
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 02 Part 1
OS Execution Models:

Events, Co-routines, Continuations, Threads
Gernot Heiser

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Today’s Lecture
• Execution models and how they apply to the OS

• Events
• Coroutines
• Threads
• Continuations

• Trade-offs and relation to SOS

2 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

System Building
General purpose OS needs to deal with concurrency

• Many user activities
• potentially overlapping
• may be interdependent

• need to resume after something else happens
• Activities that depend on external events

• may requiring waiting for completion (e.g. storage read)
• reacting to external triggers (e.g. interrupts)

OS defines its execution model
• low-level language
• minimal runtime

Need a systematic approach to execution structure

3 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Execution Models
• Events
• Coroutines
• Threads
• Continuations

Note: Focus is on uni-processor for now, multiprocessors later

4 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Events

5 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Events
• External entities generate (post) events.

• keyboard presses, mouse clicks, system calls, IRQs
• Event loop waits for events and calls an appropriate

event handler.
• Event handler is a function that runs until completion

and returns to the event loop.

6 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Some Definitions
Block:

• Execution state is preserved
• Marks current execution as blocked
• It is no longer considered Ready

• Removed from a Ready Queue
• Requires an unblock to mark ready and rejoin the ready queue
• Resumes from where it blocked

Yield:
• Execution state is preserved
• The thread relinquishes execution
• Immediately placed in the ready queue
• Resumes from where it yielded

7 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Event Model

8 COMP9242 2025 T3 W02 Part 1: Execution Models

Only requires a single stack:
• Event handlers return to the event loop

• No blocking
• No yielding

• No preemption of handlers
• Handler functions should be short!

PC
SP

REGS

CPU

Stack

Memory

Event Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is ‘a’?
int a; /* global */

int func() {
 a = 1;
 if (a == 1) {
 a = 2;
 }
 return a;
}

9 COMP9242 2025 T3 W02 Part 1: Execution Models

No concurrency issues
within a handler

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Event-based kernel on CPU with protection

10 COMP9242 2025 T3 W02 Part 1: Execution Models

How support
multiple processes?

Kernel-only Memory User Memory

Stack

User
Code

User
Data

Scheduling?

Stack

Event Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

PC
SP

REGS

CPU

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

How support
multiple processes?

Scheduling?

Stack

Event Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

Event-based kernel on CPU with protection

11 COMP9242 2025 T3 W02 Part 1: Execution Models

• User-level state in PCB

• Kernel starts on fresh stack
on each trap

• No interrupts, no blocking in
kernel mode

Kernel-only Memory User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Timer Event
Handler

(Scheduler)

PCB
A

PCB
B

PCB
C

Stack

Trap
Dispatcher

Data

Event
Handler 1

Event
Handler 2

Current
PCB

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Scheduling?

Stack

Event Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Timer Event
Handler

(Scheduler)

PCB
A

PCB
B

PCB
C

Stack

Trap
Dispatcher

Data

Event
Handler 1

Event
Handler 2

Current
PCB

Event-based kernel on CPU with protection

12 COMP9242 2025 T3 W02 Part 1: Execution Models

Kernel-only Memory User Memory CPU

Timer Event
Handler

(Scheduler)

Stack

User
Code

User
Data

PC
SP

REGS

PCB
A

PCB
B

PCB
C

Stack

Trap
Dispatcher

Data

Event
Handler 1

Event
Handler 2

Current
PCB

• User-level state in PCB

• Kernel starts on fresh stack
on each trap

• No interrupts, no blocking in
kernel mode

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines

13 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines
• Old idea:

Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963), 396-408.
DOI=http://dx.doi.org/10.1145/366663.366704

• Analogous to a “subroutine” with extra entry and exit points
• Exit/enter via yield()
• Supports long running subroutines
• Can implement sync primitives that wait for a condition to be true

• while (condition != true) yield();

14 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines

15 COMP9242 2025 T3 W02 Part 1: Execution Models

• yield() saves state of routine A and starts
routine B

• or resumes B’s state from its previous yield()
point.

• No pre-emption, any switching is explicit
via yield() in code

PC
SP

REGS

CPU
Routine A

Stack

Memory

Data

Routine B

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is ‘a’?
int a; /* global */

int func() {
 a = 1;
 if (a == 1) {
 yield();
 a = 2;
 }
 return a;
}

16 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is ‘a’?
int a; /* global */

int func() {
 a = 1;
 yield();
 if (a == 1) {
 a = 2;
 }
 return a;
}

17 COMP9242 2025 T3 W02 Part 1: Execution Models

Limited concurrency
issues/races as globals are
exclusive between yields()

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines Implementation strategy?

18 COMP9242 2025 T3 W02 Part 1: Execution Models

• Usually implemented with a stack per
routine

• Preserves current state of execution
of the routine

PC
SP

REGS

CPU
Routine A

Stack
A

Memory

Data

Routine B

Stack
B

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines Implementation strategy?

19 COMP9242 2025 T3 W02 Part 1: Execution Models

• Routine A state currently loaded
• Routine B state stored on stack
• Routine switch from A → B

• saving state of A a
• regs, sp, pc

• restoring the state of B
• regs, sp, pc

PC
SP

REGS

CPU
Routine A

Stack
A

Memory

Data

Routine B

Stack
B

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

A hypothetical yield()
yield:
 /*
 * a0 contains a pointer to the previous routine’s struct.
 * a1 contains a pointer to the new routine’s struct.
 *
 * The registers get saved on the stack, namely:
 *
 * s0-s8
 * gp, ra
 *
 */

 /* Allocate stack space for saving 11 registers.
 * 11*4 = 44 */

 addi sp, sp, -44

20 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

A hypothetical yield()
/* Save the registers */
 sw ra, 40(sp)
 sw gp, 36(sp)
 sw s8, 32(sp)
 sw s7, 28(sp)
 sw s6, 24(sp)
 sw s5, 20(sp)
 sw s4, 16(sp)
 sw s3, 12(sp)
 sw s2, 8(sp)
 sw s1, 4(sp)
 sw s0, 0(sp)

 /* Store the old stack pointer */
 sw sp, 0(a0)

21 COMP9242 2025 T3 W02 Part 1: Execution Models

Save the registers that
the ‘C’ procedure calling
convention expects
preserved

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

A hypothetical yield()
/* Get the new stack pointer from the new pcb */
 lw sp, 0(a1)
 nop /* delay slot for load */

/* Now, restore the registers */
 lw s0, 0(sp)
 lw s1, 4(sp)
 lw s2, 8(sp)
 …
 lw gp, 36(sp)
 lw ra, 40(sp)
 nop /* delay slot for load */

/* and return. */
 j ra
 addi sp, sp, 44 /* in delay slot */

22 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Yield

23 COMP9242 2025 T3 W02 Part 1: Execution Models

yield(a,b)

{

yield(a,b)

{

yield(b,a)

{

}

}

}

Routine A Routine B

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is ‘a’?

24 COMP9242 2025 T3 W02 Part 1: Execution Models

int a; /* global */

int func() {
 a = 1;
 func2();
 if (a == 1) {
 a = 2;
 }
 return a;
}

Does func2() yield()?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Coroutines
What about subroutines combined with coroutines

• i.e. what is the issue with calling subroutines?
Subroutine calling might involve an implicit yield()
May creates a race on globals

• either understand where all yields lie, or
• use cooperative multithreading!

25 COMP9242 2025 T3 W02 Part 1: Execution Models

• Build has libco (used by gdb thread):
• https://github.com/higan-emu/libco

• Tony Finch’s picoro: https://dotat.at/git/picoro.git/

Use at your own risk!

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Threads

26 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Cooperative Multithreading
• Also called green threads
• Conservatively assumes a multithreading model

• i.e. uses synchronisation (locks) to avoid races,
• and makes no assumption about subroutine behaviour

• Everything thing can potentially yield()

27 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Green Threads
int a; /* global */

lock_t a_lock;

int func() {

 int t;

 lock_acquire(a_lock)

 a = 1;

 func2();

 if (a == 1) {

 a = 2;

 }

 t = a;

 lock_release(a_lock);

 return t;

}

28 COMP9242 2025 T3 W02 Part 1: Execution Models

Pessimistic locking

Deadlocks?

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

A Thread

29 COMP9242 2025 T3 W02 Part 1: Execution Models

Thread attributes
• processor related:

• memory
• program counter
• stack pointer
• registers (and status)

• OS/package related:
• state (running/blocked)
• identity
• scheduler (queues, priority)
• etc…

PC
SP

REGS

CPU
Code

Stack

Memory

Data

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Thread Control Block (TCB)

30 COMP9242 2025 T3 W02 Part 1: Execution Models

• To support more than a single
thread we to need store thread
state and attributes

• Stored in per-thread thread
control block

• also indirectly in stack

PC
SP

REGS

CPU

Stack

Memory

TCB
A

Code

Data

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Thread A and Thread B

31 COMP9242 2025 T3 W02 Part 1: Execution Models

• Thread A state currently loaded
• Thread B state stored in TCB B
• Thread switch from A → B

• saving state of thread A
• regs, sp, pc

• restoring the state of thread B
• regs, sp, pc

• Note: registers and PC can be
stored on the stack, and only SP
stored in TCB

PC
SP

REGS

CPU

Stack

Memory

TCB
A

Code

Data

Stack

TCB
B

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS Pseudo-Code
mi_switch()
{
 struct thread *cur, *next;
 next = scheduler();

/* update curthread */
 cur = curthread;
 curthread = next;
/*
 * Call the machine-dependent code that actually does the
 * context switch.
 */
 md_switch(&cur->t_sp, &next->t_sp);
 /* back running in same thread */
}

32 COMP9242 2025 T3 W02 Part 1: Execution Models

Note: global
variable curthread

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS/161 mips_switch
mips_switch:

 /* a0 contains a pointer to the old thread's struct tcb.

 * a1 contains a pointer to the new thread's struct tcb.

 *

 * The only thing we touch in the tcb is the first word, which

 * we save the stack pointer in. The other registers get saved

 * on the stack, namely:

 * s0-s8

 * gp, ra

 */

 /* Allocate stack space for saving 11 registers. 11*4 = 44 */

 addi sp, sp, -44

33 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS/161 mips_switch
/* Save the registers */
 sw ra, 40(sp)
 sw gp, 36(sp)
 sw s8, 32(sp)
 sw s7, 28(sp)
 sw s6, 24(sp)
 sw s5, 20(sp)
 sw s4, 16(sp)
 sw s3, 12(sp)
 sw s2, 8(sp)
 sw s1, 4(sp)
 sw s0, 0(sp)

 /* Store the old stack pointer in the old tcb */
 sw sp, 0(a0)

34 COMP9242 2025 T3 W02 Part 1: Execution Models

Save the registers that
the ‘C’ procedure
calling convention
expects preserved

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS/161 mips_switch
/* Get the new stack pointer from the new tcb */
 lw sp, 0(a1)
 nop /* delay slot for load */

/* Now, restore the registers */
 lw s0, 0(sp)
 lw s1, 4(sp)
 lw s2, 8(sp)
 …
 lw gp, 36(sp)
 lw ra, 40(sp)
 nop /* delay slot for load */

 /* and return. */
 j ra
 addi sp, sp, 44 /* in delay slot */
 .end mips_switch

35 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Thread Switch

36 COMP9242 2025 T3 W02 Part 1: Execution Models

mips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Preemptive Multithreading
• Switch can be triggered by asynchronous external event

• eg. timer interrupt
• Asynchronous interrupt triggers saving current state

• on current stack, if in kernel (nesting)
• on kernel stack or in TCB if coming from user-level

• Call thread_switch()

37 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Threads on simple CPU

38 COMP9242 2025 T3 W02 Part 1: Execution Models

Memory

Stack

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Threads on CPU with protection

39 COMP9242 2025 T3 W02 Part 1: Execution Models

What is
missing?

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

PC
SP

REGS

CPU

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Threads on CPU with protection

40 COMP9242 2025 T3 W02 Part 1: Execution Models

• What
happens on
kernel entry
and exit?

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Thread Switch Switching Address Space: Process

41 COMP9242 2025 T3 W02 Part 1: Execution Models

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Thread Switch Switching Address Space: Process

42 COMP9242 2025 T3 W02 Part 1: Execution Models

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

What is this?

43 COMP9242 2025 T3 W02 Part 1: Execution Models

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

PC
SP

REGS

CPU

Stack

TCB
1

Code

Data

Stack

TCB
2

Stack

TCB
3

Scheduling
& Switching

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

User-level Threads

44 COMP9242 2025 T3 W02 Part 1: Execution Models

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process
A

Process
B

Process
C

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

User-level Threads
üFast thread management (creation, deletion, switching,

synchronisation…)
ûBlocking blocks all threads in a process

• Syscalls
• Page faults

ûNo thread-level parallelism on multiprocessor

45 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Kernel-Level Threads

46 COMP9242 2025 T3 W02 Part 1: Execution Models

Scheduler
Kernel Mode

User Mode

Process
A

Process
B

Process
C

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Kernel-level Threads
ûSlow thread management (creation, deletion, switching,

synchronisation…)
• System calls

üBlocking blocks only the appropriate thread in a process
üThread-level parallelism on multiprocessor

47 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Continuations

48 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Continuations
Continuation:
• representation of an instance of a computation at a point in time
• the state and code where to continue from

49 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Continuations in PLs: Python
• Traditional function that returns:

def func(x):
 return x+1

• Function with a continuation indicating where to continue
def func_cps(x,c):
 c(x+1)

50 COMP9242 2025 T3 W02 Part 1: Execution Models

Continuation
invoked with
function’s result

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Continuations
The concept of capturing current (stack) state to continue the
computation in the future
• In the general case can restore same state repeatedly
• C has one-shot continuations: setjmp()/longjump()

51 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS Execution Models

52 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

OS Execution Model Alternatives
Single Kernel Stack

• One stack supports all user
threads

• “Event model” / “interrupt model”

Per-Thread Kernel Stack

• Every user threads has a separate
kernel stack (besides its user-level
stack)

• “Process model”

53 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Per-Thread Kernel Stack
A thread’s kernel state is implicitly
encoded in the kernel activation
stack
• If the thread must block in-kernel,

we can simply switch from the
current stack, to another threads
stack until thread is resumed

• Resuming is simply switching back
to the original stack

• Preemption is easy

example(arg1, arg2) {

 P1(arg1, arg2);

 if (need_to_block) {

 thread_block();

 P2(arg2);

 } else {

 P3();

 }

 /* return control to user */

 return SUCCESS;

}

54 COMP9242 2025 T3 W02 Part 1: Execution Models

• Dump registers
on stack

• Switch stack
• Restore registers

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Single Kernel Stack
How do we use a single kernel stack to support many threads?
• Issue: How are system calls that block handled?

⇒ Use continuations
– Used in Mach: Using Continuations to Implement Thread Management

and Communication in Operating Systems. [Draves et al., 1991]

⇒ Use stateless kernel (event model)
• Used in Fluke: Interface and Execution Models in the Fluke Kernel.

[Ford et al., 1999]
• Also used seL4

55 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Continuations
State required to resume a blocked
thread is explicitly saved in a TCB

• A function pointer
• Variables

Stack can be discarded and reused to
support new thread

Resuming involves discarding current
stack, restoring the continuation, and
continuing

example(arg1, arg2) {

 P1(arg1, arg2);

 if (need_to_block) {

 save_arg_in_TCB;

 thread_block(example_continue);

 /* NOT REACHED */

 } else {

 P3();

 }

 thread_syscall_return(SUCCESS);

}

example_continue() {

 recover_arg2_from_TCB;

 P2(recovered arg2);

 thread_syscall_return(SUCCESS);

}

56 COMP9242 2025 T3 W02 Part 1: Execution Models

Logically, p2(arg2)
exceuted here

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Stateless Kernel
System calls cannot block within the kernel
• If syscall must block (resource unavailable)

• Modify user-state such that syscall is restarted when resources
become available

• Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.
⇒ Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code
⇒ Syscall arguments in registers

• Page fault during roll-back to restart (due to a page fault) is fatal.

57 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Example Implementations –
IPC

58 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

IPC implementation – Per-Thread Stack
msg_send_rcv(msg, option,

 send_size, rcv_size, ...) {

 rc = msg_send(msg, option,

 send_size, ...);

 if (rc != SUCCESS)

 return rc;

 rc = msg_rcv(msg, option, rcv_size, ...);

 return rc;

}

59 COMP9242 2025 T3 W02 Part 1: Execution Models

Block inside
msg_rcv if no
message
available

Send and Receive
system call
implemented by a
non-blocking send
part and a blocking
receive part.

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

IPC implementation – Continuations
msg_send_rcv(msg, option,
 send_size, rcv_size, ...) {
 rc = msg_send(msg, option,
 send_size, ...);
 if (rc != SUCCESS)
 return rc;
 cur_thread->contin.msg =
 msg;
 cur_thread->contin.option =
 option;
 cur_thread->contin.rcv_size =
 rcv_size;
 ...
 rc = msg_rcv(msg, option,
 rcv_size,
 ..., msg_rcv_continue);
 return rc;
}

msg_rcv_continue() {
 msg = cur_thread->contin.msg;
 option = cur_thread->
 contin.option;
 rcv_size = cur_thread->
 contin.rcv_size;
 ...
 rc = msg_rcv(msg, option,
 rcv_size,
 ..., msg_rcv_continue);
 return rc;
}

60 COMP9242 2025 T3 W02 Part 1: Execution Models

The function to
continue with if blocked

Save state

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

IPC Implementation – Stateless Kernel
msg_send_rcv(cur_thread) {

 rc = msg_send(cur_thread);

 if (rc != SUCCESS)

 return rc;

 rc = msg_rcv(cur_thread);

 if (rc == WOULD_BLOCK) {

 set_pc(cur_thread, msg_rcv_entry);

 return RESCHEDULE;

 }

 return rc;

}

61 COMP9242 2025 T3 W02 Part 1: Execution Models

Set user-level PC
to restart msg_rcv
only

RESCHEDULE changes
curthread on exiting the
kernel

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Summary

62 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Single Kernel Stack
• Either continuations

– complex to program
– must be conservative in state saved (any state that might be needed)
– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

• or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management can get in the way
– system calls need to be kept simple “atomic”.
• e.g. the fluke kernel from Utah, seL4

• low cache footprint
• always the same stack is used !
• reduced memory footprint

63 COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 – CC BY 4.0

Per-Thread Kernel Stack
• simple, flexible

• kernel can always use threads, no special techniques required for
keeping state while interrupted / blocked

• no conceptual difference between kernel mode and user mode
• e.g. traditional L4, Linux, Windows, OS/161

• but larger cache footprint

• and larger memory consumption

• … and more concurrency issues

64 COMP9242 2025 T3 W02 Part 1: Execution Models

