
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 02 Part 2
Threads vs or and Events?
Gernot Heiser

StateState

Event
Loop

Event
Loop

© Gernot Heiser 2025 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W02-2b: Threads-Events

© Gernot Heiser 2025 – CC BY 4.0

Today’s Lecture
• Present classical pitches in favour of Events and Threads
• Present an alternative design
• Summarise the models

2 COMP9242 2025 T3 W02-2b: Threads-Events

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout
Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Slide set courtesy of John Ousterhout, used with permission

Why Threads Are A Bad Idea September 28, 1995, slide 2

Introduction
 Threads:

– Grew up in OS world (processes).
– Evolved into user-level tool.
– Proposed as solution for a variety of problems.
– Every programmer should be a threads programmer?

 Problem: threads are very hard to program.
 Alternative: events.
 Claims:

– For most purposes proposed for threads, events are
better.

– Threads should be used only when true CPU
concurrency is needed.

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads?

 General-purpose solution for managing concurrency.

 Multiple independent execution streams.

 Shared state.

 Pre-emptive scheduling.

 Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads

Why Threads Are A Bad Idea September 28, 1995, slide 4

What Are Threads Used For?

 Operating systems: one kernel thread for each user
process.

 Scientific applications: one thread per CPU (solve
problems more quickly).

 Distributed systems: process requests concurrently
(overlap I/Os).

 GUIs:
– Threads correspond to user actions; can service

display during long-running computations.
– Multimedia, animations.

Why Threads Are A Bad Idea September 28, 1995, slide 5

What's Wrong With Threads?

 Too hard for most programmers to use.

 Even for experts, development is painful.

casual wizardsall programmers

Visual Basic programmers
C programmers
C++ programmers

Threads programmers

Why Threads Are A Bad Idea September 28, 1995, slide 6

Why Threads Are Hard

 Synchronization:
– Must coordinate access to shared data with locks.
– Forget a lock? Corrupted data.

 Deadlock:
– Circular dependencies among locks.
– Each process waits for some other process: system

hangs.

lock A lock Bthread 1 thread 2

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd
 Hard to debug: data dependencies, timing dependencies.
 Threads break abstraction: can't design modules

independently.
 Callbacks don't work with locks.

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

Why Threads Are A Bad Idea September 28, 1995, slide 8

Why Threads Are Hard, cont'd
 Achieving good performance is hard:

– Simple locking (e.g. monitors) yields low concurrency.
– Fine-grain locking increases complexity, reduces

performance in normal case.
– OSes limit performance (scheduling, context switches).

 Threads not well supported:
– Hard to port threaded code (PCs? Macs?).
– Standard libraries not thread-safe.
– Kernel calls, window systems not multi-threaded.
– Few debugging tools (LockLint, debuggers?).

 Often don't want concurrency anyway (e.g. window
events).

Why Threads Are A Bad Idea September 28, 1995, slide 9

Event-Driven Programming

 One execution stream: no CPU
concurrency.

 Register interest in events
(callbacks).

 Event loop waits for events,
invokes handlers.

 No preemption of event
handlers.

 Handlers generally short-lived.

Event
Loop

Event Handlers

Why Threads Are A Bad Idea September 28, 1995, slide 10

What Are Events Used For?

 Mostly GUIs:
– One handler for each event (press button, invoke menu

entry, etc.).
– Handler implements behavior (undo, delete file, etc.).

 Distributed systems:
– One handler for each source of input (socket, etc.).
– Handler processes incoming request, sends response.
– Event-driven I/O for I/O overlap.

Why Threads Are A Bad Idea September 28, 1995, slide 11

Problems With Events
 Long-running handlers make application non-

responsive.
– Fork off subprocesses for long-running things (e.g.

multimedia), use events to find out when done.
– Break up handlers (e.g. event-driven I/O).
– Periodically call event loop in handler (reentrancy adds

complexity).
 Can't maintain local state across events (handler must

return).
 No CPU concurrency (not suitable for scientific apps).
 Event-driven I/O not always well supported (e.g. poor

write buffering).

Why Threads Are A Bad Idea September 28, 1995, slide 12

Events vs. Threads

 Events avoid concurrency as much as possible, threads
embrace:
– Easy to get started with events: no concurrency, no

preemption, no synchronization, no deadlock.
– Use complicated techniques only for unusual cases.
– With threads, even the simplest application faces the

full complexity.

 Debugging easier with events:
– Timing dependencies only related to events, not to

internal scheduling.
– Problems easier to track down: slow response to button

vs. corrupted memory.

Why Threads Are A Bad Idea September 28, 1995, slide 13

Events vs. Threads, cont'd

 Events faster than threads on single CPU:
– No locking overheads.
– No context switching.

 Events more portable than threads.

 Threads provide true concurrency:
– Can have long-running stateful handlers without

freezes.
– Scalable performance on multiple CPUs.

Why Threads Are A Bad Idea September 28, 1995, slide 14

Should You Abandon Threads?

 No: important for high-end servers (e.g. databases).

 But, avoid threads wherever possible:
– Use events, not threads, for GUIs,

distributed systems, low-end servers.
– Only use threads where true CPU

concurrency is needed.
– Where threads needed, isolate usage

in threaded application kernel: keep
most of code single-threaded. Threaded Kernel

Event-Driven Handlers

Why Threads Are A Bad Idea September 28, 1995, slide 15

Conclusions

 Concurrency is fundamentally hard; avoid whenever
possible.

 Threads more powerful than events, but power is
rarely needed.

 Threads much harder to program than events; for
experts only.

 Use events as primary development tool (both GUIs
and distributed systems).

 Use threads only for performance-critical kernels.

Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk at HotOS 2003 Slide set courtesy of Rob von Behren, used with permission

The Stage
n Highly concurrent applications

n Internet servers (Flash, Ninja, SEDA)
n Transaction processing databases

n Workload
n Operate “near the knee”
n Avoid thrashing!

n What makes concurrency hard?
n Race conditions
n Scalability (no O(n) operations)
n Scheduling & resource sensitivity
n Inevitable overload
n Code complexity

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

Pe
rfo

rm
an

ce

The Debate
n Performance vs. Programmability

n Current threads pick one
n Events somewhat better

n Questions
n Threads vs. Events?
n How do we get performance and

programmability?

Performance

Ea
se

 o
f P

ro
gr

am
m

in
g

Current
Threads

Current Threads

Current Events

Ideal

Our Position
n Thread-event duality still holds
n But threads are better anyway

n More natural to program
n Better fit with tools and hardware

n Compiler-runtime integration is key

The Duality Argument
n General assumption: follow “good practices”
n Observations

n Major concepts are analogous
n Program structure is similar
n Performance should be similar

n Given good implementations!

Threads Events
n Monitors
n Exported functions
n Call/return and fork/join
n Wait on condition variable

n Event handler & queue
n Events accepted
n Send message / await reply
n Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
n General assumption: follow “good practices”
n Observations

n Major concepts are analogous
n Program structure is similar
n Performance should be similar

n Given good implementations!

Threads Events
n Monitors
n Exported functions
n Call/return and fork/join
n Wait on condition variable

n Event handler & queue
n Events accepted
n Send message / await reply
n Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

The Duality Argument
n General assumption: follow “good practices”
n Observations

n Major concepts are analogous
n Program structure is similar
n Performance should be similar

n Given good implementations!

Threads Events
n Monitors
n Exported functions
n Call/return and fork/join
n Wait on condition variable

n Event handler & queue
n Events accepted
n Send message / await reply
n Wait for new messages

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

“But Events Are Better!”
n Recent arguments for events

n Lower runtime overhead
n Better live state management
n Inexpensive synchronization
n More flexible control flow
n Better scheduling and locality

n All true but…
n No inherent problem with threads!
n Thread implementations can be improved

Runtime Overhead
n Criticism: Threads don’t perform

well for high concurrency
n Response

n Avoid O(n) operations
n Minimize context switch overhead

n Simple scalability test
n Slightly modified GNU Pth
n Thread-per-task vs.

single thread
n Same performance!

!"
#$
"B
CB'
E')
"*
+,
-

.+,*$//",C'01B2B

34",CRS1B"-')"/4"/

0T/"1-"-')"/4"/

'89999

':9999

';9999

'<9999

'=9999

'>9999

'?9999

'@9999

'A99999

'AA9999

'A 'A9 'A99 'A999 'A9999 'A99999 'A"B9=

Live State Management
n Criticism: Stacks are bad for live state
n Response

n Fix with compiler help
n Stack overflow vs. wasted space

n Dynamically link stack frames
n Retain dead state

n Static lifetime analysis
n Plan arrangement of stack
n Put some data on heap
n Pop stack before tail calls

n Encourage inefficiency
n Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Event State (heap)

Synchronization
n Criticism: Thread synchronization is heavyweight
n Response

n Cooperative multitasking works for threads, too!
n Also presents same problems

n Starvation & fairness
n Multiprocessors
n Unexpected blocking (page faults, etc.)

n Compiler support helps

Control Flow
n Criticism: Threads have restricted

control flow
n Response

n Programmers use simple patterns
n Call / return
n Parallel calls
n Pipelines

n Complicated patterns are unnatural
n Hard to understand
n Likely to cause bugs

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

n Criticism: Thread schedulers are too generic
n Can’t use application-specific information

n Response
n 2D scheduling: task & program location

n Threads schedule based on task only
n Events schedule by location (e.g. SEDA)

n Allows batching
n Allows prediction for SRCT

n Threads can use 2D, too!
n Runtime system tracks current location
n Call graph allows prediction

Scheduling

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

n Criticism: Thread schedulers are too generic
n Can’t use application-specific information

n Response
n 2D scheduling: task & program location

n Threads schedule based on task only
n Events schedule by location (e.g. SEDA)

n Allows batching
n Allows prediction for SRCT

n Threads can use 2D, too!
n Runtime system tracks current location
n Call graph allows prediction

Scheduling
n Criticism: Thread schedulers are too generic

n Can’t use application-specific information
n Response

n 2D scheduling: task & program location
n Threads schedule based on task only
n Events schedule by location (e.g. SEDA)

n Allows batching
n Allows prediction for SRCT

n Threads can use 2D, too!
n Runtime system tracks current location
n Call graph allows prediction

Task

Pr
og

ra
m

 L
oc

at
io

n

Threads

Events

The Proof’s in the Pudding
n User-level threads package

n Subset of pthreads
n Intercept blocking system calls
n No O(n) operations
n Support > 100K threads
n 5000 lines of C code

n Simple web server: Knot
n 700 lines of C code

n Similar performance
n Linear increase, then steady
n Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

900

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)
KnotA (Favor Accept)

Haboob

Concurrent Clients
M

bi
ts

 /
se

co
nd

Our Big But…
n More natural programming model

n Control flow is more apparent
n Exception handling is easier
n State management is automatic

n Better fit with current tools & hardware
n Better existing infrastructure
n Allows better performance?

Control Flow
n Events obscure control flow

n For programmers and tools

Threads Events
thread_main(int sock) {
 struct session s;
 accept_conn(sock, &s);
 read_request(&s);
 pin_cache(&s);
 write_response(&s);
 unpin(&s);
}

pin_cache(struct session *s) {
 pin(&s);
 if(!in_cache(&s))
 read_file(&s);
}

AcceptHandler(event e) {
 struct session *s = new_session(e);
 RequestHandler.enqueue(s);
}
RequestHandler(struct session *s) {
 …; CacheHandler.enqueue(s);
}
CacheHandler(struct session *s) {
 pin(s);
 if(!in_cache(s)) ReadFileHandler.enqueue(s);
 else ResponseHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {
 …; unpin(&s); free_session(s); }

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Control Flow

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Threads Events
thread_main(int sock) {
 struct session s;
 accept_conn(sock, &s);
 read_request(&s);
 pin_cache(&s);
 write_response(&s);
 unpin(&s);
}

pin_cache(struct session *s) {
 pin(&s);
 if(!in_cache(&s))
 read_file(&s);
}

CacheHandler(struct session *s) {
 pin(s);
 if(!in_cache(s)) ReadFileHandler.enqueue(s);
 else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
 …; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {
 …; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
 struct session *s = new_session(e);
 RequestHandler.enqueue(s); }

n Events obscure control flow
n For programmers and tools

Exceptions
n Exceptions complicate control flow

n Harder to understand program flow
n Cause bugs in cleanup code Accept

Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

Threads Events
thread_main(int sock) {
 struct session s;
 accept_conn(sock, &s);
 if(!read_request(&s))
 return;
 pin_cache(&s);
 write_response(&s);
 unpin(&s);
}

pin_cache(struct session *s) {
 pin(&s);
 if(!in_cache(&s))
 read_file(&s);
}

CacheHandler(struct session *s) {
 pin(s);
 if(!in_cache(s)) ReadFileHandler.enqueue(s);
 else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
 …; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {
 …; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
 struct session *s = new_session(e);
 RequestHandler.enqueue(s); }

State Management

Threads Events
thread_main(int sock) {
 struct session s;
 accept_conn(sock, &s);
 if(!read_request(&s))
 return;
 pin_cache(&s);
 write_response(&s);
 unpin(&s);
}

pin_cache(struct session *s) {
 pin(&s);
 if(!in_cache(&s))
 read_file(&s);
}

CacheHandler(struct session *s) {
 pin(s);
 if(!in_cache(s)) ReadFileHandler.enqueue(s);
 else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
 …; if(error) return; CacheHandler.enqueue(s);
}
. . .
ExitHandlerr(struct session *s) {
 …; unpin(&s); free_session(s);
}
AcceptHandler(event e) {
 struct session *s = new_session(e);
 RequestHandler.enqueue(s); }

Accept
Conn.

Write
Response

Read
File

Read
Request

Pin
Cache

Web Server

Exit

n Events require manual state management
n Hard to know when to free

n Use GC or risk bugs

Existing Infrastructure
n Lots of infrastructure for threads

n Debuggers
n Languages & compilers

n Consequences
n More amenable to analysis
n Less effort to get working systems

Better Performance?
n Function pointers & dynamic dispatch

n Limit compiler optimizations
n Hurt branch prediction & I-cache locality

n More context switches with events?
n Example: Haboob does 6x more than Knot
n Natural result of queues

n More investigation needed!

The Future:
Compiler-Runtime Integration

n Insight
n Automate things event programmers do by hand
n Additional analysis for other things

n Specific targets
n Dynamic stack growth*
n Live state management
n Synchronization
n Scheduling*

n Improve performance and decrease complexity

 * Working prototype in threads package

Conclusion
n Threads » Events

n Performance
n Expressiveness

n Threads > Events
n Complexity / Manageability

n Performance and Ease of use?
n Compiler-runtime integration is key

Performance

Ea
se

 o
f P

ro
gr

am
m

in
g

Current
Threads

Current Threads

Current Events

New Threads?

© Gernot Heiser 2025 – CC BY 4.0

Threads vs Events

3 COMP9242 2025 T3 W02-2b: Threads-Events

Threads Events

State State

Service

Service

StateState

Handler

Handler

• OS thread per user process
⇒ extensive locking

• State with thread
• Suitable for multicore!

• Stateless
• Single OS thread
⇒ no multicore!

© Gernot Heiser 2025 – CC BY 4.0

LionsOS
Threads and Events?

4 COMP9242 2025 T3 W02-2b: Threads-Events

© Gernot Heiser 2025 – CC BY 4.0

LionsOS Motivation: seL4 Is A Microkernel

5 COMP9242 2025 T3 W02-2b: Threads-Events

Microkernel:
• OS code that must execute in privileged mode
• Everything else belongs in user mode servers
• Servers are subject to the microkernel’s

security enforcement!

Consequence:
• Small: 10 kLOC
• Only fundamental, policy-free mechanisms
• No application-oriented services/abstractions
• BYO file system, memory manager, device drivers

Need an actual OS!

Consequence:
• Small: 10 kLOC
• Only fundamental, policy-free mechanisms
• No application-oriented services/abstractions

Assembly language of
operating systems

© Gernot Heiser 2025 – CC BY 4.0

LionsOS Design Principle: KISS!

6 COMP9242 2025 T3 W02-2b: Threads-Events

Radical simplicity:
• fine-grained modularity,

strict separation of concerns
• event-driven programming model
• static system architecture
• use-case-specific policies

Use-case diversity by
replacing components

© Gernot Heiser 2025 – CC BY 4.0

Example: Networking Subsystem

7 COMP9242 2025 T3 W02-2b: Threads-Events

NIC

Driver
Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

IP stack is library –
not in system’s TCB!

Tx Virt encapsulates
traffic-shaping policy

• Many modules (threads)
• Configured for specific # clients
• Strict separation of concerns!

Translates HW-specific
device interface to HW-
independent device-
class interface

Handles broadcasts

Virtualiser shares device,
incl address mapping,
cache maintanance

Copier for security
(if needed)

© Gernot Heiser 2025 – CC BY 4.0

Zero-copy Data Transfer

8 COMP9242 2025 T3 W02-2b: Threads-Events

• Lock-free bounded queues
• Single producer, single consumer
• Similar to ring buffers used by NICs
• Synchronised by semaphores

Tx Metadata Region DriverVirt

Tx Data Region

TxAhead
tail TxF tailhead

2 22 4 41 1 3 3

Packets
to send

Buffers
to reuse

© Gernot Heiser 2025 – CC BY 4.0

Networking Detail

9 COMP9242 2025 T3 W02-2b: Threads-Events

NIC

Driver

Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

Copy

Copy

NIC

Driver

Copy

Copy

Tx

Rx
Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

Modules:
• simple event loops
• single-threaded
• zero-copy data passing

Location transparent modules
⇒ Distribute across cores!

© Gernot Heiser 2025 – CC BY 4.0

Comparison to Linux on i.MX8M

10 COMP9242 2025 T3 W02-2b: Threads-Events

Linux:
• NW driver: 3k lines
• NW system total: 1M lines

LionsOS:
• NW driver: 400 lines
• Virtualiser: 160 lines
• Copier: 80 lines
• IP stack: much simpler, client library
• shared NW system total: < 1,000 lines

Written by second-
year student!

Performance?

Presently use lwip

© Gernot Heiser 2025 – CC BY 4.0

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LionsOS
Linux

Applied Load (Gb/s)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

LionsOS
Linux

Applied Load (Gb/s)

Performance: i.MX8M, 1Gb/s Eth, UDP

11 COMP9242 2025 T3 W02-2b: Threads-Events

Single-core configuration

Large is good!

CPU: Small
is good!
CPU: Small
is good!

© Gernot Heiser 2025 – CC BY 4.0

Threads vs Events

12 COMP9242 2025 T3 W02-2b: Threads-Events

Threads Events

State State

Service

Service

StateState

Handler

Handler

StateState

Event
Loop

Event
Loop

LionsOS

Many (micro-)services:
• 1 OS thread each
• Single-threaded
• Event-based
• Stateless
Suitable for multicore!

• OS thread per user process
⇒ extensive locking

• State with thread
• Suitable for multicore!

• Stateless
• Single OS thread
⇒ no multicore!

© Gernot Heiser 2025 – CC BY 4.0

John Lions Distinguished Lecture

13 COMP9242 2025 T3 W02-2b: Threads-Events

Frans Kaashoek, MIT
Mon, 20/10, 18:00

© Gernot Heiser 2025 – CC BY 4.0

Reminder: Taste of Research Internships
• Official site: https://www.unsw.edu.au/engineering/student-

life/undergraduate-research-opportunities/
• TS topics: https://trustworthy.systems/students/internships
• Application deadline: 24 October

• Talk to me before applying!

14 COMP9242 2025 T3 W02-2b: Threads-Events

https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://www.unsw.edu.au/engineering/student-life/undergraduate-research-opportunities/
https://trustworthy.systems/students/internships

