scalablllty (no 0(,7) operations) resource thrashing
= Scheduling & resource sensitivity Load (concurrent tasks)

= Inevitable overload
= Code complexity

i The Debate

= Performance vs. Programmability
= Current threads pick one
= Events somewhat better

= Questions
= Threads vs. Events?

= How do we get performance and
programmability?

Ease of Programming

Performance

i Our Position

= Thread-event duality still holds

= But threads are better anyway
= More natural to program
= Better fit with tools and hardware

= Compiler-runtime integration is key

The Duality Argument

= General assumption: follow “good practices”

= Observations

= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Threads

= Monitors

= Exported functions

= Call/return and fork/join

= Wait on condition variable

Events

= Event handler & queue

= Events accepted

= Send message / await reply
= Wait for new messages

Web Server

Accept
Conn.

A

Read
Request

A

Pin
Cache ‘
Read

\ File

Write
espons

A

=

‘ w{ U
ez

The Duality Argument

= General assumption: follow “good practices”

= Observations
= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web Server

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

The Duality Argument

= General assumption: follow “good practices”

= Observations
= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web Server

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

“"But Events Are Better!”

= Recent arguments for events
= Lower runtime overhead
= Better live state management
= Inexpensive synchronization
= More flexible control flow
= Better scheduling and locality

= All true but...

= No /nherent problem with threads!
= Thread implementations can be improved

i Runtime Overhead

s Criticism: Threads dont perform

well for high concurrency

= Response
= Avoid O(n) operations
= Minimize context switch overhead

= Simple scalability test

= Slightly modified GNU Pth

= Thread-per-task vs.
single thread

= Same performance!

Requests / Second

110000

100000 =

90000 =

80000

70000 =

60000 =

50000 =

40000 =

30000

20000

Threaded Server =

Event-Based Server —=m=mmmm=

]
10

]]]]
100 1000 10000 100000

Concnrrent Tacks

le+0¢

i Live State Management

s Criticism. Stacks are bad for live state Event State (heap)

= Response
= Fix with compiler help

= Stack overflow vs. wasted space
= Dynamically link stack frames

Thread State (stack)

= Retain dead state Live
= Static lifetime analysis
= Plan arrangement of stack Dead
= Put some data on heap
= Pop stack before tail calls M/ Live
= Encourage inefficiency Unused
= Warn about inefficiency

i Synchronization

n Criticism: Thread synchronization is heavyweight

= Response
= Cooperative multitasking works for threads, too!

= Also presents same problems
= Starvation & fairness
= Multiprocessors
= Unexpected blocking (page faults, etc.)

= Compiler support helps

i Control Flow

s Criticism. Threads have restricted
control flow

= Response

= Programmers use simple patterns
= Call / return
= Parallel calls
= Pipelines
= Complicated patterns are unnatural
= Hard to understand
= Likely to cause bugs

i Scheduling

s Criticism: Thread schedulers are too generic
= Can't use application-specific information Task

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only
= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT
= Threads can use 2D, too!

= Runtime system tracks current location
= Call graph allows prediction

Program Location

i Scheduling

s Criticism: Thread schedulers are too generic
= Can't use application-specific information Task

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only
= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT
= Threads can use 2D, too!

= Runtime system tracks current location
= Call graph allows prediction

Program Location

Threads

i Scheduling

s Criticism: Thread schedulers are too generic
= Can't use application-specific information Task

= Response

= 2D scheduling: task & program location -
= Threads schedule based on task only
= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT %
= Threads can use 2D, too! §‘
= Runtime system tracks current location o
= Call graph allows prediction

Events

Threads

i The Proof’s in the Pudding

= User-level threads package
= Subset of pthreads
= Intercept blocking system calls
= No Ofn) operations o | ooy —

= Support > 100K threads T Habooh =
= 5000 lines of C code

= Simple web server: Knot
= 700 lines of C code
[| Similar performa nce 01 4 1.6 6.4 2;6 10.24 40.96 16;84

= Linear increase, then steady Concurrent Clients
= Drop-off due to po11() overhead

Mbits / second

i Our Big But...

= More natural programming model
= Control flow is more apparent
= Exception handling is easier
= State management is automatic

= Better fit with current tools & hardware

= Better existing infrastructure
= Allows better performance?

i Control Flow

s Events obscure control flow
= For programmers and tools

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

¥

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s);

¥

RequestHandler(struct session *s) {
..., CacheHandler.enqueue(s);

¥

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
..., unpin(&s); free_session(s); }

Web Server

Accept
Conn.

\ 4

Read
Request

Write
espons

i Control Flow

s Events obscure control flow
= For programmers and tools

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
read_request(&s);
pin_cache(&s);
write_response(&s);
unpin(&s);

¥

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
by
RequestHandler(struct session *s) {
..., CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
..., unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Accept
Conn.

\ 4

Read
Request

Write
espons

i Exceptions

Exceptions complicate control flow
= Harder to understand program flow
= Cause bugs in cleanup code

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Accept
Conn.

\ 4
Read
Request
\ 4
Pin
Cache

\ 4

Write
espons

gt

A 4

i State Management

= Events require manual state management

= Hard to know when to free
= Use GC or risk bugs

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
by
RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

by

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Accept
Conn.

\ 4
Read
Request
\ 4
Pin
Cache

\ 4

Write
espons

gt

A 4

i Existing Infrastructure

= Lots of infrastructure for threads
= Debuggers
= Languages & compilers
= Conseqguences
= More amenable to analysis
= Less effort to get working systems

i Better Performance?

= Function pointers & dynamic dispatch
= Limit compiler optimizations
= Hurt branch prediction & I-cache locality

= More context switches with events?
= Example: Haboob does 6x more than Knot
= Natural result of queues

= More investigation needed!

The Future:
i Compiler-Runtime Integration

= Insight
= Automate things event programmers do by hand
= Additional analysis for other things
= Specific targets
= Dynamic stack growth*
= Live state management
= Synchronization
= Scheduling*

= Improve performance and decrease complexity

* Working prototype in threads package

i Conclusion

= [hreads =~ Events
= Performance

= EXxpressiveness
= Threads > Events
= Complexity / Manageability

s Performance and Ease of use?
= Compiler-runtime integration is key

Ease of Programming

Performance

Threads vs Events

Threads Events
3 | 3 =5
| I SR
State State
State State

» OS thread per user process
= extensive locking

» State with thread

» Suitable for multicore!

« Stateless
» Single OS thread
= no multicore!

VVVVVV

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

4

LionsOS

Threads and Events?

COMP9242 2025 T3 W02-2b: Threads-Events

© Gernot Heiser 2025 — CC BY 4.0 UNSW

vvvvvv

5

LionsOS Motivation: selL4 Is A Microkernel

Microkernel:
» OS code that must execute in privileged mode

« Everything else belongs in user mode servers
» Servers are subject to the microkernel’s
security enforcement!

Assembly language of

operating systems
Consequence:

 Small: 10 kLOC
« Only fundamental, policy-free mechanisms
* No application-oriented services/abstractions
- BYO file system, memory manager, device drivers

Need an actual OS!

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

LionsOS Design Principle: KISS!

Radical simplicity:
e-grained modularity,

Bvent-driven programming mode
static system architecture
T S Vi

*_ USe-CasSe-5pt POICIE

Use-case diversity by
replacing components

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

VVVVVV

7

Example: Networking Subsystem

IP stack is library « Many modules (threads)
not in system’s TCB! - Configured for specific # clients
 Strict separation of concerns!

Tx Virt encapsulates
traffic-shaping policy

) : Translates HW-specific
Virtualiser shares device, device interface to HW-

incl address mapping, independent device-
cache maintanance class interface

Copier for security
(if needed)

COMP9242 2025 T3 WO02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0

/) Zero-copy Data Transfer

8

COMP9242 2025 T3 W02-2b: Threads-Events

» Lock-free bounded queues

» Single producer, single consumer

« Similar to ring buffers used by NICs
« Synchronised by semaphores

Packets
to send

Driver

ssssss

9

Networking Detail

Modules:

» simple event loops

* single-threaded

* zero-copy data passing

K\ - . NIC

Virt N\a o 3
ARP . >(E— Driver —

/ 7 virt RX
Client < > [

IP Stack <> «—> Copy <>

Location transparent modules
= Distribute across cores!

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0

UNSW

Comparison to Linux on i.MX8M

Linux: Performance?
« NW driver:
« NW system to .1@
Written by second-

LionsOS: year student!

« NW driver€ 400 line
Virtualiser: 160 lines
Copier: 80 lines

IP stack: much simpler, clieptli
shared NW system total(< 1,000 lines

Presently use Iwip

10 COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

Performance: i.MX8M, 1Gb/s Eth, UDP

1 100
© " CPU: Small l §
8 0.8 _is good! 80 g
= 0.6 160 &
g2 | g
2 0.4 1 40 5
O
c 0.2 - LionsOS 120
= f Large is goodI |_|nux : O

O \ \ \ \ \ \ O

0 010203040506070809 1
Applied Load (Gb/s)

Single-core configuration

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 U”N§EW

Threads vs Events

Threads Many (micro-)services: Events
* 1 OS thread each
» Single-threaded
) « Event-based N
3 3 « Stateless I 3
| I S—
Suitable for multicore!
State State
LionsOS State State

» OS thread per user process

= extensive locking 3 ? « Stateless

» State with thread .
: : « Single OS thread
. I
Suitable for multicore! = no multicore!

State State

12 COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

el

John Lions Distinguished Lecture
I

UNSW Frans Kaashoek, MIT
Mon, 20/10, 18:00

13 COMP9242 2025 T3 WO02-2b: Threads-Events

14

Reminder: Taste of Research Internships

» Official site: https://www.unsw.edu.au/engineering/student-
life/undergraduate-research-opportunities/

* TS topics: https://trustworthy.systems/students/internships

 Application deadline: 24 October
« Talk to me before applying!

COMP9242 2025 T3 W02-2b: Threads-Events © Gernot Heiser 2025 — CC BY 4.0 UNSW

https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://trustworthy.systems/students/internships

