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Today’s Lecture
• Execution models and how they apply to the OS

• Events
• Coroutines
• Threads
• Continuations

• Trade-offs and relation to SOS
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System Building
General purpose OS needs to deal with concurrency

• Many user activities
• potentially overlapping
• may be interdependent

• need to resume after something else happens
• Activities that depend on external events

• may requiring waiting for completion (e.g. storage read)
• reacting to external triggers (e.g. interrupts)

OS defines its execution model
• low-level language
• minimal runtime

Need a systematic approach to execution structure
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Execution Models
• Events
• Coroutines
• Threads
• Continuations

Note: Focus is on uni-processor for now, multiprocessors later
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Events
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Events
• External entities generate (post) events.

• keyboard presses, mouse clicks, system calls, IRQs
• Event loop waits for events and calls an appropriate 

event handler.
• Event handler is a function that runs until completion 

and returns to the event loop.
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Some Definitions
Block:

• Execution state is preserved
• Marks current execution as blocked
• It is no longer considered Ready

• Removed from a Ready Queue
• Requires an unblock to mark ready and rejoin the ready queue
• Resumes from where it blocked

Yield:
• Execution state is preserved
• The thread relinquishes execution
• Immediately placed in the ready queue
• Resumes from where it yielded
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Event Model
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Only requires a single stack:
• Event handlers return to the event loop

• No blocking
• No yielding

• No preemption of handlers
• Handler functions should be short!
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What is ‘a’?
int a; /* global */

int func() {
    a = 1;
    if (a == 1) {
        a = 2;
    }
    return a;
}
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No concurrency issues 
within a handler
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Event-based kernel on CPU with protection 
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How support 
multiple processes?
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How support 
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• User-level state in PCB

• Kernel starts on fresh stack 
on each trap

• No interrupts, no blocking in 
kernel mode
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Scheduling?
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Coroutines
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Coroutines 
• Old idea:

Melvin E. Conway. 1963. Design of a separable transition-diagram 
compiler. Commun. ACM 6, 7 (July 1963), 396-408. 
DOI=http://dx.doi.org/10.1145/366663.366704 

• Analogous to a “subroutine” with extra entry and exit points
• Exit/enter via yield() 
• Supports long running subroutines
• Can implement sync primitives that wait for a condition to be true 

• while (condition != true) yield();
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Coroutines
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• yield() saves state of routine A and starts 
routine B 

• or resumes B’s state from its previous yield() 
point.

• No pre-emption, any switching is explicit 
via yield() in code
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What is ‘a’?
int a; /* global */

int func() {
    a = 1;
    if (a == 1) {
       yield(); 
       a = 2;
    }
    return a;
}
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What is ‘a’?
int a; /* global */

int func() {
    a = 1;
    yield();
    if (a == 1) {
   a = 2;
    }
    return a;
}
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Limited concurrency 
issues/races as globals are 
exclusive between yields() 
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Coroutines Implementation strategy?
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• Usually implemented with a stack per 
routine

• Preserves current state of execution 
of the routine
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Coroutines Implementation strategy?
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• Routine A state currently loaded
• Routine B state stored on stack
• Routine switch from A → B

• saving state of A a
• regs, sp, pc

• restoring the state of  B
• regs, sp, pc
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A hypothetical yield()
yield:
   /*
    * a0 contains a pointer to the previous routine’s struct.
    * a1 contains a pointer to the new routine’s struct.
    *
    * The registers get saved on the stack, namely:
    *
    *      s0-s8
    *      gp, ra
    *
    */

   /* Allocate stack space for saving 11 registers. 
    * 11*4 = 44 */

   addi sp, sp, -44
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A hypothetical yield()
/* Save the registers */
   sw ra, 40(sp)
   sw gp, 36(sp)
   sw s8, 32(sp)
   sw s7, 28(sp)
   sw s6, 24(sp)
   sw s5, 20(sp)
   sw s4, 16(sp)
   sw s3, 12(sp)
   sw s2, 8(sp)
   sw s1, 4(sp)
   sw s0, 0(sp)

   /* Store the old stack pointer */
   sw sp, 0(a0)
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Save the registers that 
the ‘C’ procedure calling 
convention expects 
preserved
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A hypothetical yield()
/* Get the new stack pointer from the new pcb */
   lw sp, 0(a1)
   nop   /* delay slot for load */

/* Now, restore the registers */
   lw s0, 0(sp)
   lw s1, 4(sp)
   lw s2, 8(sp)
   …
   lw gp, 36(sp)
   lw ra, 40(sp)
   nop   /* delay slot for load */

/* and return. */
   j ra
   addi sp, sp, 44 /* in delay slot */
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Yield
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yield(a,b)

{

yield(a,b)

{

yield(b,a)

{

}

}

}

Routine A Routine B
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What is ‘a’?
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int a; /* global */

int func() {
    a = 1;
    func2(); 
    if (a == 1) {
        a = 2;
    }
    return a;
}

Does func2() yield()?
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Coroutines
What about subroutines combined with coroutines

• i.e. what is the issue with calling subroutines?
Subroutine calling might involve an implicit yield()
May creates a race on globals

• either understand where all yields lie, or
• use cooperative multithreading!
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• Build has libco (used by gdb thread):
• https://github.com/higan-emu/libco

• Tony Finch’s picoro: https://dotat.at/git/picoro.git/

Use at your own risk!
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Threads
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Cooperative Multithreading
• Also called green threads
• Conservatively assumes a multithreading model

• i.e. uses synchronisation (locks) to avoid races,
• and makes no assumption about subroutine behaviour 

• Everything thing can potentially yield() 
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Green Threads
int a; /* global */

lock_t a_lock;

int func() {

    int t;

    lock_acquire(a_lock)

    a = 1;

    func2(); 

    if (a == 1) {

        a = 2;

    }

    t = a;

    lock_release(a_lock);

    return t;

}
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Pessimistic locking

Deadlocks?
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A Thread
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Thread attributes
• processor related:

• memory
• program counter
• stack pointer
• registers (and status)

• OS/package related:
• state (running/blocked)
• identity
• scheduler (queues, priority)
• etc… 
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Thread Control Block (TCB)
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• To support more than a single 
thread we to need store thread 
state and attributes

• Stored in per-thread thread 
control block

• also indirectly in stack
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Thread A and Thread B

31 COMP9242 2025 T3 W02 Part 1: Execution Models

• Thread A state currently loaded
• Thread B state stored in TCB B
• Thread switch from A → B

• saving state of thread A
• regs, sp, pc

• restoring the state of thread B
• regs, sp, pc

• Note: registers and PC can be 
stored on the stack, and only SP 
stored in TCB
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OS Pseudo-Code
mi_switch()
{
  struct thread *cur, *next;
  next = scheduler();

/* update curthread */
  cur = curthread;
  curthread = next;
/* 
 * Call the machine-dependent code that actually does the
 * context switch.
 */
  md_switch(&cur->t_sp, &next->t_sp);
 /* back running in same thread */
}
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Note: global 
variable curthread
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OS/161 mips_switch
mips_switch:

   /* a0 contains a pointer to the old thread's struct tcb.

    * a1 contains a pointer to the new thread's struct tcb.

    *

    * The only thing we touch in the tcb is the first word, which

    * we save the stack pointer in. The other registers get saved

    * on the stack, namely:

    *      s0-s8

    *      gp, ra

    */

   /* Allocate stack space for saving 11 registers. 11*4 = 44 */

   addi sp, sp, -44
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OS/161 mips_switch
/* Save the registers */
   sw ra, 40(sp)
   sw gp, 36(sp)
   sw s8, 32(sp)
   sw s7, 28(sp)
   sw s6, 24(sp)
   sw s5, 20(sp)
   sw s4, 16(sp)
   sw s3, 12(sp)
   sw s2, 8(sp)
   sw s1, 4(sp)
   sw s0, 0(sp)

   /* Store the old stack pointer in the old tcb */
   sw sp, 0(a0)
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Save the registers that 
the ‘C’ procedure 
calling convention 
expects preserved
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OS/161 mips_switch
/* Get the new stack pointer from the new tcb */
   lw sp, 0(a1)
   nop   /* delay slot for load */

/* Now, restore the registers */
   lw s0, 0(sp)
   lw s1, 4(sp)
   lw s2, 8(sp)
   …
   lw gp, 36(sp)
   lw ra, 40(sp)
   nop   /* delay slot for load */

   /* and return. */
   j ra
   addi sp, sp, 44 /* in delay slot */
   .end mips_switch
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Thread Switch
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mips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b
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Preemptive Multithreading
• Switch can be triggered by asynchronous external event

• eg. timer interrupt
• Asynchronous interrupt triggers saving current state 

• on current stack, if in kernel (nesting)
• on kernel stack or in TCB if coming from user-level

• Call thread_switch()
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Threads on simple CPU
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Threads on CPU with protection 
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Threads on CPU with protection 
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• What 
happens on 
kernel entry 
and exit?
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Thread Switch Switching Address Space: Process
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Thread Switch Switching Address Space: Process

42 COMP9242 2025 T3 W02 Part 1: Execution Models

Stack

Kernel-only Memory

TCB 
A

Code

Data

Stack

TCB 
B

Stack

TCB 
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU



© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is this? 
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User-level Threads
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User-level Threads
üFast thread management (creation, deletion, switching, 

synchronisation…)
ûBlocking blocks all threads in a process

• Syscalls
• Page faults

ûNo thread-level parallelism on multiprocessor
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Kernel-Level Threads
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Kernel-level Threads
ûSlow thread management (creation, deletion, switching, 

synchronisation…)
• System calls

üBlocking blocks only the appropriate thread in a process
üThread-level parallelism on multiprocessor
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Continuations
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Continuations
Continuation:
• representation of an instance of a computation at a point in time
• the state and code where to continue from 
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Continuations in PLs: Python
• Traditional function that returns:

def func(x):
    return x+1

• Function with a continuation indicating where to continue
def func_cps(x,c):
    c(x+1)
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Continuation 
invoked with 
function’s result
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Continuations
The concept of capturing current (stack) state to continue the 
computation in the future
• In the general case can restore same state repeatedly
• C has one-shot continuations: setjmp()/longjump()
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OS Execution Models
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OS Execution Model Alternatives
Single Kernel Stack

• One stack supports all user 
threads

• “Event model” / “interrupt model”

Per-Thread Kernel Stack

• Every user threads has a separate 
kernel stack (besides its user-level 
stack)

• “Process model”
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Per-Thread Kernel Stack
A thread’s kernel state is implicitly 
encoded in the kernel activation 
stack
• If the thread must block in-kernel, 

we can simply switch from the 
current stack, to another threads 
stack until thread is resumed

• Resuming is simply switching back 
to the original stack

• Preemption is easy

example(arg1, arg2) {

 P1(arg1, arg2);

 if (need_to_block) {

  thread_block();

  P2(arg2);

 } else {

  P3();

 }

 /* return control to user */

 return SUCCESS;

}
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• Dump registers 
on stack

• Switch stack
• Restore registers
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Single Kernel Stack
How do we use a single kernel stack to support many threads?
• Issue: How are system calls that block handled?

⇒ Use continuations 
– Used in Mach: Using Continuations to Implement Thread Management 

and Communication in Operating Systems. [Draves et al., 1991]

⇒ Use stateless kernel (event model)
• Used in Fluke: Interface and Execution Models in the Fluke Kernel. 

[Ford et al., 1999]
• Also used seL4
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Continuations
State required to resume a blocked 
thread is explicitly saved in a TCB

• A function pointer
• Variables

Stack can be discarded and reused to 
support new thread

Resuming involves discarding current 
stack, restoring the continuation, and 
continuing 

example(arg1, arg2) {

 P1(arg1, arg2);

 if (need_to_block) {

  save_arg_in_TCB;

  thread_block(example_continue);

  /* NOT REACHED */

 } else {

  P3();

 }

 thread_syscall_return(SUCCESS);

}

example_continue() {

 recover_arg2_from_TCB;

 P2(recovered arg2);

 thread_syscall_return(SUCCESS);

}
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Logically, p2(arg2) 
exceuted here
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Stateless Kernel
System calls cannot block within the kernel
• If syscall must block (resource unavailable)

• Modify user-state such that syscall is restarted when resources 
become available

• Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.
⇒ Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code
⇒ Syscall arguments in registers

• Page fault during roll-back to restart (due to a page fault) is fatal.
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Example Implementations –
IPC

58 COMP9242 2025 T3 W02 Part 1: Execution Models



© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

IPC implementation – Per-Thread Stack
msg_send_rcv(msg, option,

  send_size, rcv_size, ...) {

 rc = msg_send(msg, option,

  send_size, ...);

 if (rc != SUCCESS)

 return rc;

 rc = msg_rcv(msg, option, rcv_size, ...);

 return rc;

}
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Block inside 
msg_rcv if no 
message 
available

Send and Receive 
system call 
implemented by a 
non-blocking send 
part and a blocking 
receive part. 
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IPC implementation – Continuations
msg_send_rcv(msg, option,
  send_size, rcv_size, ...) {
 rc = msg_send(msg, option,
  send_size, ...);
 if (rc != SUCCESS)
  return rc;
 cur_thread->contin.msg =
  msg;
 cur_thread->contin.option =
  option;
 cur_thread->contin.rcv_size =
  rcv_size;
  ...
 rc = msg_rcv(msg, option,
  rcv_size,
  ..., msg_rcv_continue);
 return rc;
}

msg_rcv_continue() {
 msg = cur_thread->contin.msg;
 option = cur_thread->
  contin.option;
 rcv_size = cur_thread->
  contin.rcv_size;
  ...
 rc = msg_rcv(msg, option,
  rcv_size,
  ..., msg_rcv_continue);
 return rc;
}
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The function to 
continue with if blocked

Save state
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IPC Implementation – Stateless Kernel
msg_send_rcv(cur_thread) {

 rc = msg_send(cur_thread);

 if (rc != SUCCESS)

  return rc;

 

 rc = msg_rcv(cur_thread);

 if (rc == WOULD_BLOCK) {

     set_pc(cur_thread, msg_rcv_entry); 

     return RESCHEDULE;

   }

 return rc;

}
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Set user-level PC 
to restart  msg_rcv 
only

RESCHEDULE changes 
curthread on exiting the 
kernel
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Summary
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Single Kernel Stack
• Either continuations 

– complex to program
– must be conservative in state saved (any state that might be needed)
– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

• or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management  can get in the way
– system calls need to be kept simple “atomic”.
• e.g. the fluke kernel from Utah, seL4

• low cache footprint
• always the same stack is used !
• reduced memory footprint
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Per-Thread Kernel Stack
• simple, flexible

• kernel can always use threads, no special techniques required for 
keeping state while interrupted / blocked

• no conceptual difference between kernel mode and user mode
• e.g. traditional L4, Linux, Windows, OS/161

• but larger cache footprint

• and larger memory consumption

• … and more concurrency issues
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