School of Computer Science & Engineering

N COMP9242 Advanced Operating Systems
UNSW | gz

SYDNEY niversity

2025 T3 Week 02 Part 1

OS Execution Models:
Events, Co-routines, Continuations, Threads

Gernot Heiser

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM&W

Today’s Lecture

« Execution models and how they apply to the OS
* Events

e Coroutines
 Threads
e Continuations

* Trade-offs and relation to SOS

ssssss

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

System Building

General purpose OS needs to deal with concurrency

« Many user activities
* potentially overlapping
* may be interdependent
« need to resume after something else happens
* Activities that depend on external events
* may requiring waiting for completion (e.g. storage read)
* reacting to external triggers (e.g. interrupts)

OS defines its execution model
» low-level language
* minimal runtime

Need a systematic approach to execution structure

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

Execution Models

* Events

» Coroutines

* Threads

« Continuations

Note: Focus is on uni-processor for now, multiprocessors later

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

=7

5

Events

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

=]

UNSW

SYDNEY

Events

« External entities generate (post) events.
« keyboard presses, mouse clicks, system calls, IRQs

« Event loop waits for events and calls an appropriate
event handler.

» Event handler is a function that runs until completion
and returns to the event loop.

6 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM&W

Some Definitions

Block:

« Execution state is preserved
 Marks current execution as blocked

* It is no longer considered Ready
« Removed from a Ready Queue

* Requires an unblock to mark ready and rejoin the ready queue
« Resumes from where it blocked

Yield:
« Execution state is preserved
» The thread relinquishes execution
* Immediately placed in the ready queue
« Resumes from where it yielded

ssssss

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

Event Model

Only requires a single stack:
« Event handlers return to the event loop

Memory * No blocking
* No yielding
CPU a Event Loop
pC L — Eve * No preemption of handlers
andier
e\ Event - Handler functions should be short!
Handler 2
Event
Handler 3
Data
d Stack
COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

g

What is ‘a’?

int a; /* global */

int func() {

a = 1;
if (a == 1) {
a = 2;

}

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

No concurrency issues
within a handler

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

VVVVVV

10

Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

Event Loop
Event
Handler 1

Event

Handler 2
Event

Handler 3

Data

Stack

PC

User
Code

User
Data

/ REGS
/

How support

Stack

multiple processes?

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

VVVVVV

Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

PC

/ / REGS

* User-level state in PCB

» Kernel starts on fresh stack

on each trap

* No interrupts, no blocking in
kernel mode

Trap
Dispatcher
User
Event Code
Handler 1
Event
Handler 2 PCB
A User
Data
PCB
v B
Current
Data Peh PCB
c Stack
Stack
1 1 COMP9242 2025 T3 W02 Part 1: Execution Models

VVVVVV

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

12

Event-based kernel on CPU with protection

Kernel-only Memory User Memory

CPU

Trap
Dispatcher

Event
Handler 1

Event
Handler 2

Stack

PC

User
Code

/ / REGS

PCB
A

PCB

User
Data

* User-level state in PCB

» Kernel starts on fresh stack

B
Current
Data PCE PCB

C

on each trap

Stack

* No interrupts, no blocking in
kernel mode

COMP9242 2025 T3 W02 Part 1: Execution Models

VVVVVV

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

13

oroutines

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

(]

«

Coroutines

e Old idea:

Melvin E. Conway. 1963. Design of a separable transition-diagram
compiler. Commun. ACM 6, 7 (July 1963), 396-408.
DOl=http://dx.doi.org/10.1145/366663.366704

* Analogous to a “subroutine” with extra entry and exit points

 Exit/enter via yield()

« Supports long running subroutines

« Can implement sync primitives that wait for a condition to be true
 while (condition != true) yield();

14 CIRLA ez 20 TR it L Byt el © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

Coroutines

Memory * yield() saves state of routine A and starts
routine B
CPU « or resumes B’s state from its previous yield()
/a Routine A point_
Fs’g] * No pre-emption, any switching is explicit
REGS \ Routine B V|a y|e|d() |n COde
Data
ﬁ Stack
COMP9242 2025 T3 W02 Part 1: Execution Models 3

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

VVVVVV

16

What is ‘a’?

int a; /* global */

int func() {

a =1;

if (a == 1) {
yield();
a = 2;

}

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

VVVVVV

el

17

What is ‘a’?

int a; /* global */

int func() {
a =1;
yield();
if (a == 1) {
a = 2;

}

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

Limited concurrency
issues/races as globals are
exclusive between yields()

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

VVVVVV

el

18

Coroutines Implementation strategy?

Memory

CPU o
outine

o ’/

R:(P;S \ Routine B
Data

NI Stack

A

Stack

COMP9242 2025 T3 W02 Part 1: Execution Models

« Usually implemented with a stack per
routine

* Preserves current state of execution
of the routine

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

19

Coroutines Implementation strategy?

CPU

Memory

PC
SP
REGS

COMP9242 2025 T3 W02 Part 1: Execution Models

=d

Routine A

~>

Routine B

Data

NI Stack

A

M Stack

B

* Routine A state currently loaded
 Routine B state stored on stack

* Routine switch from A — B
» saving state of Aa
o regs, sp, pc

 restoring the state of B
* regs, sp, pc

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

VVVVVV

A hypothetical yield()

yield:
/%

* a0 contains a pointer to the previous routine’s struct.

* al contains a pointer to the new routine’s struct.
*

* The registers get saved on the stack, namely:

*

* s0-s8

* gp, ra

*

*/

/* Allocate stack space for saving 11 registers.
* 11*4 = 44 */

addi sp, sp, -44

20 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

21

A hypothetical yield()

/* Save the registers */

SwW

ra, 40 (sp)

sw gp, 36 (sp)

SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW

/*

SwW

COMP9242 2025 T3 W02 Part 1: Execution Models

s8, 32(sp)
s7, 28 (sp)
s6, 24 (sp)
s5, 20 (sp)
s4, 16 (sp)
s3, 12 (sp)
s2, 8(sp)
sl, 4(sp)
s0, 0(sp)

Save the registers that
the ‘C’ procedure calling

convention expects
preserved

Store the old stack pointer */

sp, 0(a0)

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

YYYYYY

22

A hypothetical yield()

/* Get the new stack pointer from the new pcb */
lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */
lw sO, O(sp)
lw s1, 4 (sp)
lw s2, 8 (sp)

lw gp, 36(sp)
lw ra, 40 (sp)
nop /* delay slot for load */

/* and return. */

j ra
addi sp, sp, 44 /* in delay slot */
COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

=]

UNSW

Yield

Routine A Routine B

yielh(a,b)
{

v

+— yield:(b,a)

yield(a,b) _—> }

- —— = = -

23 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

SYDNEY

24

What is ‘a’?
int a; /* global */
int func() {
a =1;

func2();
if (a ==

return a;

COMP9242 2025 T3 W02 Part 1: Execution Models

Does func2 () yield()?

YYYYYY

Coroutines

What about subroutines combined with coroutines
* i.e. what is the issue with calling subroutines?

Subroutine calling might involve an implicit yield()

May creates a race on globals
« either understand where all yields lie, or
* use cooperative multithreading! Use at your own risk!

« Build has 1ibco (used by gdb thread):

« https://github.com/higan-emu/libco
 Tony Finch’s picoro: https://dotat.at/git/picoro.git/

25 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
a|

vvvvvv

26

Threads

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Cooperative Multithreading

 Also called green threads

« Conservatively assumes a multithreading model

* i.e. uses synchronisation (locks) to avoid races,

« and makes no assumption about subroutine behaviour
« Everything thing can potentially yield()

27 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

Green Threads

int a; /* global */

lock t a_lock;
int func() { Pessimistic locking

int t;

lock acquire(a_lock)
a=1;
func2 () ;

if (a == 1) { Deadlocks?

lock release(a_lock);

return t;

28 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

29

A Thread

Memory
CPU
Code
PC
SP \
REGS \
Data

Stack

COMP9242 2025 T3 W02 Part 1: Execution Models

Thread attributes

 processor related:
* memory
* program counter
« stack pointer
* registers (and status)

« OS/package related:
« state (running/blocked)
* identity
 scheduler (queues, priority)
. efc...

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW
=2

Thread Control Block (TCB)

 To support more than a single

Memory thread we to need store thread
state and attributes
CPU .
Code Stored in per-thread thread
PC control block
SP NG . . .
REGS \ « also indirectly in stack
Data
\ Stack
TCB
A
COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

Thread A and Thread B

* Thread A state currently loaded

Memory Thread B state stored in TCB B
 Thread switch from A — B
CPU saving state of thread A
Code . regs, sp, pc
PC « restoring the state of thread B
SP * regs, sp, pc
REGS _
Data * Note: registers and PC can be
N, stored on the stack, and only SP
Stack ~X Stack stored in TCB
TCB TCB
A B
COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM%W

32

OS Pseudo-Code

mi_ switch()

{
struct thread *cur, *next;
next = scheduler () ;

/* update curthread */ Note: global

cur = curthread; variable curthread
curthread = next;

/%
* Call the machine-dependent code that actually does the
* context switch.
*/
md switch(&cur->t sp, &next->t sp);
/* back running in same thread */

}

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

0S/161 mips_switch

mips switch:
/* a0 contains a pointer to the old thread's struct tcb.
* al contains a pointer to the new thread's struct tcb.
*
* The only thing we touch in the tcb is the first word, which
* we save the stack pointer in. The other registers get saved

* on the stack, namely:

* s0-s8

* gp, ra

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

=]

33 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss
el

34

0S/161 mips_switch

/* Save the registers */
sw ra, 40 (sp)
sw gp, 36(sp)
sw s8, 32 (sp)
sw s7, 28 (sp)
sw s6, 24 (sp)
sw s5, 20 (sp)
swsd4, 16 (sp)
sw s3, 12 (sp)
sw s2, 8(sp)
swsl, 4(sp)
sw s0, O(sp)

Save the registers that
the ‘C’ procedure

calling convention
expects preserved

/* Store the old stack pointer in the old tcb */

sw sp, 0(a0)

COMP9242 2025 T3 W02 Part 1: Execution Models

YYYYYY

35

COMP9242 2025 T3 W02 Part 1: Execution Models

0S/161 mips_switch

/* Get the new stack pointer from the new tcb */

lw sp, 0(al)
nop /* delay slot for load */

/* Now, restore the registers */

lw sO, O(sp)
lw s1, 4 (sp)
lw s2, 8 (sp)

lw gp, 36(sp)
lw ra, 40 (sp)

nop /* delay slot for load */

/* and return. */

Jj ra

addi sp, sp, 44 /* in delay slot */
.end mips switch

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

=]

UNSW

Thread Switch
Thread a Thread b

mips switch(a,b) > }
{
} < mips switch(b,a)
{
mips switch(a,b) — }
{
36 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM%W

el

Preemptive Multithreading

« Switch can be triggered by asynchronous external event
* eg. timer interrupt

« Asynchronous interrupt triggers saving current state
* on current stack, if in kernel (nesting)
 on kernel stack or in TCB if coming from user-level

 Call thread_switch()

37 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

=

38

Threads on simple CPU

Memory

Code

Data

Stack Stack Stack

TCB TCB TCB
A B C

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

39

Threads on CPU with protection

Kernel-only Memory User Memory

Data

Stack Stack Stack
TCB TCB TCB
A B C

COMP9242 2025 T3 W02 Part 1: Execution Models

What is

CPU L.
missing?

PC
SP
REGS

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

VVVVVV

40

Threads on CPU with protection

Kernel-only Memory User Memory

User
Code

CPU

PC

User
Data

Data

Stack Stack Stack
TCB TCB TCB
A B C

Stack

SP
// REGS

7

* What
happens on
kernel entry

and exit?

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

VVVVVV

41

Thread Switch Switching Address Space: Process

Kernel-only Memory User Memory

User
Code

CPU

PC

User
Data

Code

Data

Stack Stack Stack
TCB TCB TCB
A B C

Stack

SP
// REGS

7

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

VVVVVV

42

Thread Switch Switching Address Space: Process

Kernel-only Memory User Memory

User
<€

CPU

Code

User
Data

Data
Stack Stack Stack
TCB TCB TCB
A B C

Stack k

COMP9242 2025 T3 W02 Part 1: Execution Models

PC

Sp
/ REGS

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

VVVVVV

43

What is this?

Kernel-only Memory User Memory

Code
Data
Stack Stack Stack
TCB TCB TCB
A B C

-
]

Scheduling

CPU

Stack Stack
TCB
1 2

> .

) REGS

COMP9242 2025 T3 W02 Part 1: Execution Models

PC

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

vvvvvv

44

User-level Threads

User Mode

Scheduler

4)

Scheduler

k Process
A

Kernel Mode

-

k Eroce s J

D

Scheduler }

\

Scheduler

rocess /
o

\ g

COMP9242 2025 T3 W02 Part 1: Execution Models

VVVVVV

User-level Threads

Fast thread management (creation, deletion, switching,
synchronisation...)

xBlocking blocks all threads in a process

« Syscalls
« Page faults

xNo thread-level parallelism on multiprocessor

45 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

46

Kernel-Level Threads

User Mode

4)

0y

/

Proc

Kernel Mode

~

]

\ groce /

Scheduler }

cess J
o

COMP9242 2025 T3 W02 Part 1: Execution Models

VVVVVV

Kernel-level Threads

xSlow thread management (creation, deletion, switching,
synchronisation...)

« System calls
Blocking blocks only the appropriate thread in a process
Thread-level parallelism on multiprocessor

47 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

48

ontinuations

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

@

«

49

Continuations

Continuation:
* representation of an instance of a computation at a point in time
* the state and code where to continue from

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

Continuations in PLs: Python

* Traditional function that returns:

def func(x):
return x+1

* Function with a continuation indicating where to continue
def func_cps(x,c):
c(x+1)

Continuation

invoked with
function’s result

50 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

Continuations

The concept of capturing current (stack) state to continue the
computation in the future

* In the general case can restore same state repeatedly
* C has one-shot continuations: setjmp () /longjump ()

VVVVVV

51 CIRLA ez 20 TR it L Byt el © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

S Execution Models

52 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

SYDNEY
el

53

OS Execution Model Alternatives

Single Kernel Stack

* One stack supports all user
threads

« “Event model” / “interrupt model”

COMP9242 2025 T3 W02 Part 1: Execution Models

Per-Thread Kernel Stack

» Every user threads has a separate
kernel stack (besides its user-level
stack)

* “Process model”

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

Per-Thread Kernel Stack

A thread'’s kernel state is implicitly example (argl, arg2) {

encoded in the kernel activation Pl (argl, arg2);

stack if (need to block) {

« |f the thread must block in-kernel, thread block() ;
we can simply switch from the P2 (arg2) ; - Dump registers
current st_ack, to a_nother threads } else { on stack
stack until thread is resumed P30) ; . Switch stack

« Resuming is simply switching back) * Restore registers

to the original stack /% return control to user */
* Preemption is easy return SUCCESS;

54 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

55

Single Kernel Stack

How do we use a single kernel stack to support many threads?
* |ssue: How are system calls that block handled?

= Use continuations

- Used in Mach: Using Continuations to Implement Thread Management
and Communication in Operating Systems. [Draves et al., 1991]

= Use stateless kernel (event model)

 Used in Fluke: Interface and Execution Models in the Fluke Kernel.
[Ford et al., 1999]

e Also used sel 4

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

=

56

Continuations

State required to resume a blocked
thread is explicitly saved in a TCB

* A function pointer
» Variables

Stack can be discarded and reused to
support new thread

Resuming involves discarding current
stack, restoring the continuation, and
continuing

COMP9242 2025 T3 W02 Part 1: Execution Models

example(argl, arg2) {
Pl1(argl, arg2);
if (need to_block) {
save_arg in TCB;
thread _block(example continue);
/* NOT REACHED */

} else { Logically, p2 (arg2)
P3(); exceuted here
}
thread_syscall_return(SUCCESS);
}

example continue() {
recover_arg2 from_TCB;
P2(recovered arg2);
thread_syscall return(SUCCESS);

=]

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

SO SYDNEY
el

Stateless Kernel

System calls cannot block within the kernel

* If syscall must block (resource unavailable)

« Modify user-state such that syscall is restarted when resources
become available

« Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.
= Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code

= Syscall arguments in registers
« Page fault during roll-back to restart (due to a page fault) is fatal.

57 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

=

Example Implementations —
IPC

58 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

SYDNEY
el

IPC implementation — Per-Thread Stack

msg_send rcv(msg, option, _
Send and Receive

system call
Implemented by a
non-blocking send
part and a blocking
receive part.

send size, rcv_size, ...) {

rc = msg_send(msg, option,

send size, ...);

if (rc !'= SUCCESS)

return rc;

Block inside
rc = msg_rcv(msg, option, rcv size, ...); msg_rcv if no
return rc; message
} available
59 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UM&W

2

IPC implementation — Continuations

msg_send rcv(msg, option, msg_rcv_continue() {

send size, rcv_size, ...) { msg = cur_thread->contin.msg;
rc = msg_send(msg, option, option = cur_ thread->

send size, ...); contin.option;
if (rc !'= SUCCESS) rcv size = cur thread->

return rc; _'contin.rc;;size;
cur_ thread->contin.msg =

msqg; rc = msg rcv(msg, option,
cur_ thread->contin.option = rcv:éize,

option; ..., msg_rcv_continue) ;
cur thread->contin.rcv size = return rc;

_-rcv_size; B _’}

rc = msg_rcv(msg, option, Save state

rcv_size,
., msg_rcv_continue);
return rc; .

The function to
continue with if blocked

COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

IPC Implementation — Stateless Kernel

msg_send rcv(cur_ thread) ({
rc = msg_send(cur_thread) ;

if (rc !'= SUCCESS)

return rc;

Set user-level PC

to restart msg_rcv
rc = msg_rcv(cur_thread);

only
if (rc == WOULD_ BLOCK) ({
set_pc(cur_thread, msg_rcv entry);
return RESCHEDULE; \
}
return rc; RESCHEDULE changes
} curthread on exiting the
kernel

=]

61 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNSW

ssssss

62

ummary

COMP9242 2025 T3 W02 Part 1: Execution Models

© Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0

(]

«

Single Kernel Stack

» Either continuations

— complex to program
- must be conservative in state saved (any state that might be needed)

- Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

* or stateless kernel
- no kernel threads, kernel not interruptible, difficult to program

— request all potentially required resources prior to execution
— blocking syscalls must always be re-startable

— Processor-provided stack management can get in the way
— system calls need to be kept simple “atomic”.

* e.g. the fluke kernel from Utah, selL4

* low cache footprint
« always the same stack is used !

 reduced memory footprint

63 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

=

Per-Thread Kernel Stack

« simple, flexible
 kernel can always use threads, no special techniques required for
keeping state while interrupted / blocked

 no conceptual difference between kernel mode and user mode
* e.g. traditional L4, Linux, Windows, OS/161

* but larger cache footprint

« and larger memory consumption

- ... and more concurrency issues

64 COMP9242 2025 T3 W02 Part 1: Execution Models © Kevin Elphinstone, Gernot Heiser 2016, 2025 — CC BY 4.0 UNJ%W

=

