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Today’s Lecture

« Execution models and how they apply to the OS
* Events

e Coroutines
 Threads
e Continuations

* Trade-offs and relation to SOS

ssssss
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System Building

General purpose OS needs to deal with concurrency

« Many user activities
* potentially overlapping
* may be interdependent
« need to resume after something else happens
* Activities that depend on external events
* may requiring waiting for completion (e.g. storage read)
* reacting to external triggers (e.g. interrupts)

OS defines its execution model
» low-level language
* minimal runtime

Need a systematic approach to execution structure
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Execution Models

* Events

» Coroutines

* Threads

« Continuations

Note: Focus is on uni-processor for now, multiprocessors later
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Events
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Events

« External entities generate (post) events.
« keyboard presses, mouse clicks, system calls, IRQs

« Event loop waits for events and calls an appropriate
event handler.

» Event handler is a function that runs until completion
and returns to the event loop.

6 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM&W



Some Definitions

Block:

« Execution state is preserved
 Marks current execution as blocked

* It is no longer considered Ready
« Removed from a Ready Queue

* Requires an unblock to mark ready and rejoin the ready queue
« Resumes from where it blocked

Yield:
« Execution state is preserved
» The thread relinquishes execution
* Immediately placed in the ready queue
« Resumes from where it yielded

ssssss
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Event Model

Only requires a single stack:
« Event handlers return to the event loop

Memory * No blocking
* No yielding
CPU a Event Loop
pC L — Eve * No preemption of handlers
andier
e\ Event - Handler functions should be short!
Handler 2
Event
Handler 3
Data
d Stack
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What is ‘a’?

int a; /* global */

int func() {

a = 1;
if (a == 1) {
a = 2;

}

return a;
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No concurrency issues
within a handler
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Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

Event Loop
Event
Handler 1

Event

Handler 2
Event

Handler 3

Data

Stack

PC

User
Code

User
Data

/ REGS
/

How support

Stack

multiple processes?
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Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

PC

/ / REGS

* User-level state in PCB

» Kernel starts on fresh stack

on each trap

* No interrupts, no blocking in
kernel mode

Trap
Dispatcher
User
Event Code
Handler 1
Event
Handler 2 PCB
A User
Data
PCB
v B
Current
Data Peh PCB
c Stack
Stack
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Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

Trap
Dispatcher

Event
Handler 1

Event
Handler 2

Stack

PC

User
Code

/ / REGS

PCB
A

PCB

User
Data

* User-level state in PCB

» Kernel starts on fresh stack

B
Current
Data PCE PCB

C

on each trap

Stack

* No interrupts, no blocking in
kernel mode
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oroutines

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

(]

«



Coroutines

e Old idea:

Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963), 396-408.
DOl=http://dx.doi.org/10.1145/366663.366704

* Analogous to a “subroutine” with extra entry and exit points

 Exit/enter via yield()

« Supports long running subroutines

« Can implement sync primitives that wait for a condition to be true
 while (condition != true) yield();
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Coroutines

Memory * yield() saves state of routine A and starts
routine B
CPU « or resumes B’s state from its previous yield()
/a Routine A point_
Fs’g ] * No pre-emption, any switching is explicit
REGS \ Routine B V|a y|e|d() |n COde
Data
ﬁ Stack
COMP9242 2025 T3 W02 Part 1: Execution Models 3
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What is ‘a’?

int a; /* global */

int func() {

a =1;

if (a == 1) {
yield();
a = 2;

}

return a;
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What is ‘a’?

int a; /* global */

int func() {
a =1;
yield();
if (a == 1) {
a = 2;

}

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

Limited concurrency
issues/races as globals are
exclusive between yields()
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Coroutines Implementation strategy?

Memory

CPU o
outine

o ’/

R:(P;S \ Routine B
Data

NI Stack

A

Stack

COMP9242 2025 T3 W02 Part 1: Execution Models

« Usually implemented with a stack per
routine

* Preserves current state of execution
of the routine
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Coroutines Implementation strategy?

CPU

Memory

PC
SP
REGS
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Routine A

~>

Routine B

Data

NI Stack

A

M Stack

B

* Routine A state currently loaded
 Routine B state stored on stack

* Routine switch from A — B
» saving state of Aa
o regs, sp, pc

 restoring the state of B
* regs, sp, pc
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A hypothetical yield()

yield:
/%

* a0 contains a pointer to the previous routine’s struct.

* al contains a pointer to the new routine’s struct.
*

* The registers get saved on the stack, namely:

*

* s0-s8

* gp, ra

*

*/

/* Allocate stack space for saving 11 registers.
* 11*4 = 44 */

addi sp, sp, -44

20 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss



21

A hypothetical yield()

/* Save the registers */

SwW

ra, 40 (sp)

sw gp, 36 (sp)

SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW

/*

SwW

COMP9242 2025 T3 W02 Part 1: Execution Models

s8, 32(sp)
s7, 28 (sp)
s6, 24 (sp)
s5, 20 (sp)
s4, 16 (sp)
s3, 12 (sp)
s2, 8(sp)
sl, 4(sp)
s0, 0(sp)

Save the registers that
the ‘C’ procedure calling

convention expects
preserved

Store the old stack pointer */

sp, 0(a0)

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0
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A hypothetical yield()

/* Get the new stack pointer from the new pcb */
lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */
lw sO, O(sp)
lw s1, 4 (sp)
lw s2, 8 (sp)

lw gp, 36(sp)
lw ra, 40 (sp)
nop /* delay slot for load */

/* and return. */

j ra
addi sp, sp, 44 /* in delay slot */
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Yield

Routine A Routine B

yielh(a,b)
{

v

+— yield:(b,a)

yield(a,b) _—> }

- —— = = -
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What is ‘a’?
int a; /* global */
int func() {
a =1;

func2();
if (a ==

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

Does func2 () yield()?
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Coroutines

What about subroutines combined with coroutines
* i.e. what is the issue with calling subroutines?

Subroutine calling might involve an implicit yield()

May creates a race on globals
« either understand where all yields lie, or
* use cooperative multithreading! Use at your own risk!

« Build has 1ibco (used by gdb thread):

« https://github.com/higan-emu/libco
 Tony Finch’s picoro: https://dotat.at/git/picoro.git/
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Threads
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Cooperative Multithreading

 Also called green threads

« Conservatively assumes a multithreading model

* i.e. uses synchronisation (locks) to avoid races,

« and makes no assumption about subroutine behaviour
« Everything thing can potentially yield()
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Green Threads

int a; /* global */

lock t a_lock;
int func() { Pessimistic locking

int t;

lock acquire(a_lock)
a=1;
func2 () ;

if (a == 1) { Deadlocks?

lock release(a_lock);

return t;
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A Thread

Memory
CPU
Code
PC
SP \
REGS \
Data

Stack
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Thread attributes

 processor related:
* memory
* program counter
« stack pointer
* registers (and status)

« OS/package related:
« state (running/blocked)
* identity
 scheduler (queues, priority)
. efc...

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
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Thread Control Block (TCB)

 To support more than a single

Memory thread we to need store thread
state and attributes
CPU .
Code  Stored in per-thread thread
PC control block
SP NG . . .
REGS \ « also indirectly in stack
Data
\ Stack
TCB
A
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Thread A and Thread B

* Thread A state currently loaded

Memory  Thread B state stored in TCB B
 Thread switch from A — B
CPU  saving state of thread A
Code . regs, sp, pc
PC « restoring the state of thread B
SP * regs, sp, pc
REGS _
Data * Note: registers and PC can be
N, stored on the stack, and only SP
Stack ~X Stack stored in TCB
TCB TCB
A B
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OS Pseudo-Code

mi_ switch()

{
struct thread *cur, *next;
next = scheduler () ;

/* update curthread */ Note: global

cur = curthread; variable curthread
curthread = next;

/%
* Call the machine-dependent code that actually does the
* context switch.
*/
md switch(&cur->t sp, &next->t sp);
/* back running in same thread */

}
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0S/161 mips_switch

mips switch:
/* a0 contains a pointer to the old thread's struct tcb.
* al contains a pointer to the new thread's struct tcb.
*
* The only thing we touch in the tcb is the first word, which
* we save the stack pointer in. The other registers get saved

* on the stack, namely:

* s0-s8

* gp, ra

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

=]
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0S/161 mips_switch

/* Save the registers */
sw ra, 40 (sp)
sw gp, 36(sp)
sw s8, 32 (sp)
sw s7, 28 (sp)
sw s6, 24 (sp)
sw s5, 20 (sp)
swsd4, 16 (sp)
sw s3, 12 (sp)
sw s2, 8(sp)
swsl, 4(sp)
sw s0, O(sp)

Save the registers that
the ‘C’ procedure

calling convention
expects preserved

/* Store the old stack pointer in the old tcb */

sw sp, 0(a0)

COMP9242 2025 T3 W02 Part 1: Execution Models
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0S/161 mips_switch

/* Get the new stack pointer from the new tcb */

lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

lw sO, O(sp)
lw s1, 4 (sp)
lw s2, 8 (sp)

lw gp, 36(sp)
lw ra, 40 (sp)

nop /* delay slot for load */

/* and return. */

Jj ra

addi sp, sp, 44 /* in delay slot */
.end mips switch

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0
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Thread Switch
Thread a Thread b

mips switch(a,b) > }
{
} < mips switch(b,a)
{
mips switch(a,b) — }
{
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Preemptive Multithreading

« Switch can be triggered by asynchronous external event
* eg. timer interrupt

« Asynchronous interrupt triggers saving current state
* on current stack, if in kernel (nesting)
 on kernel stack or in TCB if coming from user-level

 Call thread_switch()
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Threads on simple CPU

Memory

Code

Data

Stack Stack Stack

TCB TCB TCB
A B C
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Threads on CPU with protection

Kernel-only Memory User Memory

Data

Stack Stack Stack
TCB TCB TCB
A B C

COMP9242 2025 T3 W02 Part 1: Execution Models

What is

CPU L.
missing?

PC
SP
REGS
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Threads on CPU with protection

Kernel-only Memory User Memory

User
Code

CPU

PC

User
Data

Data

Stack Stack Stack
TCB TCB TCB
A B C

Stack

SP
// REGS

7

* What
happens on
kernel entry

and exit?
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Thread Switch Switching Address Space: Process

Kernel-only Memory User Memory

User
Code

CPU

PC

User
Data

Code

Data

Stack Stack Stack
TCB TCB TCB
A B C

Stack

SP
// REGS

7
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Thread Switch Switching Address Space: Process

Kernel-only Memory User Memory

User
<€

CPU

Code

User
Data

Data
Stack Stack Stack
TCB TCB TCB
A B C

Stack k

COMP9242 2025 T3 W02 Part 1: Execution Models

PC

Sp
/ REGS
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What is this?

Kernel-only Memory User Memory

Code
Data
Stack Stack Stack
TCB TCB TCB
A B C

-
]

Scheduling

CPU

Stack Stack
TCB
1 2

> .

) REGS
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User-level Threads

User Mode

Scheduler

4 )

Scheduler

k Process
A

Kernel Mode

-

k Eroce s J

D

Scheduler }

\

Scheduler

rocess /
o

\ g
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User-level Threads

Fast thread management (creation, deletion, switching,
synchronisation...)

xBlocking blocks all threads in a process

« Syscalls
« Page faults

xNo thread-level parallelism on multiprocessor
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Kernel-Level Threads

User Mode

4 )

0y

/

Proc

Kernel Mode

~

]

\ groce /

Scheduler }

cess J
o
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Kernel-level Threads

xSlow thread management (creation, deletion, switching,
synchronisation...)

« System calls
Blocking blocks only the appropriate thread in a process
Thread-level parallelism on multiprocessor
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ontinuations
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Continuations

Continuation:
* representation of an instance of a computation at a point in time
* the state and code where to continue from
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Continuations in PLs: Python

* Traditional function that returns:

def func(x):
return x+1

* Function with a continuation indicating where to continue
def func_cps(x,c):
c(x+1)

Continuation

invoked with
function’s result
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Continuations

The concept of capturing current (stack) state to continue the
computation in the future

* In the general case can restore same state repeatedly
* C has one-shot continuations: setjmp () /longjump ()

VVVVVV
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S Execution Models
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OS Execution Model Alternatives

Single Kernel Stack

* One stack supports all user
threads

« “Event model” / “interrupt model”

COMP9242 2025 T3 W02 Part 1: Execution Models

Per-Thread Kernel Stack

» Every user threads has a separate
kernel stack (besides its user-level
stack)

* “Process model”

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW



Per-Thread Kernel Stack

A thread'’s kernel state is implicitly example (argl, arg2) {

encoded in the kernel activation Pl (argl, arg2);

stack if (need to block) {

« |f the thread must block in-kernel, thread block() ;
we can simply switch from the P2 (arg2) ; - Dump registers
current st_ack, to a_nother threads } else { on stack
stack until thread is resumed P30) ; . Switch stack

« Resuming is simply switching back ) * Restore registers

to the original stack /% return control to user */
* Preemption is easy return SUCCESS;
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Single Kernel Stack

How do we use a single kernel stack to support many threads?
* |ssue: How are system calls that block handled?

= Use continuations

- Used in Mach: Using Continuations to Implement Thread Management
and Communication in Operating Systems. [Draves et al., 1991]

= Use stateless kernel (event model)

 Used in Fluke: Interface and Execution Models in the Fluke Kernel.
[Ford et al., 1999]

e Also used sel 4
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Continuations

State required to resume a blocked
thread is explicitly saved in a TCB

* A function pointer
» Variables

Stack can be discarded and reused to
support new thread

Resuming involves discarding current
stack, restoring the continuation, and
continuing

COMP9242 2025 T3 W02 Part 1: Execution Models

example(argl, arg2) {
Pl1(argl, arg2);
if (need to_block) {
save_arg in TCB;
thread _block(example continue);
/* NOT REACHED */

} else { Logically, p2 (arg2)
P3(); exceuted here
}
thread_syscall_return(SUCCESS);
}

example continue() {
recover_arg2 from_TCB;
P2(recovered arg2);
thread_syscall return(SUCCESS);

=]
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Stateless Kernel

System calls cannot block within the kernel

* If syscall must block (resource unavailable)

« Modify user-state such that syscall is restarted when resources
become available

« Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.
= Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code

= Syscall arguments in registers
« Page fault during roll-back to restart (due to a page fault) is fatal.
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Example Implementations —
IPC
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IPC implementation — Per-Thread Stack

msg_send rcv(msg, option, _
Send and Receive

system call
Implemented by a
non-blocking send
part and a blocking
receive part.

send size, rcv_size, ...) {

rc = msg_send(msg, option,

send size, ...);

if (rc !'= SUCCESS)

return rc;

Block inside
rc = msg_rcv(msg, option, rcv size, ...); msg_rcv if no
return rc; message
} available
59 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM&W
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IPC implementation — Continuations

msg_send rcv(msg, option, msg_rcv_continue() {

send size, rcv_size, ...) { msg = cur_thread->contin.msg;
rc = msg_send(msg, option, option = cur_ thread->

send size, ...); contin.option;
if (rc !'= SUCCESS) rcv size = cur thread->

return rc; _'contin.rc;;size;
cur_ thread->contin.msg =

msqg; rc = msg rcv(msg, option,
cur_ thread->contin.option = rcv:éize,

option; ..., msg_rcv_continue) ;
cur thread->contin.rcv size = return rc;

_-rcv_size; B \\\\\\\\_’}

rc = msg_rcv(msg, option, Save state

rcv_size,
., msg_rcv_continue);
return rc; .

The function to
continue with if blocked
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IPC Implementation — Stateless Kernel

msg_send rcv(cur_ thread) ({
rc = msg_send(cur_thread) ;

if (rc !'= SUCCESS)

return rc;

Set user-level PC

to restart msg_rcv
rc = msg_rcv(cur_thread);

only
if (rc == WOULD_ BLOCK) ({
set_pc(cur_thread, msg_rcv entry);
return RESCHEDULE; \
}
return rc; RESCHEDULE changes
} curthread on exiting the
kernel

=]
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ummary

COMP9242 2025 T3 W02 Part 1: Execution Models
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Single Kernel Stack

» Either continuations

— complex to program
- must be conservative in state saved (any state that might be needed)

- Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

* or stateless kernel
- no kernel threads, kernel not interruptible, difficult to program

— request all potentially required resources prior to execution
— blocking syscalls must always be re-startable

— Processor-provided stack management can get in the way
— system calls need to be kept simple “atomic”.

* e.g. the fluke kernel from Utah, selL4

* low cache footprint
« always the same stack is used !

 reduced memory footprint
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Per-Thread Kernel Stack

« simple, flexible
 kernel can always use threads, no special techniques required for
keeping state while interrupted / blocked

 no conceptual difference between kernel mode and user mode
* e.g. traditional L4, Linux, Windows, OS/161

* but larger cache footprint

« and larger memory consumption

- ... and more concurrency issues
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