
The seL4® Foundation

https://sel4.systems/Foundation

seL4
Reference Manual

Version 13.0.0

seL4 Foundation
https://sel4.systems
1 July 2024

https://sel4.systems/Foundation

© the seL4 authors and contributors.
ALL RIGHTS RESERVED.

SPDX-License-Identifier: GPL-2.0-only
You may use this manual and its sources under the terms of the GPL license, version 2.

seL4® is a trademark of LF Projects, LLC.
Arm® is a registered trademark of Arm Limited.
RISC-V® is a registered trademark of RISC-V International.

Acknowledgements

The primary authors of this document are Matthew Grosvenor and Adam Walker, with contri-
butions from Adrian Danis, Andrew Boyton, Anna Lyons, Axel Heider, Branden Robinson, David
Greenaway, Etienne Le Sueur, Gernot Heiser, Gerwin Klein, Godfrey van der Linden, Jimmy Brush,
Kevin Elphinstone, Matthew Fernandez, Matthias Daum, Michael von Tessin, Nick Spinale, Peter
Chubb, Simon Winwood, Thomas Sewell, Timothy Bourke, and Toby Murray.

The authors and contributors can be contacted via the seL4 Developer Mailing List or the seL4
Discourse Forums. See https://sel4.systems/contact/ for details.

https://sel4.systems/contact/

Contents

List of Tables 9

List of Figures 10

1 Introduction 1

2 Kernel Services and Objects 2
2.1 Capability-based Access Control . 2
2.2 System Calls . 3
2.3 Kernel Objects . 5
2.4 Kernel Memory Allocation . 6

2.4.1 Reusing Memory . 7
2.4.2 Summary of Object Sizes . 7

3 Capability Spaces 9
3.1 Capability and CSpace Management . 9

3.1.1 CSpace Creation . 9
3.1.2 CNode Methods . 10
3.1.3 Capabilities to Newly-Retyped Objects . 10
3.1.4 Capability Rights . 11
3.1.5 Capability Derivation Tree . 11

3.2 Deletion and Revocation . 12
3.3 CSpace Addressing . 13

3.3.1 Capability Address Lookup . 13
3.3.2 Addressing Capabilities . 14

3.4 Lookup Failure Description . 16
3.4.1 Invalid Root . 16
3.4.2 Missing Capability . 16
3.4.3 Depth Mismatch . 16
3.4.4 Guard Mismatch . 17

4 Message Passing (IPC) 18
4.1 Message Registers . 18
4.2 Endpoints . 19

4.2.1 Endpoint Badges . 19
4.2.2 Capability Transfer . 20
4.2.3 Errors . 20
4.2.4 Calling and Replying . 21

5 Notifications 22
5.1 Notification Objects . 22

1

2 CONTENTS

5.2 Signalling, Polling and Waiting . 22
5.3 Binding Notifications . 22

6 Threads and Execution 24
6.1 Threads . 24

6.1.1 Thread control blocks . 24
6.1.2 Thread Creation . 24
6.1.3 Thread Deactivation . 25
6.1.4 Affinity . 25
6.1.5 Scheduling . 25
6.1.6 MCS Scheduling . 25
6.1.7 Scheduling Contexts . 25
6.1.8 Passive Threads . 27
6.1.9 Scheduling Context Creation . 27
6.1.10 Scheduling Context Donation . 27
6.1.11 Scheduling algorithm . 28
6.1.12 Exceptions . 28

6.1.12.1 Standard Exceptions . 29
6.1.12.2 Timeout Exceptions (MCS Only) 29

6.1.13 Message Layout of the Read-/Write-Registers Methods 29
6.2 Faults . 30

6.2.1 Capability Faults . 30
6.2.2 Unknown Syscall . 31
6.2.3 User Exception . 31
6.2.4 Debug Exception: Breakpoints and Watchpoints 31
6.2.5 Debug Exception: Single-stepping . 32
6.2.6 Timeout Fault (MCS only) . 33
6.2.7 VM Fault . 33
6.2.8 Arm Virtualisation Faults . 34

6.3 Domains . 34
6.4 Virtualisation . 34

6.4.1 Arm . 35
6.4.2 x86 . 35

7 Address Spaces and Virtual Memory 37
7.1 Objects . 37

7.1.1 Hardware Virtual Memory Objects . 37
7.1.1.1 IA-32 . 38
7.1.1.2 x64 . 38
7.1.1.3 AArch32 . 38
7.1.1.4 AArch64 . 38

7.1.2 RISC-V . 39
7.1.2.1 RISC-V 32-bit . 39
7.1.2.2 RISC-V 64-bit . 39

7.1.3 Page . 39
7.1.3.1 AArch32 page sizes . 40
7.1.3.2 AArch64 page sizes . 40
7.1.3.3 IA-32 page sizes . 40
7.1.3.4 X64 page sizes . 40
7.1.3.5 RISC-V 32-bit page sizes . 40
7.1.3.6 RISC-V 64-bit page sizes . 41

7.1.4 ASID Control . 41

CONTENTS 3

7.1.5 ASID Pool . 41
7.2 Mapping Attributes . 41
7.3 Sharing Memory . 42
7.4 Page Faults . 42

8 Hardware I/O 43
8.1 Interrupt Delivery . 43
8.2 x86-Specific I/O . 43

8.2.1 Interrupts . 43
8.2.2 I/O Ports . 44
8.2.3 I/O Space . 44

8.3 Arm-Specific I/O . 45
8.3.1 Arm SMMU version 2.0 . 45

8.3.1.1 Creating seL4_ARM_SID capabilities 46
8.3.1.2 Creating seL4_ARM_CB capabilities 47
8.3.1.3 Configuring context banks . 47
8.3.1.4 Configuring streams (transactions) 47
8.3.1.5 Copying and Deleting caps . 47
8.3.1.6 TLB invalidation . 48
8.3.1.7 Fault handling . 49

9 System Bootstrapping 50
9.1 Initial Thread’s Environment . 50
9.2 BootInfo Frame . 50
9.3 Boot Command-line Arguments . 52

10 seL4 API Reference 54
10.1 Error Codes . 54

10.1.1 Invalid Argument . 54
10.1.2 Invalid Capability . 54
10.1.3 Illegal Operation . 54
10.1.4 Range Error . 55
10.1.5 Alignment Error . 55
10.1.6 Failed Lookup . 55
10.1.7 Truncated Message . 55
10.1.8 Delete First . 55
10.1.9 Revoke First . 55
10.1.10 Not Enough Memory . 56

10.2 System Calls . 56
10.2.1 General System Calls . 56

10.2.1.1 Send . 56
10.2.1.2 Recv . 56
10.2.1.3 Call . 57
10.2.1.4 Reply . 57
10.2.1.5 Non-Blocking Send . 57
10.2.1.6 Reply Recv . 58
10.2.1.7 Non-Blocking Recv . 58
10.2.1.8 Yield . 58
10.2.1.9 Signal . 59
10.2.1.10 Wait . 59
10.2.1.11 Poll . 59

10.2.2 General System Calls (MCS) . 60

4 CONTENTS

10.2.2.1 Send . 60
10.2.2.2 Recv . 60
10.2.2.3 Call . 60
10.2.2.4 Non-Blocking Send . 61
10.2.2.5 Reply Recv . 61
10.2.2.6 Non-Blocking Recv . 61
10.2.2.7 Non-Blocking Send Recv . 62
10.2.2.8 Non-Blocking Send Wait . 62
10.2.2.9 Yield . 63
10.2.2.10Wait . 63
10.2.2.11 Non-Blocking Wait . 63
10.2.2.12 Poll . 64
10.2.2.13 Signal . 64

10.2.3 Debugging System Calls . 65
10.2.3.1 Put Char . 65
10.2.3.2 Dump Scheduler . 65
10.2.3.3 Halt . 66
10.2.3.4 Snapshot . 66
10.2.3.5 Cap Identify . 66
10.2.3.6 Name Thread . 67
10.2.3.7 Send SGI 0-15 . 67
10.2.3.8 Run . 67

10.2.4 Benchmarking System Calls . 68
10.2.4.1 Reset Log . 68
10.2.4.2 Finalize Log . 68
10.2.4.3 Set Log Buffer . 69
10.2.4.4 Null Syscall . 69
10.2.4.5 Flush Caches . 69
10.2.4.6 Flush L1 Caches . 70
10.2.4.7 Get Thread Utilisation . 70
10.2.4.8 Reset Thread Utilisation . 70
10.2.4.9 Dump All Threads Utilisation . 71
10.2.4.10Reset All Threads Utilisation . 71

10.2.5 X86 System Calls . 72
10.2.5.1 VM Enter . 72

10.3 Architecture-Independent Object Methods . 73
10.3.1 seL4_CNode . 73

10.3.1.1 Cancel Badged Sends . 73
10.3.1.2 Copy . 74
10.3.1.3 Delete . 75
10.3.1.4 Mint . 76
10.3.1.5 Move . 77
10.3.1.6 Mutate . 78
10.3.1.7 Revoke . 79
10.3.1.8 Rotate . 80
10.3.1.9 Save Caller . 81

10.3.2 seL4_DomainSet . 81
10.3.2.1 Set . 81

10.3.3 seL4_IRQControl . 82
10.3.3.1 Get IRQ Handler . 82

10.3.4 seL4_IRQHandler . 83

CONTENTS 5

10.3.4.1 Acknowledge . 83
10.3.4.2 Clear . 83
10.3.4.3 Set Notification . 84

10.3.5 seL4_SchedContext (MCS) . 85
10.3.5.1 Bind . 85
10.3.5.2 Consumed . 86
10.3.5.3 Unbind Object . 86
10.3.5.4 Unbind . 87
10.3.5.5 Yield To . 87

10.3.6 seL4_SchedControl (MCS) . 88
10.3.6.1 Configure Flags . 88

10.3.7 seL4_TCB . 89
10.3.7.1 Bind Notification . 89
10.3.7.2 Configure Single Stepping . 90
10.3.7.3 Configure . 91
10.3.7.4 Copy Registers . 92
10.3.7.5 Get Breakpoint . 93
10.3.7.6 Read Registers . 94
10.3.7.7 Resume . 94
10.3.7.8 Set Breakpoint . 95
10.3.7.9 Set CPU Affinity . 96
10.3.7.10 Set IPC Buffer . 96
10.3.7.11 Set Maximum Controlled Priority 97
10.3.7.12 Set Priority . 97
10.3.7.13 Set Sched Params . 98
10.3.7.14 Set Space . 99
10.3.7.15 Set TLS Base . 100
10.3.7.16 Suspend . 100
10.3.7.17 Unbind Notification . 101
10.3.7.18 Unset Breakpoint . 101
10.3.7.19 Write Registers . 102

10.3.8 seL4_TCB (MCS) . 103
10.3.8.1 Configure (MCS) . 103
10.3.8.2 Set Sched Params (MCS) . 104
10.3.8.3 Set Space (MCS) . 105
10.3.8.4 Set Timeout Endpoint . 106

10.3.9 seL4_Untyped . 107
10.3.9.1 Retype . 107

10.4 x86-Specific Object Methods . 108
10.4.1 seL4_IRQControl . 108

10.4.1.1 Get I/O APIC Handler . 108
10.4.1.2 Get MSI Handler . 109

10.4.2 seL4_TCB . 110
10.4.2.1 Set EPT Root . 110

10.4.3 seL4_X86_ASIDControl . 111
10.4.3.1 Make Pool . 111

10.4.4 seL4_X86_ASIDPool . 112
10.4.4.1 Assign . 112

10.4.5 seL4_X86_EPTPD . 113
10.4.5.1 Map . 113
10.4.5.2 Unmap . 113

6 CONTENTS

10.4.6 seL4_X86_EPTPDPT . 114
10.4.6.1 Map . 114
10.4.6.2 Unmap . 114

10.4.7 seL4_X86_EPTPT . 115
10.4.7.1 Map . 115
10.4.7.2 Unmap . 115

10.4.8 seL4_X86_IOPageTable . 116
10.4.8.1 Map . 116
10.4.8.2 Unmap . 116

10.4.9 seL4_X86_IOPort . 117
10.4.9.1 In16 . 117
10.4.9.2 In32 . 117
10.4.9.3 In8 . 118
10.4.9.4 Out16 . 118
10.4.9.5 Out32 . 119
10.4.9.6 Out8 . 119

10.4.10seL4_X86_IOPortControl . 120
10.4.10.1 Issue . 120

10.4.11 seL4_X86_Page . 121
10.4.11.1 Get Address . 121
10.4.11.2 Map EPT . 122
10.4.11.3 Map I/O . 123
10.4.11.4 Map . 124
10.4.11.5 Unmap . 125

10.4.12seL4_X86_PageDirectory . 125
10.4.12.1 Get Status Bits . 125
10.4.12.2Map . 126
10.4.12.3 Unmap . 126

10.4.13seL4_X86_PageTable . 127
10.4.13.1 Map . 127
10.4.13.2 Unmap . 127

10.4.14seL4_X86_VCPU . 128
10.4.14.1 Disable I/O Port . 128
10.4.14.2 Enable I/O Port . 128
10.4.14.3 Read VMCS . 129
10.4.14.4 Set TCB . 129
10.4.14.5Write Registers . 130
10.4.14.6Write VMCS . 130

10.5 IA32-Specific Object Methods . 131
10.6 x86_64-Specific Object Methods . 132

10.6.1 seL4_X86_PDPT . 132
10.6.1.1 Map . 132
10.6.1.2 Unmap . 132

10.6.2 seL4_X86_VCPU . 133
10.6.2.1 Read MSR . 133
10.6.2.2 Write MSR . 133

10.7 Arm-Specific Object Methods . 134
10.7.1 seL4_ARM_ASIDControl . 134

10.7.1.1 Make Pool . 134
10.7.2 seL4_ARM_ASIDPool . 135

10.7.2.1 ASID Pool Assign . 135

CONTENTS 7

10.7.3 seL4_ARM_CB . 135
10.7.3.1 Assign VSpace . 135
10.7.3.2 CB Clear Fault . 136
10.7.3.3 CB Get Fault . 136
10.7.3.4 TLB Invalidate . 137
10.7.3.5 Unassign VSpace . 137

10.7.4 seL4_ARM_CBControl . 138
10.7.4.1 Get CB . 138
10.7.4.2 TLB Invalidate All . 139

10.7.5 seL4_ARM_IOPageTable . 139
10.7.5.1 Map . 139
10.7.5.2 Unmap . 140

10.7.6 seL4_ARM_Page . 140
10.7.6.1 Clean Data . 140
10.7.6.2 Clean and Invalidate Data . 141
10.7.6.3 Get Address . 141
10.7.6.4 Invalidate Data . 142
10.7.6.5 Map I/O . 143
10.7.6.6 Map . 144
10.7.6.7 Unify Instruction . 145
10.7.6.8 Unmap . 145

10.7.7 seL4_ARM_PageTable . 146
10.7.7.1 Map . 146
10.7.7.2 Unmap . 146

10.7.8 seL4_ARM_SID . 147
10.7.8.1 Bind CB . 147
10.7.8.2 Unbind CB . 147

10.7.9 seL4_ARM_SIDControl . 148
10.7.9.1 Clear Fault . 148
10.7.9.2 Get Fault . 148
10.7.9.3 Get SID . 149

10.7.10seL4_ARM_VCPU . 150
10.7.10.1 Acknowledge Virtual PPI IRQ . 150
10.7.10.2 Inject IRQ . 150
10.7.10.3 Read Registers . 151
10.7.10.4 Set TCB . 151
10.7.10.5 Write Registers . 152

10.7.11 seL4_IRQControl . 153
10.7.11.1 Get IRQ Handler (SMP) . 153
10.7.11.2 Get IRQ Handler with Trigger Type 154

10.8 Aarch32-Specific Object Methods . 155
10.8.1 seL4_ARM_PageDirectory . 155

10.8.1.1 Clean Data . 155
10.8.1.2 Clean and Invalidate Data . 156
10.8.1.3 Invalidate Data . 156
10.8.1.4 Unify Instruction . 157

10.9 Aarch64-Specific Object Methods . 158
10.9.1 seL4_ARM_SMC . 158

10.9.1.1 SMC Call . 158
10.9.2 seL4_ARM_VSpace . 158

10.9.2.1 Clean Data . 158

8 CONTENTS

10.9.2.2 Clean and Invalidate Data . 159
10.9.2.3 Invalidate Data . 159
10.9.2.4 Unify Instruction . 160

10.10RISCV-Specific Object Methods . 161
10.10.1 General RISCV Object Methods . 161
10.10.2seL4_IRQControl . 161

10.10.2.1 Get IRQ Handler with Trigger Type 161
10.10.3seL4_RISCV_ASIDControl . 162

10.10.3.1 Make Pool . 162
10.10.4seL4_RISCV_ASIDPool . 163

10.10.4.1 Assign . 163
10.10.5seL4_RISCV_Page . 163

10.10.5.1 Get Address . 163
10.10.5.2Map . 164
10.10.5.3Unmap . 165

10.10.6seL4_RISCV_PageTable . 165
10.10.6.1 Map . 165
10.10.6.2Unmap . 166

Glossary 167

Bibliography 169

List of Tables

2.1 Meaning of size_bits for object types of variable size 8

3.1 seL4 access rights: What a specific right entitles a capability to do 11
3.2 Capability derivation. 12

4.1 Fields of the seL4_IPCBuffer structure. Note that badges and caps use the same
area of memory in the structure. 19

6.1 Contents of an IPC message. 30
6.2 Debug fault message layout. The register API-ID is not returned in the fault mes-

sage from the kernel on single-step faults. 32
6.3 Single-step fault message layout. 33
6.4 Timeout fault outcome on 32-bit architectures. 33
6.5 VM Fault outcome on all architectures. 33
6.6 seL4_Fault_VGICMaintenance. 34
6.7 seL4_Fault_VPPIEvent. 34
6.8 seL4_Fault_VCPUFault. 34

7.1 Virtual memory attributes for Arm page table entries. 41
7.2 Virtual memory attributes for x86 page table entries. 42
7.3 Virtual memory attributes for RISC-V page table entries. 42

9.1 Initial thread’s CNode content. 51
9.2 BootInfo struct. 52
9.3 BootInfoHeader struct. 52
9.4 seL4_UntypedDesc struct . 53
9.5 IA-32 boot command-line arguments. 53

9

List of Figures

3.1 Example capability derivation tree. 12
3.2 An example CSpace demonstrating object references at all levels, various guard

and radix sizes and internal CNode references. 14
3.3 An arbitrary CSpace layout. 15

10

Chapter 1

Introduction

The seL4 microkernel is an operating-system kernel designed to be a secure, safe, and reliable
foundation for systems in a wide variety of application domains. As a microkernel, it provides
a small number of mechanisms that can be used to build applications, such as virtual address
spaces, threads, and inter-process communication (IPC).

The small number of mechanisms translates to a small implementation on the order of 10, 000
lines of C code, depending on architecture and configured features. This has enabled formal
verification of the kernel [Boyton, 2009, Cock et al., 2008, Derrin et al., 2006, Elkaduwe et al.,
2008, Klein et al., 2009, Tuch et al., 2007, Winwood et al., 2009] in the Isabelle/HOL theorem
prover, which in turn enabled proofs of the kernel’s enforcement of integrity [Sewell et al., 2011]
and confidentiality [Murray et al., 2013]. The kernel’s small size was also instrumental in per-
forming a complete and sound analysis of worst-case execution time [Blackham et al., 2011,
2012]. Klein et al. [2014] give a comprehensive technical summary of the verification, and the
seL4 white paper [Heiser, 2020] provides a shorter, but more accessible overview.

Functional correctness proofs for the kernel are available for multiple architectures and plat-
forms. For Arm32, this optionally includes hypervisor extensions, and the security proofs men-
tioned above. See the seL4 documentation site for the currently supported proofs [seL4Authors,
2021a].

Thismanual describes the seL4 kernel’s API from a user’s point of view. The document starts by
giving a brief overview of the seL4 microkernel design, followed by a reference of the high-level
API exposed by the seL4 kernel to userspace.

While we have tried to ensure that this manual accurately reflects the behaviour of the seL4
kernel, this document is by no means a formal specification of the kernel. When the precise
behaviour of the kernel under a particular circumstance needs to be known, users should refer to
the abstract specification of seL4 [seL4 Authors, 2021b], which gives a fully formal description.

1

Chapter 2

Kernel Services and Objects

A limited number of service primitives are provided by the microkernel; more complex services
may be implemented as applications on top of these primitives. In this way, the functionality
of the system can be extended without increasing the code and complexity in privileged mode,
while still supporting a potentially wide number of services for varied application domains.

Note that some services are available only when the kernel is configured for MCS1 support.

The basic services seL4 provides are as follows:

Threads are an abstraction of CPU execution that supports running software;

Scheduling contexts (MCS only) are an abstraction of CPU execution time;

Address spaces are virtual memory spaces that each contain an application. Applications are
limited to accessing memory in their address space;

Inter-process communication (IPC) via endpoints allows threads to communicate using mes-
sage passing;

Reply objects (MCS only) are used to store single-use reply capabilities, and are provided by
the receiver during message passing;

Notifications provide a non-blocking signalling mechanism similar to binary semaphores;

Device primitives allow device drivers to be implemented as unprivileged applications. The
kernel exports hardware device interrupts via IPC messages; and

Capability spaces store capabilities (i.e., access rights) to kernel services alongwith their book-
keeping information.

This chapter gives an overview of these services and describes how kernel objects are accessed
by userspace applications and how new objects can be created.

2.1 Capability-based Access Control

The seL4 microkernel provides a capability-based access-control model. Access control gov-
erns all kernel services; in order to perform an operation, an application must invoke a capa-
bility in its possession that has sufficient access rights for the requested service. With this,
the system can be configured to isolate software components from each other, and also to en-
able authorised, controlled communication between components by selectively granting spe-
cific communication capabilities. This enables software-component isolation with a high de-

1“mixed-criticality system”

2

2.2. SYSTEM CALLS 3

gree of assurance, as only those operations explicitly authorised by capability possession are
permitted.

A capability is an unforgeable token that references a specific kernel object (such as a thread
control block) and carries access rights that control what methods may be invoked. Concep-
tually, a capability resides in an application’s capability space; an address in this space refers
to a slot which may or may not contain a capability. An application may refer to a capability—
to request a kernel service, for example—using the address of the slot holding that capability.
This means, the seL4 capability model is an instance of a segregated (or partitioned) capability
system, where capabilities are managed by the kernel.

Capability spaces are implemented as a directed graph of kernel-managed capability nodes
(CNodes). A CNode is a table of slots, where each slotmay contain further CNode capabilities. An
address of a capability in a capability space is the concatenation of the indices of slots within
CNodes forming the path to the destination slot; we discuss CNode objects in detail in Chapter 3.

Capabilities can be copied and moved within capability spaces, and also sent via IPC. This al-
lows creation of applications with specific access rights, the delegation of authority to another
application, and passing to an application authority to a newly created (or selected) kernel ser-
vice. Furthermore, capabilities can be minted to create a derived capability with a subset of the
rights of the original capability (never with more rights). A newly minted capability can be used
for partial delegation of authority.

Capabilities can also be revoked to withdraw authority. Revocation recursively removes any
capabilities that have been derived from the original capability being revoked. The propagation
of capabilities through the system is controlled by a take-grant-based model [Elkaduwe et al.,
2008, Boyton, 2009].

2.2 System Calls

The seL4 kernel provides amessage-passing service for communication between threads. This
mechanism is also used for communication with kernel-provided services. There is a standard
message format, each message containing a number of data words and possibly some capa-
bilities. The structure and encoding of these messages are described in detail in Chapter 4.

Threads send messages by invoking capabilities within their capability space. When an end-
point, notification or reply capability is invoked in this way, the message will be transferred
through the kernel to another thread. When other capabilities to kernel objects are invoked, the
message will be interpreted as a method invocation in a manner specific to the type of kernel
object. For example, invoking a thread control block (TCB) capability with a correctly formatted
message will suspend the target thread.

Fundamentally, we can regard the kernel as providing three system calls: Send, Receive and
Yield. However, there are also combinations and variants of the basic Send andReceive calls. An
important variant is the Call operation, which consists of a standard Send operation atomically
followed by a variant of Receive which waits for a Reply. A reply message is always delivered
via a special resource instead of using the standard IPC mechanism; see seL4_Call() below
for details.

Invoking methods on kernel objects other than endpoints and notifications is done with Send
or Call, depending on whether the invoker wants a reply from the kernel (Call) or not (Send). By
using functions provided by the libsel4 API you are guaranteed to always use themore appropri-
ate one. The Yield system call is not associated with any kernel object and is the only operation
that does not invoke a capability. In theMCS configuration,Wait is a variant of Receive that does

4 CHAPTER 2. KERNEL SERVICES AND OBJECTS

not require a reply object to be provided—on non-MCS configurations, Wait is synonymous with
Receive, because neither call takes a reply object.

The fundamental system calls are:

seL4_Yield() is the only system call that does not require a capability to be used. It forfeits
the remainder of the calling thread’s timeslice and causes invocation of the kernel’s sched-
uler. If there are no other runnable threads with the same priority as the caller, the calling
thread will immediately be scheduled with a fresh timeslice. In theMCS configuration, this
behaviour depends on the state of the scheduling context; see Section 6.1.7.

seL4_Send() delivers a message through the named capability. If the invoked capability is an
endpoint, and no receiver is ready to receive themessage immediately, the sending thread
will block until the message can be delivered. No error code or response will be returned
by the receiving object.

seL4_Recv() (“receive”) is used by a thread to receive messages through endpoints or notifi-
cations. If no sender or notification is pending, the caller will block until a message or
notification can be delivered. This system call works only on Endpoint or Notification capa-
bilities, raising a fault (see section 6.2) when attempted with other capability types.

In the MCS configuration, Receive takes a reply capability—a capability to a reply object—
as a parameter.

The remaining system calls are variants and combinations of seL4_Send() and seL4_Recv()
efficiently accommodate common use cases in systems programming.

seL4_NBSend() performs a polling send on an endpoint. If the message cannot be delivered
immediately, i.e., there is no receiver waiting on the destination Endpoint, the message is
silently dropped. The sending thread continues execution. As with seL4_Send(), no error
code or response will be returned.

seL4_NBRecv() is used by a thread to check for signals pending on a notification object or mes-
sages pending on an endpoint without blocking. This system call works only on endpoints
and notification object capabilities, raising a fault (see section 6.2) when attempted with
other capability types.

seL4_Call() combines seL4_Send() and seL4_Recv() with some important differences. The
call blocks the sending thread until its message is delivered and a reply message is re-
ceived.

When invoking capabilities to kernel services other than endpoints, using seL4_Call()
allows the kernel to return an error code or other response through the reply message.

When the sent message is delivered to another thread via an Endpoint, the kernel does the
same operation as seL4_Send(). What happens next depends on the kernel configuration.
For MCS configurations, the kernel then updates the reply object provided by the receiver.
A reply object is a vessel for tracking reply messages, used to send a reply message and
wake up the caller. In non-MCS configurations, the kernel then deposits a special reply
capability in a dedicated slot in the receiver’s TCB. This reply capability is a single-use right
to send a reply message and wake up the caller, meaning that the kernel invalidates it
as soon as it has been invoked. For both variants, the calling thread is blocked until a
capability to the reply object is invoked. For more information, see Section 4.2.4.

seL4_Reply() is used to respond to a seL4_Call(), by invoking the reply capability generated
by the seL4_Call() system call and stored in a dedicated slot in the replying thread’s TCB.
It has exactly the same behaviour as invoking the reply capability with seL4_Send()which
is described in Section 4.2.4.

2.3. KERNEL OBJECTS 5

seL4_ReplyRecv() combines seL4_Reply() and seL4_Recv(). It exists mostly for efficiency
reasons, namely the common case of replying to a request and waiting for the next can
be performed in a single kernel system call instead of two. The transition from the reply
to the receive phase is also atomic.

seL4_Wait() works like seL4_Recv(); on non-MCS configurations, they are in fact synonymous.
In the MCS configuration, seL4_Wait() is used when no reply is expected. Unlike seL4_-
Recv(), seL4_Wait() takes no reply capability.

seL4_NBWait() (MCS only) is used by a thread to poll for messages through endpoints or noti-
fications. If no sender or notification is pending, the system call returns immediately.

seL4_NBSendWait() (MCS only) combines an seL4_NBSend() and seL4_Wait() into one atomic
system call.

seL4_NBSendRecv() (MCS only) combines an seL4_NBSend() and seL4_Recv() into one atomic
system call.

2.3 Kernel Objects

In this section we give a brief overview of the kernel-implemented object types whose instances
(also simply called objects) can be invoked by applications. The interface to these objects forms
the interface to the kernel itself. The creation and use of kernel services is achieved by the
creation, manipulation, and combination of these kernel objects:

CNodes (see Chapter 3) store capabilities, giving threads permission to invoke methods on par-
ticular objects. EachCNode has a fixed number of slots, always a power of two, determined
when the CNode is created. Slots can be empty or contain a capability.

Thread Control Blocks (TCBs; see Chapter 6) represent a thread of execution in seL4. Threads
are the unit of execution that is scheduled, blocked, unblocked, etc., depending on the
application’s interaction with other threads.

Scheduling contexts (MCSonly) (SchedulingContexts; seeChapter 6) represent CPU time in seL4.
Users can create scheduling contexts from untyped objects, however on creation schedul-
ing contexts are empty and do not represent any time. Initially, there is a capability to
SchedControl for each node, which allows scheduling context to be populated with param-
eters, which when combined with a priority control thread’s access to CPU time.

Endpoints (see Chapter 4) facilitate message-passing communication between threads. IPC is
synchronous: A thread trying to send or receive on an endpoint blocks until the message
can be delivered. This means that message delivery only happens if a sender and a re-
ceiver rendezvous at the endpoint, and the kernel can deliver the message with a single
copy (or without copying for short messages using only registers).

A capability to an endpoint can be restricted to be send-only or receive-only. Additionally,
Endpoint capabilities can have the grant right, which allows sending capabilities as part of
the message.

Reply objects (MCS only) (see Chapter 4) track scheduling context donation and provide a con-
tainer for single-use reply capabilities. They are provided by seL4_Recv().

Notification Objects (see Chapter 5) provide a simple signalling mechanism. A Notification is a
word-size array of flags, each of which behaves like a binary semaphore. Operations are
signalling a subset of flags in a single operation, polling to check any flags, and blocking
until any are signalled. Notification capabilities can be signal-only or wait-only.

6 CHAPTER 2. KERNEL SERVICES AND OBJECTS

Virtual Address Space Objects (see Chapter 7) are used to construct a virtual address space
(or VSpace) for one or more threads. These objects largely directly correspond to those
of the hardware, and as such are architecture-dependent. The kernel also includes ASID
Pool and ASID Control objects for tracking the status of address spaces.

Interrupt Objects (see Chapter 8) give applications the ability to receive and acknowledge inter-
rupts from hardware devices. Initially, there is a capability to IRQControl, which allows for
the creation of IRQHandler capabilities. An IRQHandler capability permits the management
of a specific interrupt source associated with a specific device. It is delegated to a device
driver to access an interrupt source. The IRQHandler object allows threads to wait for and
acknowledge individual interrupts.

Untyped Memory (see Section 2.4) is the foundation of memory allocation in the seL4 kernel.
Untyped memory capabilities have a single method which allows the creation of new ker-
nel objects. If the method succeeds, the calling thread gains access to capabilities to the
newly-created objects. Additionally, untyped memory objects can be divided into a group
of smaller untyped memory objects allowing delegation of part (or all) of the system’s
memory. We discuss memory management in general in the following sections.

2.4 Kernel Memory Allocation

The seL4microkernel does not dynamically allocatememory for kernel objects. Instead, objects
must be explicitly created from application-controlled memory regions via Untyped Memory ca-
pabilities. Applications must have explicit authority to memory (through these Untyped Memory
capabilities) in order to create new objects, and all objects consume a fixed amount of mem-
ory once created. These mechanisms can be used to precisely control the specific amount of
physical memory available to applications, including being able to enforce isolation of physical
memory access between applications or a device. There are no arbitrary resource limits in the
kernel apart from those dictated by the hardware2, and so many denial-of-service attacks via
resource exhaustion are avoided.

At boot time, seL4 pre-allocates the memory required for the kernel itself, including the code,
data, and stack sections (seL4 is a single kernel-stack operating system). It then creates an
initial user thread (with an appropriate address and capability space). The kernel then hands all
remaining memory to the initial thread in the form of capabilities to Untyped Memory, and some
additional capabilities to kernel objects that were required to bootstrap the initial thread. These
Untyped Memory regions can then be split into smaller regions or other kernel objects using the
seL4_Untyped_Retype()method; the created objects are termed childrenof the original untyped
memory object.

The user-level application that creates an object using seL4_Untyped_Retype() receives full
authority over the resulting object. It can then delegate all or part of the authority it possesses
over this object to one or more of its clients.

Untypedmemory objects represent two different types of memory: general purposememory, or
devicememory. General purposememory can be retyped into any other object type and used for
any operation on untyped memory provided by the kernel. Device memory covers memory re-
gions reserved for devices as determined by the hardware platform, and usage of these objects
is restricted by the kernel in the following ways:

• Device untyped objects can only be retyped into frames or other untyped objects; devel-
opers cannot, for example, create an endpoint from device memory.

2The treatment of virtual ASIDs imposes a fixed number of address spaces. This limitation is to be removed in
future versions of seL4.

2.4. KERNEL MEMORY ALLOCATION 7

• Frame objects retyped from device untyped objects cannot be set as thread IPC buffers,
or used in the creation of an ASID pool.

The type attribute (whether it represents general purpose or device memory) of a child untyped
object is inherited from its parent untyped object. That is, any child of a device untyped object
will also be a device untyped object. Developers cannot change the type attribute of an untyped
object.

2.4.1 Reusing Memory

The model described thus far is sufficient for applications to allocate kernel objects, distribute
authority among client applications, and obtain various kernel services provided by these ob-
jects. This alone is sufficient for a simple static system configuration.

The seL4 kernel also allows Untyped Memory regions to be reused. Reusing a region of memory
is allowed only when there are no dangling references (i.e., capabilities) left to the objects inside
thatmemory. The kernel tracks capability derivations, i.e., the children generated by themethods
seL4_Untyped_Retype(), seL4_CNode_Mint(), seL4_CNode_Copy(), and seL4_CNode_Mutate().

The tree structure so generated is termed the capability derivation tree (CDT).3 For example,
when a user creates new kernel objects by retyping untyped memory, the newly created capa-
bilities would be inserted into the CDT as children of the untyped memory capability.

For each Untyped capability pointing to an Untyped Memory region, the kernel keeps a watermark
recording how much of the region has previously been allocated. Whenever a user requests the
kernel to create new objects in an untyped memory region, the kernel will carry out one of two
actions: if there are already existing objects allocated in the region, the kernel will allocate the
new objects at the current watermark level, and increase the watermark. If all capabilities to
objects previously allocated in the region have been deleted, the kernel will reset the watermark
and start allocating new objects from the beginning of the region again.

Finally, the seL4_CNode_Revoke()method provided by the CNode objects deletes all capabilities
derived from the argument capability. Revoking the last capability to a kernel object triggers the
destroy operation on the now unreferenced object. This cleans up any in-kernel dependencies
between it, other objects and the kernel. It does not necessarily zero all memory state asso-
ciated with the object yet. Memory zeroing will happen for the entire region when an untyped
capability is reset as part of the first retype operation after all child capabilities have been re-
voked.

To reuse a region of memory, user code can call seL4_CNode_Revoke() on the original untyped
capability for that region, thereby removing all children of that capability. After this invocation,
no references remain to any object within the untyped region, and the region may be safely
retyped again.

2.4.2 Summary of Object Sizes

When retyping untyped memory it is useful to know how much memory the object will require.
Object sizes are defined in libsel4.

Note that CNodes, SchedContexts (MCS only), and Untyped Objects have variable sizes. When re-
typing untypedmemory into CNodes or SchedContexts, or breaking an Untyped Object into smaller
Untyped Objects, the size_bits argument to seL4_Untyped_Retype() is used to specify the size

3Although the CDT conceptually is a separate data structure, it is implemented as part of the CNode object and
so requires no additional kernel meta-data.

8 CHAPTER 2. KERNEL SERVICES AND OBJECTS

of the resulting objects. For all other object types, the size is fixed, and the size_bits argument
to seL4_Untyped_Retype() is ignored.

Type Meaning of size_bits Size in Bytes

CNode log2 number of slots 2size_bits · 2seL4_SlotBits seL4_Slot-
Bits is:
on 32-bit architectures: 4
on 64-bit architectures: 5

SchedContext
(MCS only)

log2 size in bytes 2size_bits

Untyped log2 size in bytes 2size_bits

Table 2.1: Meaning of size_bits for object types of variable size

A single call to seL4_Untyped_Retype() can retype a single Untyped Object into multiple objects.
The number of objects to create is specified by its num_objects argument. All created objects
must be of the same type, specified by the type argument. In the case of variable-sized objects,
each object must also be of the same size. If the size of the memory area needed (calculated
by the object sizemultiplied by num_objects) is greater than the remaining unallocatedmemory
of the Untyped Object, an error will result.

Useful constants for creating SchedContext objects are listed below.

seL4_MinSchedContextBits minimum log2-size of a scheduling context

seL4_CoreSchedContextBytes size in bytes of a scheduling context, excluding extra refills

seL4_RefillSizeBytes size in bytes of a single extra refill

iz

Chapter 3

Capability Spaces

Recall from Section 2.1 that seL4 implements a capability-based access control model. Each
userspace thread has an associated capability space (CSpace) that contains the capabilities
that the thread possesses, thereby governing which resources the thread can access.

Recall that capabilities reside within kernel-managed objects known as CNodes. A CNode is a
table of slots, each of which may contain a capability. This may include capabilities to further
CNodes, forming a directed graph. Conceptually a thread’s CSpace is the portion of the directed
graph that is reachable starting with the CNode capability that is its CSpace root.

A CSpace address refers to an individual slot (in some CNode in the CSpace), which may or
may not contain a capability. Threads refer to capabilities in their CSpaces (e.g. when making
system calls) using the address of the slot that holds the capability in question. An address in
a CSpace is the concatenation of the indices of the CNode capabilities forming the path to the
destination slot; we discuss this further in Section 3.3.

Recall that capabilities can be copied and moved within CSpaces, and also sent in messages
(message sendingwill be described in detail in Section 4.2.2). Furthermore, newcapabilities can
beminted from old ones with a subset of their rights. Recall, from Section 2.4.1, that seL4 main-
tains a capability derivation tree (CDT) in which it tracks the relationship between these copied
capabilities and the originals. The revoke method removes all capabilities (in all CSpaces) that
were derived from a selected capability. This mechanism can be used by servers to restore sole
authority to an object they have made available to clients, or by managers of untyped memory
to destroy the objects in that memory so it can be retyped.

seL4 requires the programmer to manage all in-kernel data structures, including CSpaces, from
userspace. Thismeans that the userspace programmer is responsible for constructingCSpaces
as well as addressing capabilities within them. This chapter first discusses capability and
CSpace management, before discussing how capabilities are addressed within CSpaces, i.e.
how applications can refer to individual capabilities within their CSpaces when invoking meth-
ods.

3.1 Capability and CSpace Management

3.1.1 CSpace Creation

CSpaces are created by creating and manipulating CNode objects. When creating a CNode the
user must specify the number of slots that it will have, and this determines the amount of mem-
ory that it will use. Each slot requires 2seL4_SlotBits bytes of physical memory and has the ca-
pacity to hold exactly one capability. This is 16 bytes on 32-bit architectures and 32 bytes on

9

10 CHAPTER 3. CAPABILITY SPACES

64-bit architectures. Like any other object, a CNode must be created by calling seL4_Untyped_-
Retype() on an appropriate amount of untyped memory (see Section 2.4.2). The caller must
therefore have a capability to untyped memory with at least the size of a CSpace as well as
enough free capability slots available in existing CNodes for the seL4_Untyped_Retype() invo-
cation to succeed.

3.1.2 CNode Methods

Capabilities are managed largely through invoking CNode methods.

CNodes support the following methods:

seL4_CNode_Mint() creates a new capability in a specified CNode slot from an existing capa-
bility. The newly created capability may have fewer rights than the original and a different
guard (see Section 3.3.1). seL4_CNode_Mint() can also create a badged capability (see
Section 4.2.1) from an unbadged one.

seL4_CNode_Copy() is similar to seL4_CNode_Mint(), but the newly created capability has the
same badge and guard as the original.

seL4_CNode_Move() moves a capability between two specified capability slots. You cannot
move a capability to the slot in which it is currently.

seL4_CNode_Mutate() can move a capability similarly to seL4_CNode_Move() and also reduce
its rights similarly to seL4_CNode_Mint(), but without making a copy. That is, if the capa-
bility is revokable, it remains revokable. Similar to seL4_CNode_Mint() it can be used to
adjust the guard of a CNode capability. It cannot be used to badge endpoint capabilities.

seL4_CNode_Rotate() moves two capabilities between three specified capability slots. It is
essentially two seL4_CNode_Move() invocations: one from the second specified slot to
the first, and one from the third to the second. The first and third specified slots may be
the same, in which case the capability in it is swapped with the capability in the second
slot. The method is atomic; either both or neither capabilities are moved.

seL4_CNode_Delete() removes a capability from the specified slot.

seL4_CNode_Revoke() is equivalent to calling seL4_CNode_Delete() on each derived child of
the specified capability. It has no effect on the capability itself, except in very specific
circumstances outlined in Section 3.2.

seL4_CNode_SaveCaller() moves a kernel-generated reply capability of the current thread from
the special TCB slot it was created in, into the designated CSpace slot (non-MCS only).

seL4_CNode_CancelBadgedSends() cancels any outstanding sends that use the same badge
and object as the specified capability.

3.1.3 Capabilities to Newly-Retyped Objects

When retyping untyped memory into objects with seL4_Untyped_Retype(), capabilities to the
newly-retyped objects are placed in consecutive slots in a CNode specified by its root, node_in-
dex, and node_depth arguments. The node_offset argument specifies the index into the CNode
at which the first capability will be placed. The num_objects argument specifies the number of
capabilities (and, hence, objects) to create. All slots must be empty or an error will result. All
resulting capabilities will be placed in the same CNode.

3.1. CAPABILITY AND CSPACE MANAGEMENT 11

3.1.4 Capability Rights

As mentioned previously, some capability types have access rights associated with them. Cur-
rently, access rights are associated with capabilities for Endpoints (see Chapter 4), Notifications
(see Chapter 5), Pages (see Chapter 7) and Replying (see Chapter 4). The access rights associ-
ated with a capability determine the methods that can be invoked. seL4 supports four access
rights, which are Read, Write, Grant and GrantReply. Read, Write and Grant are orthogonal to
each other. GrantReply is a less powerful form of Grant e.g. if you already have Grant, having
GrantReply or not is irrelevant. The meaning of each right is interpreted relative to the various
object types, as detailed in Table 3.1.

When an object is first created, the initial capability that refers to it carries the maximum set of
access rights. Other, less-powerful capabilities may be manufactured from this original capa-
bility, using methods such as seL4_CNode_Mint() and seL4_CNode_Mutate(). If a greater set
of rights than the source capability is specified for the destination capability in either of these
invocations, the destination rights are silently downgraded to those of the source.

Type Read Write Grant GrantReply

Endpoint Receiving Sending Sending any ca-
pabilities

Sending reply ca-
pabilities

Notification Waiting Signaling N/A N/A

Page Mapping the
page readable.

Mapping the
page writable.

N/A N/A

Reply N/A N/A Sending any ca-
pabilities in reply
message

N/A

Table 3.1: seL4 access rights: What a specific right entitles a capability to do

3.1.5 Capability Derivation Tree

As mentioned in Section 2.4.1, seL4 keeps track of capability derivations in a capability deriva-
tion tree.

Various methods, such as seL4_CNode_Copy() or seL4_CNode_Mint(), may be used to create
derived capabilities. Not all capabilities support derivation. In general, only original capabilities
support derivation invocations, but there are exceptions. Table 3.2 summarises the conditions
that must be met for capability derivation to succeed for the various capability types, and how
capability-derivation failures are reported in each case. The capability types not listed can be
derived once.

Figure 3.1 shows an example capability derivation tree that illustrates a standard scenario: the
top level is a large untyped capability, the second level splits this capability into two regions
covered by their own untyped caps, both are children of the first level. The third level on the
left is a copy of the level 2 untyped capability. Untyped capabilities when copied always create
children, never siblings. In this scenario, the untyped capability was typed into two separate
objects, creating two capabilities on level 4, both are the original capability to the respective
object, both are children of the untyped capability they were created from.

Ordinary original capabilities can have one level of derived capabilities. Further copies of these
derived capabilities will create siblings, in this case remaining on level 5. There is an exception

12 CHAPTER 3. CAPABILITY SPACES

Cap Type Conditions for Derivation Error Code on Derivation Failure

ReplyCap Cannot be derived Dependent on syscall
IRQControl Cannot be derived Dependent on syscall
Untyped Must not have children (Sec-

tion 3.2)
seL4_RevokeFirst

Page Table Must be mapped seL4_IllegalOperation
Page Directory Must be mapped seL4_IllegalOperation
IO Page Table (IA-32 only) Must be mapped seL4_IllegalOperation

Table 3.2: Capability derivation.

Untyped

Untyped Untyped

Untyped

original original

derived derived derived

original
unbadged

derived
unbadged

original
badged

derived
badged

derived
badged

Endpoint

Object 2

Object 1

Figure 3.1: Example capability derivation tree.

to this scheme for Endpoint and Notification capabilities — they support an additional layer of
depth though badging. The original Endpoint or Notification capability will be unbadged. Using
themintmethod, a copy of the capability with a specific badge can be created (see Section 4.2.1,
Section 5.1). This new, badged capability to the same object is treated as an original capability
(the “original badged endpoint capability”) and supports one level of derived children like other
capabilities.

3.2 Deletion and Revocation

Capabilities in seL4 can be deleted and revoked. Both methods primarily affect capabilities, but
they can have side effects on objects in the system where the deletion or revocation results in
the destruction of the last capability to an object.

As described above, seL4_CNode_Delete() will remove a capability from the specified CNode
slot. Usually, this is all that happens. If, however, it was the last typed capability to an object,
this object will now be destroyed by the kernel, cleaning up all remaining in-kernel references
and preparing the memory for re-use.

If the object to be destroyed was a capability container, i.e. a TCB or CNode, the destruction pro-
cess will delete each capability held in the container, prior to destroying the container. This may
result in the destruction of further objects if the contained capabilities are the last capabilities.1

1The recursion is limited as if the last capability to a CNode is found within the container, the found CNode is not
destroyed. Instead, the found CNode is made unreachable by moving the capability pointing to the found CNode

3.3. CSPACE ADDRESSING 13

The seL4_CNode_Revoke() method will seL4_CNode_Delete() all CDT children of the specified
capability, but will leave the capability itself intact. If any of the revoked child capabilities were
the last capabilities to an object, the appropriate destroy operation is triggered.

Note: seL4_CNode_Revoke() may only partially complete in two specific circumstances. The
first being where a CNode containing the last capability to the TCB of the thread performing
the revoke (or the last capability to the TCB itself) is deleted as a result of the revoke. In this
case the thread performing the revoke is destroyed during the revoke and the revoke does not
complete. The second circumstance is where the storage containing the capability that is the
target of the revoke is deleted as a result of the revoke. In this case, the authority to perform the
revoke is removed during the operation and the operation stops part way through. Both these
scenarios can be and should be avoided at user-level by construction.

Note that for page tables and page directories seL4_CNode_Revoke() will not revoke frame ca-
pabilities mapped into the address space. They will only be unmapped from the space.

3.3 CSpace Addressing

When performing a system call, a thread specifies to the kernel the capability to be invoked by
giving an address in its CSpace. This address refers to the specific slot in the caller’s CSpace
that contains the capability to be invoked.

CSpaces are designed to permit sparsity, and the process of looking-up a capability address
must be efficient. Therefore, CSpaces are implemented as guarded page tables.

As explained earlier, a CSpace is a directed graph of CNode objects, and each CNode is a table
of slots, where each slot can either be empty, or contain a capability, which may refer to another
CNode. Recall from Section 2.3 that the number of slots in a CNode must be a power of two. A
CNode is said to have a radix, which is the power to which two is raised in its size. That is, if a
CNode has 2k slots, its radix would be k . The kernel stores a capability to the root CNode of each
thread’s CSpace in the thread’s TCB. Conceptually, a CNode capability stores not only a reference
to the CNode to which it refers, but also carries a guard value, explained in Section 3.3.1.

3.3.1 Capability Address Lookup

Like a virtual memory address, a capability address is simply an integer. Rather than referring to
a location of physical memory (as does a virtual memory address), a capability address refers
to a capability slot. When looking up a capability address presented by a userspace thread,
the kernel first consults the CNode capability in the thread’s TCB that defines the root of the
thread’s CSpace. It then compares that CNode’s guard value against the most significant bits of
the capability address. If the two values are different, lookup fails. Otherwise, the kernel then
uses the next most-significant radix bits of the capability address as an index into the CNode to
which the CNode capability refers. The slot s identified by these next radix bits might contain
another CNode capability or contain something else (including nothing). If s contains a CNode
capability c and there are remaining bits (following the radix bits) in the capability address that

into the found cnode itself, by swapping the capability with the first capability in the found cnode, and then trying to
delete the swapped capability instead. This breaks the recursion.

The result of this approach is that deleting the last cap to the root CNode of a CSpace does not recursively delete
the entire CSpace. Instead, it deletes the root CNode, and the branches of the tree become unreachable, potentially
including the deleting of some of the unreachable CNode’s caps to make space for the self-referring capability.
The practical consequence of this approach is that CSpace deletion requires user-level to delete the tree leaf first
if unreachable CNodes are to be avoided. Alternatively, any resulting unreachable CNodes can be cleaned up via
revoking a covering untyped capability, however this latter approachmay bemore complex to arrange by construction
at user-level.

14 CHAPTER 3. CAPABILITY SPACES

Guard

0x00

0x0

0x00

0x000 (12 bits)

0x0 (4 bits)

0x0 (3 bits)

CNode

CNode

CNode

0xFF

0xF
CNode

CNode

Object

Object

Object

Object

Object

Object 0xFF

Guard

Guard

12 bit guard + 8 bit radix* = 20 bits
translated. 32 bit word - 20 bits = 12
bits remaining
*(2^8 = 256 slots)

4 bit guard + 8 bit radix = 12 bits
translated
32 - 20 - 12 = 0 bits remaining

CNode

3 bit guard + 4 bit radix = 7 bits
translated
32 - 20 - 7 = 5 bits remaining

Figure 3.2: An example CSpace demonstrating object references at all levels,
various guard and radix sizes and internal CNode references.

have yet to be translated, the lookup process repeats, starting from the CNode capability c and
using these remaining bits of the capability address. Otherwise, the lookup process terminates
successfully; the capability address in question refers to the capability slot s.

Figure 3.2 demonstrates a valid CSpace with the following features:

• a top level CNode object with a 12-bit guard set to 0x000 and 256 slots;

• a top level CNode with direct object references;

• a top level CNode with two second-level CNode references;

• second level CNodes with different guards and slot counts;

• a second level CNode that contains a reference to a top level CNode;

• a second level CNode that contains a reference to another CNode where there are some
bits remaining to be translated;

• a second level CNode that contains a reference to another CNode where there are no bits
remaining to be translated; and

• object references in the second level CNodes.

It should be noted that Figure 3.2 demonstrates only what is possible, not what is usually prac-
tical. Although the example CSpace is legal, it would be reasonably difficult to work with due to
the small number of slots and the circular references within it.

3.3.2 Addressing Capabilities

A capability address is stored in a CPointer (abbreviated CPtr), which is an unsigned integer
variable. Capabilities are addressed in accordance with the translation algorithm described

3.3. CSPACE ADDRESSING 15

L1 CNode Cap

0x0 (4 bits)

L2 CNode Cap

Cap A

Guard

0x00

0x0F

0x60

0xFF

0x0 (4 bits)

L3 CNode Cap

Cap B

Guard

0x00

0x60

0xFF

Cap C, D, E, F, G

Guard 0 bits

0x00

0x60

0x64

0xFF

Figure 3.3: An arbitrary CSpace layout.

above. Two special cases involve addressing CNode capabilities themselves and addressing a
range of capability slots.

Recall that the translation algorithm described abovewill traverse CNode capabilities while there
are address bits remaining to be translated. Therefore, in order to address a capability which
may be a CNode capability, the user must supply not only a capability address but also specify
the maximum number of bits of the capability address that are to be translated, called the depth
limit. When a CPointer is paired with depth limit depth, only its depth least significant bits are
used in translation.

Certain methods, such as seL4_Untyped_Retype(), require the user to provide a range of capa-
bility slots. This is done by providing a base capability address, which refers to the first slot in the
range, together with a window size parameter, specifying the number of slots (with consecutive
addresses, following the base slot) in the range.

Figure 3.3 depicts an example CSpace. In order to illustrate these ideas, we determine the ad-
dress of each of the 10 capabilities in this CSpace.

Cap A. The first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. Cap A resides in slot
0x60 so, provided that it is not a CNode capability, it may be referred to by any address
of the form 0x060nnnnn (where nnnnn is any sequence of 5 hexadecimal digits, because
the translation process terminates after translating the first 12 bits of the address). For
simplicity, we usually set unused address bits to 0, which in this case yields the address
0x06000000.

Cap B. Again, the first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. The second CNode
is reached via the L2 CNode Cap. It also has a 4-bit guard of 0x0 and Cap B resides at index
0x60. Hence, Cap B’s address is 0x00F06000. Translation of this address terminates after
the first 24 bits.

Cap C. This capability is addressed via both CNodes. The third CNode is reached via the L3
CNode Cap, which resides at index 0x00 of the second CNode. The third CNode has no
guard and Cap C is at index 0x60. Hence, its address is 0x00F00060. Translation of this
address leaves 0 bits untranslated.

Caps C–G. This range of capability slots is addressed by providing a base address (which refers
to the slot containing Cap C) of 0x00F00060 and a window size of 5.

L2 CNode Cap. Recall that to address a CNode capability, the user must supply not only a ca-
pability address but also specify the depth limit, which is the maximum number of bits to

16 CHAPTER 3. CAPABILITY SPACES

be translated. L2 CNode Cap resides at offset 0x0F of the first CNode, which has a 4-bit
guard of 0x0. Hence, it may be referred to by any address of the form 0xnnnnn00F with a
depth limit of 12 bits, where nnnnn is any sequence of 5 hexadecimal digits.

L3 CNode Cap. This capability resides at index 0x00 of the second CNode, which is reached by
the L2 CNode Cap. The second CNode has a 4-bit guard of 0x0. Hence, the capability may
be referred to by any address of the form 0xnn00F000 with a depth limit of 24 bits, where
nn is any sequence of 2 hexadecimal digits.

In summary, to refer to any capability (or slot) in a CSpace, the user must supply its address.
When the capability might be a CNode, the user must also supply a depth limit. To specify a
range of capability slots, the user supplies a starting address and a window size.

3.4 Lookup Failure Description

When a capability lookup fails, a description of the failure is given to either the calling thread
or the thread’s exception handler in its IPC buffer. The format of the description is always the
same but may occur at varying offsets in the IPC buffer depending on how the error occurred.
The description format is explained below. The first word indicates the type of lookup failure
and the meaning of later words depend on this.

3.4.1 Invalid Root

A CSpace CPtr root (within which a capability was to be looked up) is invalid. For example, the
capability is not a CNode cap.

Data Meaning

Offset + 0 seL4_InvalidRoot

3.4.2 Missing Capability

A capability required for an invocation is not present or does not have sufficient rights.

Data Meaning

Offset + 0 seL4_MissingCapability
Offset + seL4_CapFault_BitsLeft Bits left

3.4.3 Depth Mismatch

When resolving a capability, a CNode was traversed that resolved more bits than was left to de-
code in the CPtr or a non-CNode capability was encounteredwhile there were still bits remaining
to be looked up.

3.4. LOOKUP FAILURE DESCRIPTION 17

Data Meaning

Offset + 0 seL4_DepthMismatch
Offset + seL4_CapFault_BitsLeft Bits of CPtr remaining to decode
Offset + seL4_CapFault_DepthMismatch_-
BitsFound

Bits that the current CNode being traversed
resolved

3.4.4 Guard Mismatch

When resolving a capability, a CNode was traversed with a guard size larger than the number of
bits remaining or the CNode’s guard did not match the next bits of the CPtr being resolved.

Data Meaning

Offset + 0 seL4_GuardMismatch
Offset + seL4_CapFault_BitsLeft Bits of CPtr remaining to decode
Offset + seL4_CapFault_GuardMismatch_-
GuardFound

The CNode’s guard

Offset + seL4_CapFault_GuardMismatch_-
BitsFound

The CNode’s guard size

Chapter 4

Message Passing (IPC)

The seL4microkernel provides amessage-passing IPCmechanism for communication between
threads. The same mechanism is also used for communication with kernel-provided services.
Messages are sent by invoking a capability to a kernel object. Messages sent to Endpoints are
destined for other threads, while messages sent to other objects are processed by the kernel.
This chapter describes the common message format, endpoints, and how they can be used for
communication between applications.

4.1 Message Registers

Each message contains a number of message words and optionally a number of capabilities.
The message words are sent to or received from a thread by placing them in its message regis-
ters. Themessage registers are numbered and the first fewmessage registers are implemented
using physical CPU registers, while the rest are backed by a fixed region of memory called the
IPC buffer. The reason for this design is efficiency: very short messages need not use themem-
ory. The IPC buffer is assigned to the calling thread (see Section 6.1 and Section 10.3.7.10).

Every IPC message also has a tag (structure seL4_MessageInfo_t). The tag consists of four
fields: the label, message length, number of capabilities (the extraCaps field) and the capsUn-
wrapped field. The message length and number of capabilities determine either the number of
message registers and capabilities that the sending thread wishes to transfer, or the number of
message registers and capabilities that were actually transferred. The label is not interpreted
by the kernel and is passed unmodified as the first data payload of the message. The label may,
for example, be used to specify a requested operation. The capsUnwrapped field is used only on
the receive side, to indicate the manner in which capabilities were received. It is described in
Section 4.2.2.

The kernel assumes that the IPC buffer contains a structure of type seL4_IPCBuffer as defined
in Table 4.1. The kernel uses as many physical registers as possible to transfer IPC messages.
Whenmore arguments are transferred than physical message registers are available, the kernel
begins using the IPC buffer’s msg field to transfer arguments. However, it leaves room in this
array for the physical message registers. For example, if an IPC transfer or kernel object invo-
cation required 4 message registers (and there are only 2 physical message registers available
on this architecture) then arguments 1 and 2 would be transferred via message registers and
arguments 3 and 4 would be in msg[2] and msg[3]. This allows the user-level object-invocation
stubs to copy the arguments passed in physical registers to the space left in the msg array if de-
sired. The situation is similar for the tag field. There is space for this field in the seL4_IPCBuffer
structure, which the kernel ignores. User level stubs may wish to copy the message tag from its

18

4.2. ENDPOINTS 19

Type Name Description

seL4_MessageInfo_t tag Message tag
seL4_Word[] msg Message contents
seL4_Word userData Base address of the structure, used by sup-

porting user libraries
seL4_CPtr[] (in) caps Capabilities to transfer
seL4_CapData_t[] (out) badges Badges for endpoint capabilities received
seL4_CPtr receiveCNode CPtr to a CNode from which to find the re-

ceive slot
seL4_CPtr receiveIndex CPtr to the receive slot relative to receiveC-

Node
seL4_Word receiveDepth Number of bits of receiveIndex to use

Table 4.1: Fields of the seL4_IPCBuffer structure. Note that badges and caps
use the same area of memory in the structure.

CPU register to this field, although the user level stubs provided with the kernel do not do this.

4.2 Endpoints

Endpoints allow a small amount of data and capabilities (namely the IPC buffer) to be trans-
ferred between two threads. Endpoint objects are invoked directly using the seL4 system calls
described in Section 2.2.

IPC Endpoints uses a rendezvous model and as such is synchronous and blocking. An Endpoint
object may queue threads either to send or to receive. If no receiver is ready, threads performing
the seL4_Send() or seL4_Call() system calls will wait in a queue for the first available receiver.
Likewise, if no sender is ready, threads performing the seL4_Recv() system call or the second
half of seL4_ReplyRecv() will wait for the first available sender.

Trying to Send or Call without the Write right will fail and return an error. In the case of Send the
error is ignored (the kernel isn’t allowed to reply). Thus there is no way of knowing that a send
has failed because of a missing right. On the other hand calling seL4_Recv() with a endpoint
capability that does not have the Read right will raise a fault, see Section 6.2. This is because
otherwise the error message would be indistinguishable from a normal message received from
another thread via the endpoint.

4.2.1 Endpoint Badges

Endpoint capabilities may be minted to create a new endpoint capability with a badge attached
to it, a data word chosen by the invoker of the mint operation. When a message is sent to
an endpoint using a badged capability, the badge is transferred to the receiving thread’s badge
register.

An endpoint capabilitywith a zero badge is said to be unbadged. Such a capability can be badged
with the seL4_CNode_Mint() invocation on the CNode containing the capability. Endpoint capa-
bilities with badges cannot be unbadged, rebadged or used to create child capabilities with
different badges.

On 32-bit platforms, only the low28 bits of the badge are available for use. The kernel will silently
ignore any usage of the high 4 bits. On 64-bit platforms, 64 bits are available for badges.

20 CHAPTER 4. MESSAGE PASSING (IPC)

4.2.2 Capability Transfer

Messages may contain capabilities, which will be copied to the receiver, provided that the end-
point capability invoked by the sending thread has Grant rights. An attempt to send capabilities
using an endpoint capability without the Grant right will result in a transfer of the raw message,
without any capability transfer.

Capabilities to be sent in a message are specified in the sending thread’s IPC buffer in the caps
field. Each entry in that array is interpreted as a CPtr in the sending thread’s capability space.
The number of capabilities to send is specified in the extraCaps field of the message tag.

The receiver specifies the slot in which it is willing to receive a capability, with three fields within
the IPC buffer: receiveCNode, receiveIndex and receiveDepth. These fields specify the root
CNode, capability address and number of bits to resolve, respectively, to find the slot in which
to put the capability. Capability addressing is described in Section 3.3.2.

Note that receiving threads may specify only one receive slot, whereas a sending thread may
include multiple capabilities in the message. Messages containing more than one capability
may be interpreted by kernel objects. They may also be sent to receiving threads in the case
where some of the extra capabilities in the message can be unwrapped.

If the n-th capability in the message refers to the endpoint through which the message is sent,
the capability is unwrapped: its badge is placed into the n-th position of the receiver’s badges
array, and the kernel sets the n-th bit (counting from the least significant) in the capsUnwrapped
field of the message tag. The capability itself is not transferred, so the receive slot may be used
for another capability.

A capability that is not unwrapped is transferred by copying it from the sender’s CNode slot to
the receiver’s CNode slot. The sender retains access to the sent capability.

If a receiver gets a message whose tag has an extraCaps of 2 and a capsUnwrapped of 2, then
the first capability in the message was transferred to the specified receive slot and the sec-
ond capability was unwrapped, placing its badge in badges[1]. There may have been a third
capability in the sender’s message which could not be unwrapped.

4.2.3 Errors

Errors in capability transfers can occur at two places: in the send phase or in the receive phase.
In the send phase, all capabilities that the caller is attempting to send are looked up to ensure
that they exist before the send is initiated in the kernel. If the lookup fails for any reason, seL4_-
Send() and seL4_Call() system calls immediately abort and no IPC or capability transfer takes
place. The system call will return a lookup failure error as described in Section 10.1.

In the receive phase, seL4 transfers capabilities in the order they are found in the sending
thread’s IPC buffer caps array and terminates as soon as an error is encountered. Possible
error conditions are:

• A source capability cannot be looked up. Although the presence of the source capabilities
is checked when the sending thread performs the send system call, this error may still
occur. The sending thread may have been blocked on the endpoint for some time before
it was paired with a receiving thread. During this time, its CSpace may have changed and
the source capability pointers may no longer be valid.

• The destination slot cannot be looked up. Unlike the send system call, the seL4_Recv()
system call does not check that the destination slot exists and is empty before it initiates
the receive operation. Hence, the seL4_Recv() system call will not fail with an error if the

4.2. ENDPOINTS 21

destination slot is invalid and will instead transfer badged capabilities until an attempt to
save a capability to the destination slot is made.

• The capability being transferred cannot be derived. See Section 3.1.5 for details.

An error will not void the entire transfer, it will just end it prematurely. The capabilities processed
before the failure are still transferred and the extraCaps field in the receiver’s IPC buffer is set
to the number of capabilities transferred up to failure. No error message will be returned to the
receiving thread in any of the above cases.

4.2.4 Calling and Replying

As explained in Section 2.2, when the user calls seL4_Call() on an endpoint capability, some
specific actions are taken. First a call will do exactly the same action as a normal seL4_Send().
Then after the rendezvous and all the normal IPC procedure happened, instead of returning
directly to the caller, seL4_Call() will check if either Grant or GrantReply are present on the
invoked endpoint capability:

• If this is not the case, the caller thread is suspended as if seL4_TCB_Suspend()was called
on it. The send part of the call would still have been performed as usual.

• If this is the case. A reply capability is set in a specific slot of the receiver TCB. The Grant
right of that reply capability is set by copying the Grant right of the endpoint capability
invoked by the receiver in seL4_Recv(). Then, the caller thread is blocked waiting for the
reply.

A reply capability points directly to the caller thread and once the call has been performed is
completely unrelated to the original Endpoint. Even if the latter was destroyed, the reply capability
would still exist and point to the caller who would still be waiting for a reply.

The generated reply capability can then be either invoked in place (in the specific TCB slot)
with the seL4_Reply() or saved to an addressable slot using seL4_CNode_SaveCaller() to be
invoked later with seL4_Send(). The specific slot cannot be directly addressed with any CPtr as
it is not part of any CSpace.

A reply capability is invoked in the same way as a normal send on a Endpoint. A reply capability
has implicitly the Write right, so the message will always go through. Transferring caps in the
reply can only happen if the reply capability has the Grant right and is done in exactly the same
way as in a normal IPC transfer as described in Section 4.2.2.

The main difference with a normal endpoint transfer is that the kernel guarantees that invoking
a reply capability cannot block: If you own a reply capability, then the thread it points to is wait-
ing for a reply. However a reply capability is a non-owning reference, contrary to all the other
capabilities. That means that if the caller thread is destroyed or modified in any way that would
render a reply impossible (for example being suspended with seL4_TCB_Suspend()), the kernel
would immediately destroy the reply capability.

Once the reply capability has been invoked, the caller receives the message as if it has been
performing a seL4_Recv() and just received the message. In particular, it starts running again.

The seL4_Call() operation exists not only for efficiency reasons (combining two operations
into a single system call). It differs from seL4_Send() immediately followed by seL4_Recv() in
ways that allow certain system setup to work much more efficiently with much less setup than
with a traditional setup. In particular, it is guaranteed that the reply received by the caller comes
from the thread that received the call without having to check any kind of badge.

Chapter 5

Notifications

Notifications are a simple, non-blocking signalling mechanism that logically represents a set of
binary semaphores.

5.1 Notification Objects

A Notification object contains a single data word, called the notification word. Such an object
supports two operations: seL4_Signal() and seL4_Wait().

Notification capabilities can be badged, using seL4_CNode_Mint(), just like Endpoint capabilities
(see Section 4.2.1). As with Endpoint capabilities, badged Notification capabilities cannot be un-
badged, rebadged or used to create child capabilities with different badges.

5.2 Signalling, Polling and Waiting

The seL4_Signal() method updates the notification word by bit-wise or-ing it with the badge
of the invoked notification capability. It also unblocks the first thread waiting on the notification
(if any). As such, seL4_Signal()works like concurrently signalling multiple semaphores (those
indicated by the bits set in the badge). If the signal sender capability was unbadged or 0-badged,
the operation degrades to just waking up the first thread waiting on the notification (also see
below).

The seL4_Wait() method works similarly to a select-style wait on the set of semaphores: If
the notification word is zero at the time seL4_Wait() is called, the invoker blocks. Else, the
call returns immediately, setting the notification word to zero and returning to the invoker the
previous notification-word value.

The seL4_Poll() is the same as seL4_Wait(), except if no signals are pending (the notification
word is 0) the call will return immediately without blocking.

If threads are waiting on the Notification object at the time seL4_Signal() is invoked, the first
queued thread receives the notification. All other threads keep waiting until the next time the
notification is signalled.

5.3 Binding Notifications

Notification objects and TCBs can be bound together in a 1-to-1 relationship through the seL4_-
TCB_BindNotification() invocation. When a Notification is bound to a TCB, signals to that no-

22

5.3. BINDING NOTIFICATIONS 23

tification object will be delivered even if the thread is receiving from an IPC endpoint. To distin-
guish whether the received message was a notification or an IPC, developers should check the
badge value. By reserving a specific badge (or range of badges) for capabilities to the bound
notification — distinct from endpoint badges — the message source can be determined.

Once a notification has been bound, the only thread that may perform seL4_Wait() on the noti-
fication is the bound thread.

Chapter 6

Threads and Execution

6.1 Threads

seL4 provides threads to represent an execution context. On MCS configurations of the kernel,
scheduling contexts are used to manage processor time. Without MCS, processor time is also
represented by the thread abstraction. A thread is represented in seL4 by its thread control block
object (TCB).

WithMCS, a scheduling context is represented by a scheduling context object (SCO), and threads
cannot run unless they are bound to, or receive a scheduling context.

6.1.1 Thread control blocks

Each TCB has an associated CSpace (see Chapter 3) and VSpace (see Chapter 7) which may be
shared with other threads. A TCB may also have an IPC buffer (see Chapter 4), which is used to
pass extra arguments during IPC or kernel object invocation that do not fit in the architecture-
defined message registers. While it is not compulsory that a thread has an IPC buffer, it will not
be able to perform most kernel invocations, as they require cap transfer. Each thread belongs
to exactly one security domain (see Section 6.3).

6.1.2 Thread Creation

Like other objects, TCBs are createdwith the seL4_Untyped_Retype()method (see Section 2.4).
A newly created thread is initially inactive. It is configured by setting its CSpace and VSpace
with the seL4_TCB_SetSpace() or seL4_TCB_Configure()methods and then calling seL4_TCB_-
WriteRegisters() with an initial stack pointer and instruction pointer. The thread can then be
activated either by setting the resume_target parameter in the seL4_TCB_WriteRegisters() in-
vocation to true or by separately calling the seL4_TCB_Resume()method. Both of thesemethods
place the thread in a runnable state.

In non-MCS configurations of the kernel, this will result in the thread immediately being added
to the scheduler. On the MCS kernel, the thread will only begin running if it has a scheduling
context object.

In a SMP configuration of the kernel, the thread will resume on the node corresponding to the
affinity of the thread. For non-MCS configurations, the default thread affinity is the node the
thread’s TCB object was created on, and seL4_TCB_SetAffinity() can be used to explicitly set
the affinity. On MCS configurations, the affinity is derived from the scheduling context object
(see Section 6.1.9).

24

6.1. THREADS 25

6.1.3 Thread Deactivation

The seL4_TCB_Suspend() method deactivates a thread. Suspended threads can later be re-
sumed. Their suspended state can be retrievedwith the seL4_TCB_ReadRegisters() and seL4_-
TCB_CopyRegisters() methods. They can also be reconfigured and reused or left suspended
indefinitely if not needed. Threads will be automatically suspended when the last capability to
their TCB is deleted.

6.1.4 Affinity

It is architecture and platform specific, how an affinity valuemaps to a specific node (core, hart)
on a specific platform. There is no guarantee that affinity values are compatible across different
platforms.

6.1.5 Scheduling

seL4 uses a preemptive, tickless scheduler with 256 priority levels (0 — 255). All threads have a
maximum controlled priority (MCP) and a priority, the latter being the effective priority of the
thread. When a thread modifies another thread’s priority (including itself) it must provide a
thread capability from which to use the MCP from. Threads can only set priorities and MCPs
to be less than or equal to the provided thread’s MCP. The initial task starts with an MCP and
priority as the highest priority in the system (seL4_MaxPrio). Thread priority andMCP can be set
with seL4_TCB_SetSchedParams() and seL4_TCB_SetPriority(), seL4_TCB_SetMCPriority()
methods.

Of threads eligible for scheduling, the highest priority thread in a runnable state is chosen.

Thread priority (structure seL4_PrioProps_t) consists of two values as follows:

Priority the priority a thread will be scheduled with.

Maximum controlled priority (MCP) the highest priority a thread can set itself or another thread
to.

6.1.6 MCS Scheduling

This section only applies to configurationswithMCSenabled, where threadsmust have a schedul-
ing context object available in order to be admitted to the scheduler.

6.1.7 Scheduling Contexts

Access to CPU execution time is controlled through scheduling context objects. Scheduling
contexts are configured with a tuple of budget(b) and period (p), both in microseconds, set by
seL4_SchedControl_Configure_Flags() (see Section 6.1.9). The tuple (b, p) forms an upper
bound on the thread’s execution – the kernel will not permit a thread to run for more than b
out of every p microseconds. However, b

p does not represent a lower bound on execution, as a
thread must have the highest or equal highest priority of all runnable threads to be guaranteed
to be scheduled at all, and the kernel does not conduct an admission test. As a result the set
of all parameters is not necessarily schedulable. If multiple threads have budgets available
concurrently they are scheduled first-in first-out, and round-robin scheduling is applied once the
budget is expired.

A scheduling context that is eligible to be picked by the scheduler, i.e has budget available, is
referred to as active. Budget charging and replenishment rules are different for round-robin and

26 CHAPTER 6. THREADS AND EXECUTION

sporadic threads. For round-robin threads, the budget is charged each time the current node’s
scheduling context is changed, until it is depleted and then refilled immediately.

Threads where b == p are treated as round robin threads, where b acts as a timeslice. Oth-
erwise the kernel uses sporadic servers to enforce temporal isolation, which enforce the prop-
erty that b

p cannot be exceeded for all possible p. In theory, sporadic servers provide temporal
isolation – preventing threads from exceeding their allocated budget – by using the following
algorithm:

• When a thread starts executing at current time T , record Ts

• When a thread stops executing (blocks or is preempted), schedule a replenishment at
Ts + p for the amount of time consumed (T − Ts) and subtract that from the current
replenishment being used.

seL4 implements this algorithm by maintaining an ordered list of sporadic replenishments –
refills for brevity – in each scheduling context. Each replenishment contains a tuple of the
time it is eligible for use (rTime) and the amount that replenishment is for (rAmount). While a
thread is executing, it constantly drains the budget from the rAmount at the head of the replen-
ishment list. If the rTime is in the future, the thread bound to that scheduling context is placed
in a queue of threads waiting for more budget.

Round-robin threads are treated that same as sporadic threads except regarding one aspect:
how the budget is charged. Round-robin threads have two refills only, both of which are always
ready to be used. When a round-robin thread stops executing, budget is moved from the head
to the tail replenishment. Once the head budget is consumed, the thread is removed from the
scheduling queue for its priority and appended at the tail.

Sporadic threads behave differently depending on the amount of replenishments available, which
must be bounded. Developers have two options to configure the size of the replenishment list:

• The maximum number of refills in a single scheduling context is determined by the size
of the scheduling context when created by seL4_Untyped_Retype().

• A per scheduling context parameter, extra_refills that limits the number of refills for
that specific scheduling context. This value is added to the base value of 2 and is limited
by the size of the scheduling context.

Threads that have short execution times (e.g interrupt handlers) and are not frequently pre-
empted should have less refills, while longer running threads with long values of b should have
a higher value. Threads bound to a scheduling context with 0 extra refills will run periodically –
tasks that use their head replenishment, or call yield, will not be scheduled again until the start
of their next period.

Given the number of replenishments is limited, if a node’s SC changes and the outgoing SC
does not have enough space to store the new replenishment, space is created by removing
the current replenishment which can result in preemption if the next replenishment is not yet
available. Scheduling contexts with a higher number of configured refills will consume closer to
their whole budget, as they can be preempted and switch threadsmore often without filling their
replenishment queue. However, the scheduling overhead will be higher as the replenishment list
is subject to fragmentation.

Whenever a thread is executing it consumes the budget from its current scheduling context.
The system call seL4_Yield() can be used to sacrifice any remaining budget and block until
the next replenishment is ready to be used.

Threads can be bound to scheduling contexts using seL4_TCB_Configure() or seL4_SchedCon-
text_Bind(), both invocations have the same effect although seL4_TCB_Configure() allows

6.1. THREADS 27

more thread fields to be set with only one kernel entry. When a thread is bound to a scheduling
context, if it is in a runnable state and the scheduling context is active, it will be added to the
scheduler.

6.1.8 Passive Threads

Threads can be unbound from a scheduling context with seL4_SchedContext_UnbindObject().
This is distinct from suspending a thread, in that threads that are blocked waiting in an endpoint
or notification queue will remain in the queue and can still receive messages and signals. How-
ever, the unbound thread will not be schedulable again until it receives a scheduling context.
Threads without scheduling contexts are referred to as passive threads, as they cannot execute
without the action of another thread.

6.1.9 Scheduling Context Creation

Like other objects, scheduling contexts are created from untyped memory using seL4_Untype-
dRetype(). On creation, scheduling contexts are empty, representing 0% of CPU execution time.
To populate a scheduling context with parameters, one must invoke the appropriate SchedCon-
trol capability, which provides access to CPU time management on a single node. A scheduling
control cap for each node is provided to the initial task at run time. Threads run on the node that
their scheduling context is configured for. Scheduling context parameters can then be set and
updated using seL4_SchedControl_ConfigureFlags(), which allows the budget and period to
be specified along with a bitwise OR’d set of the following flags.

seL4_SchedContext_Sporadic : constrain the execution time only according to the sporadic
server algorithm rather than to a continuous constant bandwidth.

The kernel does not conduct any schedulability tests, as task admission is left to user-level
policy and can be conducted online or offline, statically or dynamically or not at all.

6.1.10 Scheduling Context Donation

In addition to explicitly binding and removing scheduling contexts through seL4_SchedCon-
text_Bind() and seL4_SchedContext_UnbindObject(), scheduling contexts canmovebetween
threads over IPC. Scheduling contexts are donated implicitly when the system calls seL4_-
Call() and seL4_NBSendRecv() are used to communicatewith a passive thread. When an active
thread invokes an endpoint with seL4_Call() and rendezvous with a passive thread, the active
thread’s scheduling context is donated to the passive thread. The generated reply cap ensures
that the callee is merely borrowing the scheduling context: when the reply cap is consumed
by a reply message being sent the scheduling context will be returned to the caller. If the re-
ply cap is revoked, and the callee holds the scheduling context, the scheduling context will be
returned to the caller. However, if in a deep call chain and a reply cap in the middle of the call
chain is revoked, such that the callee does not possess the scheduling context, the thread will
be removed from the call chain and the scheduling context will remain where it is. If the re-
ceiver does not provide a reply object to track the donation in (i.e uses seL4_Wait() instead of
seL4_Recv() scheduling context donation will not occur but the message will be delivered. The
passive receiver will be set to inactive as it does not have a scheduling context.

Consider an example where thread A calls thread B which calls thread C. If whilst C holds the
scheduling context, B’s reply cap to A is revoked, then the scheduling context will remain with
C. However, a call chain will remain between A and C, such that if C’s reply cap is revoked, or
invoked, the scheduling context will return to A.

28 CHAPTER 6. THREADS AND EXECUTION

seL4_NBSendRecv() can also result in scheduling context donation. If the non-blocking send
phase of the operation results in message delivery to a passive thread, the scheduling context
will be donated to that passive thread and the thread making the system call becomes pas-
sive on the receiving endpoint in the receive phase. No reply capability is generated, so there
is no guarantee that the scheduling context will return, which increases book keeping com-
plexity but allows for data-flow like architectures rather than remote-procedure calls. Note that
seL4_Call() does not guarantee the return of a scheduling context: this is an inherently trusted
operation as the server could never reply and return the scheduling context.

Scheduling contexts can also bebound to notification objects using seL4_SchedContext_Bind()
and unbound using seL4_SchedContext_UnbindObject(). If a signal is delivered to a notifi-
cation object with a passive thread blocked waiting on it, the passive thread will receive the
scheduling context that is bound to the notification object. The scheduling context is returned
when the thread blocks on the notification object. This feature allows for passive servers to use
notification binding (See Section 5.3). If a scheduling context is bound to both a notification ob-
ject and a thread, the behaviour will be the same as for a passive server: The scheduling context
will be unbound from the thread when it blocks on the bound notification object. This is useful
when launching passive servers or handling timeout exceptions.

Scheduling contexts can be unbound from all objects (notification objects and TCBs that are
bound or have received a scheduling context through donation) using seL4_SchedContext_-
Unbind().

Passive threads will run on the CPU node that the scheduling context was configured with, and
will be migrated on IPC.

6.1.11 Scheduling algorithm

Threads are only eligible for scheduling if they have an active scheduling context. Of threads
eligible for scheduling, the highest priority thread in a runnable state is chosen.

Threads of sufficientmaximumcontrolled priority andwith possession of the appropriate schedul-
ing context capability can manipulate the scheduler and implement user-level schedulers using
IPC.

Scheduling contexts provide access to an upper bound on execution CPU time, however when a
thread executes is determined by thread priority. Consequently, access to CPU is a function of
thread MCPs, scheduling contexts and the SchedControl capability. The kernel will enforce that
threads do not exceed the budget in their scheduling context for any given period, and that the
highest priority thread will always run, however it is up to the system designer to make sure the
entire system is schedulable.

6.1.12 Exceptions

Each thread has two associated exception-handler endpoints, a standard exception handler and
a timeout exception handler, where the latter is MCS only. If the thread causes an exception, the
kernel creates an IPC message with the relevant details and sends this to the endpoint. This
thread can then take the appropriate action. Fault IPC messages are described in Section 6.2.
Standard exception-handler endpoints can be set with the seL4_TCB_SetSpace() or seL4_TCB_-
SetSchedParams() methods while Timeout exception handlers can be set with seL4_TCB_Set-
TimeoutEndpoint() (MCS only). With these methods, a capability address for the exception
handler can be associated with a thread. This address is then used to lookup the handler end-
point, and the capability to the endpoint is installed into the threads’ kernel CNode. For threads

6.1. THREADS 29

without an exception handler, a null capability can be used, however the consequences are dif-
ferent per exception handler type. Before raising an exception the handler capability is validated.
The kernel does not perform another lookup, but checks that the capability is an endpoint with
the correct rights.

The exception endpoint must have Write and either Grant or GrantReply rights. Replying to the
exception message restarts the thread. For certain exception types, the contents of the reply
message may be used to set the values in the registers of the thread being restarted. See Sec-
tion 6.2 for details.

6.1.12.1 Standard Exceptions

The standard exception handler is used when a fault is triggered by a thread which cannot be
recovered without action by another thread. For example, if a thread raises a fault due to an
unmapped virtual memory page, the thread cannot make any more progress until the page is
mapped. If a thread experiences a fault thatwould trigger the standard exception handlerwhile it
is set to a null capability, the kernel will pause the thread and it will not run again. This is because
without action by another thread, standard exceptions cannot be recovered from. Consequently
threads without standard exception handlers should be trusted not to fault at all.

Standard exception handlers can be passive, in which case they will run on the scheduling con-
text of the faulting thread.

6.1.12.2 Timeout Exceptions (MCS Only)

Timeout faults are raised when a thread attempts to run but has no available budget, and if that
thread has a valid timeout exception handler capability. The handling of timeout faults is not
compulsory: if a thread does not have a timeout fault handler, a fault will not be raised and the
thread will continue running when it’s budget is replenished. This allows temporally sensitive
threads to handle budget overruns while other threads may ignore them.

Timeout faults are registered per thread, which means that while clients may not have a time-
out fault handler, servers may, allowing single-threaded, time-sensitive, passive servers to use a
timeout exception handler to recover frommalicious or untrusted clients whose budget expires
while the server is completing the request. Timeout fault handlers can access server reply ob-
jects and reply with an error to the client, then reset the server to handle the next client request.

If a reply message is sent to a nested server and a scheduling context without available budget
returned, another timeout fault will be generated if the nested server also has a timeout fault
handler.

6.1.13 Message Layout of the Read-/Write-Registers Methods

The registers of a thread can be read and written with the seL4_TCB_ReadRegisters() and
seL4_TCB_WriteRegisters()methods. For some registers, the kernel will silently mask certain
bits or ranges of bits off, and force them to contain certain values to ensure that they cannot be
maliciously set to values that would compromise the running system, or to respect values that
the architecture specifications have mandated to be certain values. The register contents are
transferred via the IPC buffer.

30 CHAPTER 6. THREADS AND EXECUTION

6.2 Faults

A thread’s actions may result in a fault. Faults are delivered to the thread’s exception handler
so that it can take the appropriate action. The fault type is specified in the message label and
is one of:

• seL4_Fault_CapFault

• seL4_Fault_VMFault

• seL4_Fault_UnknownSyscall

• seL4_Fault_UserException

• seL4_Fault_TimeoutFault

• seL4_Fault_NullFault (indicating no fault occurred and this is a normal IPC message)

• seL4_Fault_VGICMaintenence

• seL4_Fault_VPPIEvent

• seL4_Fault_VCPUFault

• seL4_Fault_DebugException

Faults are delivered in such a way as to imitate a Call from the faulting thread. This means
that to send a fault message the fault endpoint must have Write and either Grant or GrantRe-
ply permissions. If this is not the case, a double fault happens (generally the thread is simply
suspended).

6.2.1 Capability Faults

Capability faults may occur in two places. Firstly, a capability fault can occur when lookup of a
capability referenced by a seL4_Call() or seL4_Send() system call failed (seL4_NBSend() calls
on invalid capabilities silently fail). In this case, the capability on which the fault occurred may
be the capability being invoked or an extra capability passed in the caps field in the IPC buffer.

Secondly, a capability fault can occur when seL4_Recv() or seL4_NBRecv() is called on a capa-
bility that does not exist, is not an endpoint or notification capability or does not have receive
permissions.

Replying to the fault IPC will restart the faulting thread. The contents of the IPC message are
given in Table 6.1.

Meaning IPC buffer location

Address at which to restart execution seL4_CapFault_IP
Capability address seL4_CapFault_Addr
In receive phase (1 if the fault happened dur-
ing a receive system call, 0 otherwise)

seL4_CapFault_InRecvPhase

Lookup failure description. As described in
Section 3.4

seL4_CapFault_LookupFailureType

Table 6.1: Contents of an IPC message.

6.2. FAULTS 31

6.2.2 Unknown Syscall

This fault occurs when a thread executes a system call with a syscall number that is unknown
to seL4. The register set of the faulting thread is passed to the thread’s exception handler so
that it may, for example, emulate the system call if a thread is being virtualised.

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register set to be
modified. If the reply has a label of zero, the thread will be restarted. Additionally, if themessage
length is non-zero, the faulting thread’s register set will be updated. In this case, the number of
registers updated is controlled with the length field of the message tag.

6.2.3 User Exception

User exceptions are used to deliver architecture-defined exceptions. For example, such an ex-
ception could occur if a user thread attempted to divide a number by zero.

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register set to be
modified. If the reply has a label of zero, the thread will be restarted. Additionally, if themessage
length is non-zero, the faulting thread’s register set will be updated. In this case, the number of
registers updated is controlled with the length field of the message tag.

6.2.4 Debug Exception: Breakpoints and Watchpoints

Debug exceptions are used to deliver trace and debug related events to threads. Breakpoints,
watchpoints, trace-events and instruction-performance sampling events are examples. These
events are supported for userspace threadswhen the kernel is configured to include them (when
CONFIG_HARDWARE_DEBUG_API is set). The hardware debugging extensions API is supported
on the following subset of the platforms that the kernel has been ported to:

• PC99: IA-32 and x86_64

• Sabrelite (i.MX6)

• Jetson TegraK1

• HiSilicon Hikey

• Raspberry Pi 3

• Odroid-X (Exynos4)

• Xilinx zynq7000

Information on the available hardware debugging resources is presented in the form of the fol-
lowing constants:

seL4_NumHWBreakpoints : Defines the total number of hardware break registers available, of
all types available on the hardware platform. On the Arm Cortex A7 for example, there are
6 exclusive instruction breakpoint registers, and 4 exclusive data watchpoint registers,
for a total of 10 monitor registers. On this platform therefore, seL4_NumHWBreakpoints
is defined as 10. The instruction breakpoint registers will always be assigned the lower
API-IDs, and the data watchpoints will always be assigned following them.

Additionally, seL4_NumExclusiveBreakpoints, seL4_NumExclusiveWatchpoints and seL4_-
NumDualFunctionMonitors are defined for each target platform to reflect the number of
available hardware breakpoints/watchpoints of a certain type.

seL4_NumExclusiveBreakpoints : Defines the number of hardware registers capable of gener-
ating a fault only on instruction execution. Currently this will be set only on Arm platforms.

32 CHAPTER 6. THREADS AND EXECUTION

The API-ID of the first exclusive breakpoint is given in seL4_FirstBreakpoint. If there are
no instruction-break exclusive registers, seL4_NumExclusiveBreakpoints will be set to 0
and seL4_FirstBreakpoint will be set to -1.

seL4_NumExclusiveWatchpoints : Defines the number of hardware registers capable of gen-
erating a fault only on data access. Currently this will be set only on Arm platforms. The
API-ID of the first exclusive watchpoint is given in seL4_FirstWatchpoint. If there are
no data-break exclusive registers, seL4_NumExclusiveWatchpoints will be set to 0 and
seL4_FirstWatchpoint will be set to -1.

seL4_NumDualFunctionMonitors : Defines the number of hardware registers capable of gener-
ating a fault on either type of access – i.e, the register supports both instruction and data
breaks. Currently thiswill be set only on x86 platforms. TheAPI-ID of the first dual-function
monitor is given in seL4_FirstDualFunctionMonitor. If there are no dual-function break
registers, seL4_NumDualFunctionMonitorswill be set to 0 and seL4_FirstDualFunction-
Monitor will be set to -1.

Value sent IPC buffer location

Breakpoint instruction address IPCBuffer[0]
Exception reason IPCBuffer[1]
Watchpoint data access address IPCBuffer[2]
Register API-ID IPCBuffer[3]

Table 6.2: Debug fault message layout. The register API-ID is not returned in
the fault message from the kernel on single-step faults.

6.2.5 Debug Exception: Single-stepping

The kernel provides support for the use of hardware single-stepping of userspace threads when
configured to do so (when CONFIG_HARDWARE_DEBUG_API is set). To this end it exposes the
invocation, seL4_TCB_ConfigureSingleStepping.

The caller is expected to select an API-ID that corresponds to an instruction breakpoint, to use
when setting up the single-stepping functionality (i.e, API-ID from 0 to seL4_NumExclusive-
Breakpoints - 1). However, not all hardware platforms require an actual hardware breakpoint
register to provide single-stepping functionality. If the caller’s hardware platform requires the
use of a hardware breakpoint register, it will use the breakpoint register given to it in bp_num, and
return true in bp_was_consumed. If the underlying platform does not need a hardware break-
point to provide single-stepping, seL4 will return false in bp_was_consumed and leave bp_num
unchanged.

If bp_was_consumed is true, the caller should not attempt to re-configure bp_num for Breakpoint
or Watchpoint usage until the caller has disabled single-stepping and released that register, via
a subsequent call to seL4_TCB_ConfigureSingleStepping, or a fault-reply with n_instr being
0. Setting num_instructions to 0 disables single stepping.

On architectures that require an actual hardware registers to be configured for single-stepping
functionality, seL4will restrict the number of registers that can be configured as single-steppers,
to one at any given time. The register that is currently configured (if any) for single-stepping will
be the implicit bp_num argument in a single-step debug fault reply.

The kernel’s single-stepping, also supports executing a certain number of instructions before
delivering the single-step fault message. Num_instructions should be set to 1 when single-

6.2. FAULTS 33

stepping, or any non-zero integer value to execute thatmany instructions before resuming single-
stepping. This execution-count can also be set in the fault-reply to a single-step debug fault.

Value sent Register set by reply IPC buffer location

Breakpoint instruction
address

num_instructions to exe-
cute

IPCBuffer[0]

Exception reason — IPCBuffer[1]

Table 6.3: Single-step fault message layout.

6.2.6 Timeout Fault (MCS only)

Timeout faults are raised when a thread consumes all of its budget and has a timeout fault
handler that is not a null capability. They allow a timeout exception handler to take some action
to restore the thread, and deliver a message containing the scheduling context data word, as
well as the amount of time consumed since the last timeout fault occurred on this scheduling
context, or since seL4_SchedContext_YieldTo() or seL4_SchedContext_Consumed() was last
called. Timeout exception handlers can reply to a temporal fault with the registers set in the
same format as outlined in Section 6.1.13.

Meaning IPC buffer location

Dataword from the scheduling context object
that the thread was running on when the fault
occurred.

seL4_TimeoutFault_Data

Upper 32-bits of microseconds consumed
since last reset

seL4_TimeoutFault_Consumed

Lower 32-bits of microseconds consumed
since last reset

seL4_TimeoutFault_Consumed_LowBits

Table 6.4: Timeout fault outcome on 32-bit architectures.

6.2.7 VM Fault

The thread caused a page fault. Replying to the fault IPC will restart the thread. The contents
of the IPC message are given below.

Meaning IPC buffer location

Program counter to restart execution at. seL4_VMFault_IP
Address that caused the fault. seL4_VMFault_Addr
Instruction fault (1 if the fault was caused by
an instruction fetch).

seL4_VMFault_PrefetchFault

Fault status register (FSR). Contains informa-
tion about the cause of the fault. Architecture
dependent.

seL4_VMFault_FSR

Table 6.5: VM Fault outcome on all architectures.

34 CHAPTER 6. THREADS AND EXECUTION

6.2.8 Arm Virtualisation Faults

Arm with hypervisor support enabled can generate additional exceptions, see Section 6.4.1.
Replying to the fault IPC will restart the VCPU thread. The contents of the IPC messages are
given below.

Meaning IPC buffer location

List Register index, -1 when unknown. seL4_VGICMaintenance_IDX

Table 6.6: seL4_Fault_VGICMaintenance.

Meaning IPC buffer location

Virtual PPI IRQ number. seL4_VPPIEvent_IRQ

Table 6.7: seL4_Fault_VPPIEvent.

Meaning IPC buffer location

Register value of HSR for aarch32 and ESR
for aarch64.

seL4_VCPUFault_HSR

Table 6.8: seL4_Fault_VCPUFault.

6.3 Domains

Domains are used to isolate independent subsystems, so as to limit information flow between
them. The kernel switches between domains according to a fixed, time-triggered schedule. The
fixed schedule is compiled into the kernel via the constant CONFIG_NUM_DOMAINS and the global
variable ksDomSchedule.

A thread belongs to exactly one domain, andwill only runwhen that domain is active. The seL4_-
DomainSet_Set() method changes the domain of a thread. The caller must possess a Domain
cap and the thread’s TCB cap. The initial thread starts with a Domain cap (see Section 4.1).

6.4 Virtualisation

Hardware execution virtualisation is supported on specific armand x86 platforms. The interface
is exposed through a series of kernel objects, invocations and syscalls that allow the user to take
advantage of hardware virtualisation features.

Hardware virtualisation allows for a thread to perform instructions and operations as if it were
running at a higher privilege level. As higher privilege levels typically have access to additional
machine registers and other pieces of state a VCPU object is introduced to act as storage for this
state. For simplicity we refer to this virtualised higher privileged level as ’guest mode’. VCPUs
are bound in a one-to-one relationship with a TCB in order to provide a thread with this ability to
run in higher privilege mode. See the section on Arm or x86 for more precise details.

VCPU objects also have additional, architecture specific, invocations for manipulating the addi-
tional state or other virtualisation controls provided by the hardware. Binding of a VCPU to a TCB
is done by an invocation on the VCPU only, and not the TCB.

6.4. VIRTUALISATION 35

The provided objects and invocations are, generally speaking, the thinnest possible shim over
the underlying hardware primitives and operations. As a result an in depth familiarity with the
underlying architecture specific hardware mechanisms is required to use these objects, and
such familiarity is therefore assumed in description.

6.4.1 Arm

When a TCB has a bound VCPU it will have access to (virtualised) system registers, cache and
TLBmaintenance instructions and be able to handle some exceptions itself. The virtual GIC will
be enabled, allowing virtual interrupt delivery.

The virtualised system registers can be modified with seL4_ARM_VCPU_WriteRegs(). By config-
uring the mode portion of the SPSR_EL1 or cpsr register, for ARMv8 and ARMv7 respectively, the
thread can run in guest kernel mode.

Interrupts are virtualised through the virtual GIC and need to be forwarded with seL4_ARM_-
VCPU_InjectIRQ(), which provides a way tomanage Virtual GIC List Registers, a queue of pend-
ing IRQs to be delivered to the guest. To help withmanaging the list, the Virtual GIC will send GIC
maintenance interrupts, which are delivered as VGIC Maintenance Faults. List Register state is
saved and restored on VCPU context switch, but there is currently no way to do that manually.

Shared Peripheral Interrupts (SPIs) can be handled like any normal IRQs and forwarded as re-
quired.

Virtual Private Peripheral Interrupts (PPI) are trapped and delivered as VPPI Event faults and
need to be acknowledged with seL4_ARM_VCPU_AckVPPI().

In addition to the above and standard exceptions, others are delivered as VCPU Faults.

Stage 2 translation is enabled when the kernel supports virtualisation. VCPUs will have control
over stage 1 translations and stage 2 translations will be used for the rest of the system. As
stage 2 translations use VMIDs instead of ASIDs to distinguish address spaces, VMIDs will be
used to implement seL4 ASIDs. Practically this means that there is an ASID limit of 256 for all
threads, until 16-bit VMIDs are supported. If more ASIDs are needed, ASIDs will be dynamically
re-used, with the associated cache flushing and slowdowns.

6.4.2 x86

A TCB with a bound VCPU has two execution modes; one is the original thread just as if there
was no bound VCPU, and the other is the guest mode execution using the VCPU. Switching from
regular execution mode into the guest execution mode is done by using the seL4_VMEnter()
syscall. Executing this syscall causes the thread, whenever it is scheduled thereafter, to exe-
cute using the higher privilegedmode controlled by the VCPU. Should the guest execution mode
generate any kind of fault, or if a message arrives on the TCBs bound notification, the TCB will
be switched back to regular mode and the seL4_VMEnter() syscall will return with a message
indicating the reason for return.

VCPU state and execution is controlled through the seL4_VCPU_ReadVMCS() and seL4_VCPU_-
WriteVMCS() invocations. These are very thinwrappers around the hardware vmread and vmwrite
instructions and the kernelmerely does enough validation on the parameters to ensure the VCPU
is not configured to run in such a way as to violate any kernel properties. For example, it is not
possible to disable the use of External Interrupt Exiting, as this would prevent the kernel from
receiving timer interrupts and allow the thread to monopolise CPU time.

Memory access of the guest execution mode is controlled by requiring the use of Extended
Page Tables (EPT). A series of EPT related paging structure objects (EPTPML4, EPTPDPT, EPTPD,

36 CHAPTER 6. THREADS AND EXECUTION

EPTPT) exist and are manipulated in exactly the same manner as the objects for the regular
virtual address space. Once constructed a TCB can be given an EPTPML4 as an EPT root with
seL4_TCB_SetEPTRoot(), which serves as the VSpace root when executing in guest mode, with
the VSpace root set with seL4_TCB_SetSpace() or seL4_TCB_Configure() continuing to provide
translation when the TCB is executing in its normal mode.

Direct access to I/O ports can be given to the privileged executionmode through the seL4_X86_-
VCPU_EnableIOPort() invocation and allows the provided I/O port capability to be linked to the
VCPU, and a subset of its I/O port range to be made accessible to the VCPU. Linking means that
an I/O port capability can only be used in a single seL4_X86_VCPU_EnableIOPort() invocation
and a second invocation will undo the previous one. The link also means that if the I/O port
capability is deleted for any reason the access will be correspondingly removed from the VCPU.

Chapter 7

Address Spaces and Virtual Memory

A virtual address space in seL4 is called a VSpace. Similarly to a CSpace (see Chapter 3), a
VSpace is composed of objects provided by the kernel. Unlike CSpaces, objects for managing
virtual memory correspond to those of the hardware and each architecture defines its own ob-
ject types for paging structures. Also unlike CSpaces, we call only the top-level paging structure
a VSpace object. It provides the top-level authority to the VSpace.

Common to all architectures is the Frame, representing a frame of physical memory. Frame ob-
jects aremanipulated via Page capabilities, which represents both authority to the frame, as well
as to the virtual memory mapping, i.e. the page, when mapped. The kernel also provides ASID
Pool objects and ASID Control invocations for tracking the status of address space identifiers for
VSpaces.

These VSpace-related objects are sufficient to implement the hardware data structures required
to create, manipulate, and destroy virtual memory address spaces. As usual, the manipulator
of a virtual memory space needs the appropriate capabilities to the required objects.

7.1 Objects

7.1.1 Hardware Virtual Memory Objects

Each architecture has a top-level paging structure (level 0) and a number of intermediate levels.
When referring to it generically, we call this top-level paging structure the VSpace object. The
seL4 object type that implements the VSpace object is architecture dependent. For instance on
AArch32, a VSpace is represented by the PageDirectory object and on x64 by a PML4 object.

In general, each paging structure at each level contains slots where either the next level paging
structure or a frame of memory can be mapped. The level of the paging structure determines
the size of the frame. The size and type of structure at each level, and the number of bits in the
virtual address resolved for that level are hardware defined.

The seL4 kernel provides methods for operating on these hardware paging structures including
mapping and cache operations. Mapping operations are invoked on the capability to the object
being mapped. For example, to map a level 2 paging structure at a specific virtual address,
we can invoke the map operation on the capability to the level 2 object and provide the virtual
address as well as the capability to the level 1 object as arguments.

If the previous level (level 1 in the example) is not itself already mapped, the mapping operation
will fail. Developers need to create and map all paging structures, the kernel does not automat-
ically create intermediate levels.

37

38 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

In general, the VSpace object (the top-level paging structure) has no invocations for mapping,
but is used as an argument to several other virtual-memory related object invocations. For some
architectures, the VSpace object provides cache operation invocations. This allows simpler
policy options: a process that has delegated a VSpace capability (e.g. to a page directory on
AArch32) can conduct cache operations on all frames mapped from that capability without
needing access to those capabilities directly.

The rest of this section details the paging structures for each architecture.

7.1.1.1 IA-32

On IA-32, the VSpace object is implemented by the PageDirectory object, which covers the entire
4GiB range in the 32-bit address space, and forms the top-level paging structure. Second level
page-tables (PageTable objects) each cover a 4MiB range. Structures at both levels are indexed
by 10 bits in the virtual address.

Object Address Bits Level Methods

PageDirectory 22—31 0 Section 10.4.12
PageTable 12—21 1 Section 10.4.13

7.1.1.2 x64

On x86-64, the VSpace object is implemented by the PML4 object. Three further levels of paging
structure are defined, as shown in the table below. All structures are indexed by 9 bits of the
virtual address.

Object Address Bits Level Methods

PML4 39—47 0 None
PDPT 30—38 1 Section 10.6.1
PageDirectory 21—29 2 Section 10.4.12
PageTable 12—20 3 Section 10.4.13

7.1.1.3 AArch32

Like IA-32, ArmAArch32 implements the VSpace object with a PageDirectory object which covers
the entire 4GiB address range. The second-level structures on AArch32 are PageTable objects.
The address range they cover is configuration-dependent: 1MiB (20 address bits) for standard
configurations, and 2MiB (21 address bits) for hypervisor configurations.

Object Address Bits Level Methods

PageDirectory 20—31 0 Section 10.8.1
PageTable 12—19 1 Section 10.7.7

Object Address Bits Level Methods

PageDirectory (hyp) 21—31 0 Section 10.8.1
PageTable (hyp) 12—20 1 Section 10.7.7

7.1.1.4 AArch64

Depending on configuration, Arm AArch64 processors have page-table structures with 3 or 4
levels. The VSpace object is seL4_ARM_VSpaceObject, which is a distinct object type used for

7.1. OBJECTS 39

the top level page table. All intermediate paging structures are indexed by 9 bits of the virtual
address and are PageTable objects. Depending on configuration, the top-level object is indexed
by either 9 or 10 bits. The macro seL4_VSpaceIndexBits makes this value available under a
generic name. The table below shows the four-level configuration.

Object Address Bits Level Methods

seL4_ARM_VSpaceObject 39—47 0 Section 10.9.2
PageTable 30—38 1 Section 10.7.7
PageTable 21—29 2 Section 10.7.7
PageTable 12—20 3 Section 10.7.7

7.1.2 RISC-V

RISC-V provides the same paging structure for all levels, PageTable. This means the VSpace
object is here also implemented by the PageTable object.

7.1.2.1 RISC-V 32-bit

32-bit RISC-V PageTables are indexed by 10 bits of virtual address.

Object Address Bits Level Methods

PageTable 22—31 0 Section 10.10.6
PageTable 12—21 1 Section 10.10.6

7.1.2.2 RISC-V 64-bit

64-bit RISC-V follows the SV39model, where PageTables are indexed by 9 bits of virtual address.
Although RISC-V allows for multiple different numbers of paging levels, currently seL4 only sup-
ports exactly three levels of paging structures.

Object Address Bits Level Methods

PageTable 30—38 0 Section 10.10.6
PageTable 21—29 1 Section 10.10.6
PageTable 12—20 2 Section 10.10.6

7.1.3 Page

Frame objects, used via Page capabilities, correspond to frames of physical memory that are
used to implement virtual memory pages in a virtual address space.

The virtual address for a Page mapping must be aligned to the size of the Page and must be
mapped into a suitable paging structure object, which itself must already be mapped in.

To map a page readable, the corresponding Page capability must have read permissions. To
map the page writeable, the capability must have write permissions. The requested mapping
permissions are specified with an argument of type seL4_CapRights given to the mapping invo-
cation. If the capability does not have sufficient permissions to authorise the givenmapping, the
mapping permissions are silently downgraded. Specificmapping permissions are dependent on
the architecture and are documented in the Chapter 10 for each function. On all architectures,
mapping a page write-only will result in an inaccessible page.

40 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

At minimum, each architecture defines Map, Unmap and GetAddress methods for pages. Invoca-
tions for page capabilities for each architecture can be found in the Chapter 10, and are indexed
per architecture in the table below.

Architectures Methods

IA32, X64 Section 10.4.11
AArch32, AArch64 Section 10.7.6
RISC-V Section 10.10.5

Each architecture also defines a range of page sizes. In the next section we show the available
page sizes, aswell as themapping level, which refers to the level of the paging structure at which
this page must be mapped.

7.1.3.1 AArch32 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 64KiB 1
seL4_SectionBits 1MiB 0
seL4_SuperSectionBits 16MiB 0

Mappings for sections and super sections consume 16 slots in the page table and page directory
respectively.

7.1.3.2 AArch64 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 3
seL4_LargePageBits 2MiB 2
seL4_HugePageBits 1GiB 1

7.1.3.3 IA-32 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 4MiB 0

7.1.3.4 X64 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 3
seL4_LargePageBits 2MiB 2
seL4_HugePageBits 1GiB 1

7.1.3.5 RISC-V 32-bit page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 4MiB 0

7.2. MAPPING ATTRIBUTES 41

7.1.3.6 RISC-V 64-bit page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 2
seL4_LargePageBits 2MiB 1
seL4_HugePageBits 1GiB 0

7.1.4 ASID Control

The kernel supports a fixed maximum number of address space identifiers (ASIDs), which is
architecture dependent. In order to manage this limited resource, seL4 provides an ASID Control
capability. The ASID Control capability can be used together with an Untyped capability to create
ASID pool objects and capabilities, which authorise the use of a subset of available address
space identifiers. ASID Control has a single MakePool method for each architecture, listed in the
table below.

Architectures Methods

IA32, X64 Section 10.4.3
AArch32, AArch64 Section 10.7.1
RISC-V Section 10.10.3

7.1.5 ASID Pool

An ASID Pool confers the right to use a subset of the globally available address space identifiers.
The size of this subset is architecture dependent. For a VSpace object to be usable by a thread,
it must be assigned to an ASID via an ASID Pool capability. Each ASID can be assigned to atmost
one VSpace. The ASID Pool capability has a single invocation, Assign, for each architecture.

Architectures Methods

IA32, X64 Section 10.4.4
AArch32, AArch64 Section 10.7.2
RISC-V Section 10.10.4

7.2 Mapping Attributes

A parameter of type seL4_ARM_VMAttributes, seL4_x86_VMAttributes , or seL4_RISCV_VMAt-
tributes is used to specify the cache behaviour of the page being mapped. Possible values for
Arm that can be bitwise OR’d together are shown in Table 7.1 . An enumeration of valid values
for IA-32 and x64 are shown in Table 7.2. Possible values for RISC-V that can be bitwise OR’d
together are shown in Table 7.3. Mapping attributes can be updated on existingmappings using
the Map invocation with the same virtual address.

Attribute Meaning

seL4_ARM_PageCacheable Enable data in this mapping to be cached
seL4_ARM_ParityEnabled Enable parity checking for this mapping (ignored on

AArch64)
seL4_ARM_ExecuteNever Map this memory as non-executable

Table 7.1: Virtual memory attributes for Arm page table entries.

42 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

Attribute Meaning

seL4_x86_WriteBack Read and writes are cached
seL4_x86_CacheDisabled Prevent data in this mapping from being cached
seL4_x86_WriteThrough Enable write through caching for this mapping
seL4_x86_WriteCombining Enable write combining for this mapping

Table 7.2: Virtual memory attributes for x86 page table entries.

Attribute Meaning

seL4_RISCV_ExecuteNever Map this memory as non-executable

Table 7.3: Virtual memory attributes for RISC-V page table entries.

7.3 Sharing Memory

The seL4 kernel does not allow intermediate paging structures (e.g. PageTable objects) to be
shared, but it does allow pages to be shared between VSpaces, and VSpaces to be shared by
threads.

To share a page, the capability to the Pagemust first be duplicated using the seL4_CNode_Copy()
method and the copymust be used in the Map invocation (e.g. seL4_ARM_Page_Map() or seL4_-
x86_Page_Map()) that maps the page into the second address space. Attempting to map the
same capability twice in different page tables or address spaces will result in an error.

7.4 Page Faults

Page faults are reported to the exception handler of the executed thread. See Section 6.2.7.

Chapter 8

Hardware I/O

8.1 Interrupt Delivery

Interrupts are delivered as notifications. A thread may configure the kernel to signal a particular
Notification object each time a certain interrupt triggers. Threads may then wait for interrupts to
occur by calling seL4_Wait() or seL4_Poll() on that Notification.

IRQHandler capabilities represent the ability of a thread to configure a certain interrupt. They
have three methods:

seL4_IRQHandler_SetNotification() specifies theNotification the kernel should signal()when
an interrupt occurs. A drivermay then call seL4_Wait() or seL4_Poll() on this notification
to wait for interrupts to arrive.

seL4_IRQHandler_Ack() informs the kernel that the userspace driver has finished processing
the interrupt and the kernel can send further pending or new interrupts to the application.

seL4_IRQHandler_Clear() de-registers the Notification from the IRQHandler object.

When the system first starts, no IRQHandler capabilities are present. Instead, the initial thread’s
CSpace contains a single IRQControl capability. This capability may be used to produce a single
IRQHandler capability for each interrupt available in the system. Typically, the initial thread of
a system will determine which IRQs are required by other components in the system, produce
an IRQHandler capability for each interrupt, and then delegate the resulting capabilities as ap-
propriate. Methods on IRQControl can be used for creating IRQHandler capabilities for interrupt
sources.

8.2 x86-Specific I/O

8.2.1 Interrupts

In addition to managing IRQHandler capabilities, x86 platforms require the delivery location in
the CPU vectors to be configured. Regardless of where an interrupt comes from (IOAPIC, MSI,
etc) it must be assigned a unique vector for delivery, ranging from VECTOR_MIN to VECTOR_-
MAX. The rights to allocate a vector are effectively given through the IRQControl capability and
can be considered as the kernel outsourcing the allocation of this namespace to user level.

seL4_IRQControl_GetIOAPIC() creates an IRQHandler capability for an IOAPIC interrupt

seL4_IRQControl_GetMSI() creates an IRQHandler capability for an MSI interrupt

43

44 CHAPTER 8. HARDWARE I/O

8.2.2 I/O Ports

On x86 platforms, seL4 provides access to I/O ports to user-level threads. Access to I/O ports
is controlled by IO Port capabilities. Each IO Port capability identifies a range of ports that can
be accessed with it. Reading from I/O ports is accomplished with the seL4_X86_IOPort_In8(),
seL4_X86_IOPort_In16(), and seL4_X86_IOPort_In32() methods, which allow for reading of
8-, 16- and 32-bit quantities. Similarly, writing to I/O ports is accomplished with the seL4_X86_-
IOPort_Out8(), seL4_X86_IOPort_Out16(), and seL4_X86_IOPort_Out32() methods. Each of
these methods takes as arguments an IO Port capability and an unsigned integer port, which
indicates the I/O port to read from or write to, respectively. In each case, portmust be within the
range of I/O ports identified by the given IO Port capability in order for the method to succeed.

The I/O port methods return error codes upon failure. A seL4_IllegalOperation code is re-
turned if port access is attempted outside the range allowed by the IO Port capability. Since
invocations that read from I/O ports are required to return two values – the value read and the
error code – a structure containing twomembers, result and error, is returned from these API
calls.

At system initialisation, the initial thread’s CSpace contains the IOPortControl capability, which
can be used to seL4_X86_IOPort_Issue() IO Port capabilities to sub ranges of I/O ports. Any
range that is issued may not have overlap with any existing issued IO Port capability.

8.2.3 I/O Space

I/O devices capable of DMA present a security risk because the CPU’s MMU is bypassed when
the device accesses memory. In seL4, device drivers run in user space to keep them out of the
trusted computing base. A malicious or buggy device driver may, however, program the device
to access or corrupt memory that is not part of its address space, thus subverting security. To
mitigate this threat, seL4 provides support for the IOMMU on Intel x86-based platforms. An
IOMMU allows memory to be remapped from the device’s point of view. It acts as an MMU for
the device, restricting the regions of system memory that it can access. More information can
be obtained from Intel’s IOMMU documentation [Intel Corporation, 2011].

Two new objects are provided by the kernel to abstract the IOMMU:

IOSpace This object represents the address space associated with a hardware device on the
PCI bus. It represents the right to modify a device’s memory mappings.

IOPageTable This object represents a node in themultilevel page-table structure used by IOMMU
hardware to translate hardware memory accesses.

Page capabilities are used to represent the actual frames that are mapped into the I/O address
space. A Page can bemapped into either a VSpace or an IOSpace but never into both at the same
time.

IOSpace and VSpace fault handling differ significantly. VSpace page faults are redirected to the
thread’s exception handler (see Section 6.2), which can take the appropriate action and restart
the thread at the faulting instruction. There is no concept of an exception handler for an IOSpace.
Instead, faulting transactions are simply aborted; the device drivermust correct the cause of the
fault and retry the DMA transaction.

An initial master IOSpace capability is provided in the initial thread’s CSpace. An IOSpace capa-
bility for a specific device is created by using the seL4_CNode_Mint() method, passing the PCI
identifier of the device as the low 16 bits of the badge argument, and a Domain ID as the high 16
bits of the badge argument. PCI identifiers are explained fully in the PCI specification [Shanley
and Anderson, 1999], but are briefly described here. A PCI identifier is a 16-bit quantity. The first

8.3. ARM-SPECIFIC I/O 45

8 bits identify the bus that the device is on. The next 5 bits are the device identifier: the number
of the device on the bus. The last 3 bits are the function number. A single device may consist
of several independent functions, each of which may be addressed by the PCI identifier. Do-
main IDs are explained fully in the Intel IOMMU documentation [Intel Corporation, 2011]. There
is presently no way to query seL4 for how many Domain IDs are supported by the IOMMU and
the seL4_CNode_Mint() method will fail if an unsupported value is chosen.

The IOMMU page-table structure has three levels. Page tables are mapped into an IOSpace us-
ing the seL4_X86_IOPageTable_Map() method. This method takes the IOPageTable to map, the
IOSpace to map into and the address to map at. Three levels of page tables must be mapped
before a frame can be mapped successfully. A frame is mapped with the seL4_X86_Page_Ma-
pIO()method whose parameters are analogous to the corresponding method that maps Pages
into VSpaces (see Chapter 7), namely seL4_X86_Page_Map().

Unmapping is accomplished with the usual unmap (see Chapter 7) API call, seL4_X86_Page_-
Unmap().

More information about seL4’s IOMMU abstractions can be found in [Palande, 2009].

8.3 Arm-Specific I/O

8.3.1 Arm SMMU version 2.0

seL4 provides an API for programming the Arm SystemMMU (SMMU) version 2.0, which allows
system software to manage access rights and address translation for devices that can initiate
direct memory accesses (DMA).

An Arm SMMU v2.0 implementation allows device memory transactions to be associated with
an identifier (StreamID) that is used to direct the transaction through aSMMU translation context
bank (CB). A translation context bank can perform address translation, memory protection and
memory attribute transformation. The standard specifies different types of address translations
that correspond to stages in the ArmV8 virtual memory system architecture such as either non-
secure EL0, EL1 first and second stage translations, Hyp mode translations or secure mode
translations. It is possible to associate different StreamIDs with the same context bank and
it is possible to share address translation tables between a context bank and software MMU
address space if the stage and type of translation is the same.

Faults that occur when a memory transaction conflicts with a StreamID or CB configuration
happen asynchronously with respect to a processor element’s execution. When this occurs an
interrupt is used to allow a PE to handle the SMMU fault. Faults are reported through registers
in the SMMU that can be queried in an interrupt handler.

TLB maintenance operations are required to keep SMMU translation caches consistent when
there are changes to any valid page table mapping entries.

An SMMU implementation usually has a maximum number of StreamIDs that it supports. The
specification allows StreamIDs to be up to 16bits wide. There are also a fixed number of context
banks, up to a maximum of 128. Context banks can be generic or support only a single address
translation stage. This information is reported by ID registers in each implementation.

The seL4 API allows system software to manage an SMMU by assigning StreamIDs to context
banks, bind context banks to page translation structures, implement SMMU fault handling and
also perform explicit TLB maintenance. This allows system software to ensure that a device is
only able to access and modify memory contents that it has been explicitly given access to and
allow devices to be presented with a virtualised address space for performing DMA.

46 CHAPTER 8. HARDWARE I/O

All the StreamIDs and context banks are accessible via capabilities. Control capabilities are
used to create capabilities referring to each StreamID and context bank in a system. The kernel
tracks the allocation of StreamIDs and context banks with two static CNodes, one for each
resource type. These CNodes track which VSpace a context bank has bound to it, and which
context bank a StreamID is bound to.

The capabilities allowaccess control policies to be implemented by a user thread. WhenStreamID
or context bank capabilities are revoked, the kernel will disable the context banks or StreamID
mappings.

TLB maintenance is handled by the kernel via tracking which context banks are associated with
a particular VSpace. Any TLB maintenance operations that the kernel performs on VSpace in-
vocations are also applied to associated context banks.

SMMU fault handling is delegated to user level via invocations that allow fault statuses to be
queried and cleared for each context bank and for the SMMU globally. SMMU fault interrupts
can be handled the same as other platform level interrupts.

The kernel implementation only uses translation stages matching what translation the kernel
is performing for VSpace objects. When seL4 is operating in EL1, the SMMU only uses stage
1 translation (ASID), that is "stage 1 with stage 2 bypass" in the context bank attribute config-
uration. When hypervisor mode is enabled, and seL4 is operating in EL2, the SMMU only does
stage 2 translations.

Four capabilities types provide access to SMMU resources:

seL4_ARM_SID A capability granting access to a single transaction stream, which can be used
to bind and unbind a stream to a single context bank.

seL4_ARM_CB A capability representing a single specific context bank. It can be used to bind
and unbind a VSpace to assign what page tables the context bank should use for transla-
tion, assign StreamIDs and process context bank faults.

seL4_ARM_SIDControl A control capability which can be used to create seL4_ARM_SID capabili-
ties to specific transaction streams. The seL4_ARM_SIDControl cap is used for managing
rights on StreamID configurations. This capability is provided in the initial thread’s CSpace.

seL4_ARM_CBControl A control capability that can be used to derive seL4_ARM_CB capabilities.
The seL4_ARM_CBControl cap is used for managing rights on context bank configurations.
This capability is provided in the initial thread’s CSpace.

8.3.1.1 Creating seL4_ARM_SID capabilities

TheArmSMMU2.0 specification doesn’t specify howStreamIDs need to correspond to different
devices. Each platform can define its own policy for how StreamIDs are allocated. A seL4_ARM_-
SIDControl capability can be used to create a capability to any valid StreamID for the SMMU and
delegate access to other tasks in the system.

seL4_ARM_SIDControl_GetSID() uses the seL4_ARM_SIDControl capability to create a new seL4_-
ARM_SID capability that represents a single StreamID. This new capbility is placed in the
provided slot. It is expected that whatever thread controls an seL4_ARM_SIDControl capa-
bility knows about how StreamIDs are allocated in a system.

The Arm SMMU 2.0 specification describes many ways of associating StreamIDs with context
banks. Currently only direct mapping of a StreamID to a context bank is supported.

8.3. ARM-SPECIFIC I/O 47

8.3.1.2 Creating seL4_ARM_CB capabilities

Each context bank allows the SMMU to maintain an active translation context with it’s own
registers for holding context specific information. An SMMU has a fixed number of context
banks available for use and these are allocated using the seL4_ARM_CBControl capability.

seL4_ARM_CBControl_GetCB() uses the seL4_ARM_CBControl capability to create a new seL4_-
ARM_CB capability that represents a single context bank. This new capability is placed
in the provided slot. It is expected that whatever thread controls a seL4_ARM_CBControl
capability has knowledge of the properties of each context bank that each index refers to.

8.3.1.3 Configuring context banks

By providing a seL4_ARM_CB cap, a user-level thread can configure the VSpace used by the bank
with the following API:

seL4_ARM_CB_AssignVspace() configures the context bank to use the provided VSpace root for
translations.

seL4_ARM_CB_UnassignVspace() removes the configured VSpace and invalidates the TLB.

The SMMU-v2 uses the same paging structure as the MMU (AArch_64 and AArch_32 formats).
Therefore, there is no need to provide a new set of page structure caps nor a separate set of
map and unmap functions. Tomanage the assignment, the kernel has an internal CNode, called
smmuStateCBNode, that stores copies of the VSpace_cap created by executing the above API.
The copy of the VSpace_cap contains its assigned ContextBank number. Therefore the kernel
can conduct context bank invalidation if the VSpace_cap is revoked.

8.3.1.4 Configuring streams (transactions)

A user-level thread can bind a context bank with an seL4_ARM_SID capability with:

seL4_ARM_SID_BindCB() configures the stream to use given context bank for translation. To
simplify the process, the binding also enables the stream ID. seL4_ARM_SID_BindCB gener-
ates a copy of the seL4_ARM_CB cap in kernel’s internal CNode. This allows the stream ID
to be disabled if the seL4_ARM_CB cap is revoked.

seL4_ARM_SID_UnbindCB() removes the seL4_ARM_CB cap from the kernel’s internal CNode and
disables the stream ID. The kernel provides this API for the conveniences of sharing a
stream ID among multiple VSpaces.

If there are any exceptions after the stream ID is enabled, the user-level software should use the
fault handling mechanisms to resolve them.

8.3.1.5 Copying and Deleting caps

The kernel allows copying both ARM_SID cap and seL4_ARM_CB cap. This allows capabilities
to be delegated to different threads. The kernel does not allow copying neither the seL4_ARM_-
SIDControl nor the seL4_ARM_CBControl capabilities.

Deleting a seL4_ARM_CB cap that contains a valid capBindSID field will:

• invalidate the streamID to ContextBank assignment in hardware.

Deleting the last seL4_ARM_CB cap will:

• perform an seL4_ARM_CB_UnassignVspace(), removing any configured VSpace,

48 CHAPTER 8. HARDWARE I/O

• invalidate the TLB.

Similarly, deleting a VSpace_cap that contains an assigned context bank number will:

• invalidate the context bank

• invalidate the TLB.

Deleting the last ARM_SID cap will:

• Perform an seL4_ARM_SID_UnbindCB(), (deleting the copy of the assigned seL4_ARM_CB
cap)

• Disable the stream ID.

8.3.1.6 TLB invalidation

The kernel is expected to perform all required SMMUTLBmaintenance operations as part of the
API implementation. In addition, the kernel provides two system calls for explicitly performing
invalidations:

seL4_ARM_CBControl_TLBInvalidateAll() invalidates all TLB entries in all context banks.

seL4_ARM_CB_TLBInvalidate() invalidates all TLB entries in a context bank.

The kernel does not impose any restrictions on how a VSpace is used by user-level applica-
tions, hence a VSpace can be shared by normal threads and drivers. Sharing a VSpace between
threads and drivers also means sharing all mappings in that VSpace between MMUs in CPU
cores and SMMU used by device transactions. Moreover, multiple context banks in SMMU can
share a VSpace. Therefore, maintaining the coherency between the TLB in MMU and the TLB in
SMMU’s context banks is important.

The kernel keeps a record of Vspace’s usage in context banks in SMMU by maintaining: the
number of context banks using a given ASID, and the ASID that a given context bank is using.
There are a few reasons behind this design.

• First, the ASID is efficient for representing a VSpace. In seL4, each VSpace has an ASID
which is assigned before the VSpace is ready to be used and will never change until the
VSpace is deleted. Recording howmany context banks are using a VSpace’s ASID is equiv-
alent to recording the VSpace’s usage in context banks.

• Second, all TLB invalidation operations require knowledge of the ASID. There are two types
of TLB invalidation operations: invalidating a page table entry using its ASID (triggered by
updating a page table entry, e.g. unmapping a page), and invalidating all mappings of an
ASID (triggered by deleting a VSpace).

• Third, the kernel can easily find a context banks’ ASID on all occasions, which is useful to
either conduct TLB invalidation requests or unassign VSpace from a context bank.

By knowing howmany context banks are using an ASID, the kernel can easily check in every TLB
invalidation operation and invoke TLB invalidation in SMMU if the value is not zero. In SMMU’s
TLB invalidation operation, the kernel searches the context banks using the ASID, and conducts
TLB invalidation in those context banks.

Ideally, the SMMU shares the same ASID or VMID name space with the rest of the system.
This allows the SMMU to maintain TLB coherency by listening for TLB broadcasting messages.
This means the context banks should be configured with the correct ASID or VMID when the
StreamID is enabled. This is not a problem for stage 1 translation, as there are a large number
of ASID bits and an ASID can be assigned to a VSpace root with existing APIs. However, the
VMID used in stage 2 only has 8 bits, and the kernel allocates them on demand and can reclaim

8.3. ARM-SPECIFIC I/O 49

a VSpace’s hardware ASID to reuse if there are more VSpaces than available ASIDs. While it
is possible to do this when the VSpace is only used in an MMU, it is not possible with multiple
active context banks. Due to this, the context bank in SMMU cannot be configured with the
correct VMID. Currently, the SMMU driver uses a private VMID space, and uses the context bank
number as the corresponding VMID number.

8.3.1.7 Fault handling

The number of IRQs used for reporting transaction faults is hardware dependent. There are
two kinds of faults: global faults (general configuration and transaction faults), or context bank
faults. For transaction faults, the SMMU reports faulty stream IDs. The global faults reports:

• Invalid context fault.

• Unidentified stream fault.

• Stream match conflict fault.

• Unimplemented context bank fault.

• Unimplemented context interrupt fault.

• Configuration access fault.

• External fault.

Each context bank contains registers to report faults on address translation, for example, faulty
addresses, or permission errors. The SMMU driver identifies the cause of a fault by first reading
the global fault registers (one state register and three fault syndrome registers), then by read-
ing corresponding context bank fault registers. Note, the SMMU reports the faulty transaction
(stream) ID, which can be used to identify its context bank ID.

• System assumption: Both the SMMU’s IRQ handler and the owner of the seL4_ARM_SID-
Control cap (controlling stream ID distributions) are trusted.

• SMMU interrupts are handled as same as other IRQs, i.e. the kernel does not treat the
SMMU IRQs special, reporting the interrupt via IRQ notifications.

• The kernel provides an API for reading the global fault registers: seL4_ARM_SIDControl_-
GetFault(). Because the IRQ notification can only deliver information via the badge, the
owner of the seL4_ARM_SIDControl cap can retrieve more information via this API.

• If the fault is related to a transaction, the owner of the seL4_ARM_SIDControl cap will no-
tify the holder of the corresponding stream ID cap, which should also have a copy of the
context bank cap bound to this transaction.

• The kernel provides an API for reading the context bank fault registers: seL4_ARM_CB_-
CBGetFault(), used by a context bank cap holder (the seL4_ARM_CB cap holder).

• Once the fault handling is done, the server can call seL4_ARM_CB_CBClearFault() to clear
the fault status on a context bank, and seL4_ARM_SIDControl_ClearFault() to clear the
fault status on SMMU.

Chapter 9

System Bootstrapping

9.1 Initial Thread’s Environment

The seL4 kernel creates a minimal boot environment for the initial thread, which is started at
priority seL4_MaxPrio and maximum control priority seL4_MaxPrio. This environment consists
of the initial thread’s TCB, CSpace and VSpace, consisting of frames that contain the userland
image (code/data of the initial thread) and the IPC buffer.

On the MCS kernel, the initial thread is configured with a round-robin scheduling context with
CONFIG_BOOT_THREAD_TIME_SLICE milliseconds timeslice. Without MCS, all threads including
the initial thread are scheduled round-robin with CONFIG_TIMER_TICK_MS ∗ CONFIG_TIME_SLICE
timeslices.

The initial thread’s CSpace consists of exactly one CNode which contains capabilities to the
initial thread’s own resources as well as to all available global resources. The CNode size can
be configured at compile time (default is 212 slots), but the guard is always chosen so that the
CNode resolves exactly the number of bits in the architecture (32 bits or 64 bits). This means,
the first slot of the CNode has CPtr 0x0, the second slot has CPtr 0x1 etc.

The first 15 slots (or 14 slots if not MCS) contain specific capabilities as listed in Table 9.1.

9.2 BootInfo Frame

CNode slots with CPtr seL4_NumInitialCaps (defined in the seL4 userland library) and above
are filled dynamically during bootstrapping. Their exact contents depend on the userland image
size, platform configuration (devices) etc. In order to tell the initial thread which capabilities are
stored where in its CNode, the kernel provides a BootInfo Frame which is mapped into the initial
thread’s address space. The mapped address is chosen by the kernel and given to the initial
thread via a CPU register.

The BootInfo Frame contains the C struct described in Table 9.2. It is defined in the seL4 user-
land library. Besides talking about capabilities, it also informs the initial thread about the current
platform’s configuration.

The type seL4_SlotRegion is a C struct which contains start and end slot CPtrs. It denotes a
region of slots in the initial thread’s CNode, starting with CPtr start and with end being the CPtr
of the first slot after the region ends, i.e. end - 1 points to the last slot of the region.

The size of the fixed Boot Info Frame is seL4_BootInfoFrameSize. In the standard configuration,
this is one page, which is 4 KiByte on x86, ARM and RISC-V. Depending on the architecture and

50

9.2. BOOTINFO FRAME 51

Table 9.1: Initial thread’s CNode content.

Enum Constant Capability

seL4_CapNull null
seL4_CapInitThreadTCB initial thread’s TCB
seL4_CapInitThreadCNode initial thread’s CNode
seL4_CapInitThreadVSpace initial thread’s VSpace
seL4_CapIRQControl global IRQ controller (see Section 8.1)
seL4_CapASIDControl global ASID controller (see Chapter 7)
seL4_CapInitThreadASIDPool initial thread’s ASID pool (see Chapter 7)
seL4_CapIOPort global I/O port cap, null cap if unsupported (see Sec-

tion 8.2.2)
seL4_CapIOSpace global I/O space cap, null cap if unsupported (see Sec-

tion 8.2.3)
seL4_CapBootInfoFrame BootInfo frame (see Section 9.2)
seL4_CapInitThreadIPCBuffer initial thread’s IPC buffer (see Section 4.1)
seL4_CapDomain domain cap (see Section 6.3)
seL4_CapSMMUSIDControl global Arm SMMU SID controller, null cap if unsupported

(see Section 8.3.1)
seL4_CapSMMUCBControl global Arm SMMU CB controller, null cap if unsupported

(see Section 8.3.1)
seL4_CapInitThreadSC initial thread’s scheduling context (MCS only)

platform, there might be additional pieces of variable boot information following afterwards.
The overall size of this data is extraLen, it contains a sequence of blobs, where each one start
with a seL4_BootInfoHeader described in Table 9.3. This header describes what the blob is and
how long it is, where the length includes the header. Thus, the length can be used to skip over
unknown chunks. The only generally defined chunk type is SEL4_BOOTINFO_HEADER_PADDING and
describes a blob where any payload data exists for padding only. The extraBIPages slot region
gives the frames capabilities for the pages that make up the additional boot info region.

The capabilities in userImageFrames are ordered such that the first capability references the
first frame of the userland image and so on. The capabilities in userImagePaging are ordered in
descending order of paging structure size. Within a given paging structure size, capabilities are
ordered by the virtual address at which the corresponding objects are mapped into the initial
thread’s address space.

It is up to userland to infer the virtual address of frames referenced by the capabilities in user-
ImageFrames and the virtual address and types of paging structures referenced by the capa-
bilities in userImagePaging. Userland typically has a way of finding out to which virtual ad-
dresses its code and data is mapped (e.g. in GCC, with the standard linker script, the symbols
__executable_start and _end are available). Additionally, the initial thread can assume that
its address space is virtually contiguous, and is made up of the smallest frames available on
the architecture. It’s also assumed that the initial thread knows which paging structures are
available on the architecture it’s running on. This, along with knowledge of how capabilities in
userImageFrames and userImagePaging are ordered, is sufficient information for userland to in-
fer the virtual address of each frame capability, and the virtual address and type of each paging
structure capability.

Untyped memory is given in no particular order. The array entry untypedList[i] stores the
untyped-memory information of the i-th untyped cap of the slot region untyped. Therefore, the
array length is at least untyped.end - untyped.start. The actual length is hardcoded in the

52 CHAPTER 9. SYSTEM BOOTSTRAPPING

Table 9.2: BootInfo struct.

Field Type Field Name Description

seL4_Word extraLen length of additional bootinfo informa-
tion in bytes

seL4_NodeId nodeID node ID
seL4_Word numNodes number of nodes
seL4_Word numIOPTLevels number of I/O page-table levels (-1 if

CONFIG_IOMMU unset)
seL4_IPCBuffer* ipcBuffer pointer to the initial thread’s IPC buffer
seL4_SlotRegion empty empty slots (null caps)
seL4_SlotRegion sharedFrames reserved
seL4_SlotRegion userImageFrames frames containing the userland image
seL4_SlotRegion userImagePaging userland-image paging structure caps
seL4_SlotRegion ioSpaceCaps I/O space capabilities for Arm SMMU
seL4_SlotRegion extraBIPages frames backing additional bootinfo in-

formation
seL4_Uint8 initThreadCNodeSizeBits CNode size (2n slots)
seL4_Word initThreadDomain domain of the initial thread (see Sec-

tion 6.3)
seL4_SlotRegion schedcontrol seL4_SchedControl capabilities, one

for each node (MCS only).
seL4_SlotRegion untyped untyped-memory capabilities
seL4_UntypedDesc[] untypedList array of information about each un-

typed

Table 9.3: BootInfoHeader struct.

Field Type Field Name Description

seL4_Word id Identifier indicating the contents of the chunk
seL4_Word len Length in bytes of the chunk

kernel and irrelevant to the reader of the array. The untyped memory information is stored in
a seL4_UntypedDesc struct, described in Table 9.4, and details the address, size and kind of
the memory backing the untyped. This allows userland to infer physical memory addresses of
retyped frames and use them to initiate DMA transfers when no IOMMU is available. The kernel
makes no guarantees about certain sizes of untyped memory being available.

If the platform has an seL4-supported IOMMU, numIOPTLevels contains the number of IOMMU-
page-table levels. This information is needed by userlandwhen constructing an IOMMUaddress
space (IOSpace). If there is no IOMMU support, numIOPTLevels is 0.

On Arm if the platform has any available SMMU units the capabilities for them will be described
by the ioSpaceCaps slot region. Themapping of a capability from this region to a specific SMMU
is platform specific.

9.3 Boot Command-line Arguments

On IA-32, seL4 accepts boot command-line arguments which are passed to the kernel via a
multiboot-compliant bootloader (e.g. GRUB, syslinux). Multiple arguments are separated from

9.3. BOOT COMMAND-LINE ARGUMENTS 53

Table 9.4: seL4_UntypedDesc struct

Field Type Field Name Description

seL4_Word paddr physical base address of the untyped object
seL4_Uint8 sizeBits size (2n bytes) of the untyped object
seL4_Uint8 isDevice is this untyped a device or not (see Section 2.4)
seL4_Uint8[] padding manual padding so final struct is a multiple of the word size

each other by whitespace. Two forms of arguments are accepted: (1) key-value arguments of
the form “key=value” and (2) single keys of the form “key”. The value field of the key-value form
may be a string, a decimal integer, a hexadecimal integer beginning with “0x”, or an integer list
where list elements are separated by commas. Keys and values can’t have any whitespace in
them and there can be no whitespace before or after an “=” or a comma either. Arguments are
listed in Table 9.5 along with their default values (if left unspecified).

Table 9.5: IA-32 boot command-line arguments.

Key Value Default

console_port I/O-port base of the serial port that
the kernel prints to (if compiled in
debug mode)

0x3f8

debug_port I/O-port base of the serial port that
is used for kernel debugging (if com-
piled in debug mode)

0x3f8

disable_iommu none The IOMMU is enabled by default on
VT-d-capable platforms

Chapter 10

seL4 API Reference

10.1 Error Codes

Invoking a capability with invalid parameters will result in an error. seL4 system calls return an
error code in the message tag and a short error description in the message registers to aid the
programmer in determining the cause of errors.

10.1.1 Invalid Argument

A non-capability argument is invalid.

Field Meaning

Label seL4_InvalidArgument
IPCBuffer[0] Invalid argument number

10.1.2 Invalid Capability

A capability argument is invalid.

Field Meaning

Label seL4_InvalidCapability
IPCBuffer[0] Invalid capability argument number

10.1.3 Illegal Operation

The requested operation is not permitted.

Field Meaning

Label seL4_IllegalOperation

54

10.1. ERROR CODES 55

10.1.4 Range Error

An argument is out of the allowed range.

Field Meaning

Label seL4_RangeError
IPCBuffer[0] Minimum allowed value
IPCBuffer[1] Maximum allowed value

10.1.5 Alignment Error

A supplied argument does not meet the alignment requirements.

Field Meaning

Label seL4_AlignmentError

10.1.6 Failed Lookup

A capability could not be looked up.

Field Meaning

Label seL4_FailedLookup
IPCBuffer[0] 1 if the lookup failed for a source capability, 0 otherwise
IPCBuffer[1] Type of lookup failure
IPCBuffer[2..] Lookup failure description as described in Section 3.4

10.1.7 Truncated Message

Too few message words or capabilities were sent in the message.

Field Meaning

Label seL4_TruncatedMessage

10.1.8 Delete First

A destination slot specified in the syscall arguments is occupied.

Field Meaning

Label seL4_DeleteFirst

10.1.9 Revoke First

The object currently has other objects derived from it and the requested invocation cannot be
performed until either these objects are deleted or the revoke invocation is performed on the
capability.

Field Meaning

Label seL4_RevokeFirst

56 CHAPTER 10. SEL4 API REFERENCE

10.1.10 Not Enough Memory

The Untyped Memory object does not have enough unallocated space to complete the seL4_-
Untyped_Retype() request.

Field Meaning

Label seL4_NotEnoughMemory
IPCBuffer[0] Amount of memory available in bytes

10.2 System Calls

10.2.1 General System Calls

This section provides the system call API for non-MCS kernel configurations.

10.2.1.1 Send

LIBSEL4_INLINE_FUNC void seL4_Send

Send to a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.1.2 Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Recv

Block until a message is received on an endpoint.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 57

10.2.1.3 Call

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Call

Call a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.4 Reply

LIBSEL4_INLINE_FUNC void seL4_Reply

Performa send to a one-off reply capability storedwhen the threadwas last called. Does nothing
if there is no reply capability which can happen if the blocked thread was unblocked via an
operation such as destroying it.

Type Name Description

seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.1.5 Non-Blocking Send

LIBSEL4_INLINE_FUNC void seL4_NBSend

Perform a non-blocking send to a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

58 CHAPTER 10. SEL4 API REFERENCE

10.2.1.6 Reply Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_ReplyRecv

Perform a reply followed by a receive in one system call.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.7 Non-Blocking Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBRecv

Receive a message from an endpoint but do not block in the case that no messages are pend-
ing.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.8 Yield

LIBSEL4_INLINE_FUNC void seL4_Yield

Donate the remaining timeslice to a thread of the same priority.

Type Name Description

void

Return value: This method does not return anything.

Description: See Section 2.2

10.2. SYSTEM CALLS 59

10.2.1.9 Signal

LIBSEL4_INLINE_FUNC void seL4_Signal

Signal a notification.

Type Name Description

seL4_CPtr dest The capability to be invoked.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a convenience
wrapper which calls seL4_Send(). It is useful for signalling a notification.

See the description of seL4_Send() in Section 2.2.

10.2.1.10 Wait

LIBSEL4_INLINE_FUNC void seL4_Wait

Perform a receive on a notification object.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a convenience
wrapper which calls seL4_Recv().

See the description of seL4_Recv() in Section 2.2.

10.2.1.11 Poll

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Poll

Perform a non-blocking receive on a notification object.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: This is not a proper system call known by the kernel. Rather, it is a convenience
wrapper which calls seL4_NBRecv(). It is useful for doing a non-blocking wait on a notification.

See the description of seL4_NBRecv() in Section 2.2.

60 CHAPTER 10. SEL4 API REFERENCE

10.2.2 General System Calls (MCS)

This section provides the system call API for MCS kernel configurations.

10.2.2.1 Send

LIBSEL4_INLINE_FUNC void seL4_Send

Send to a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2.2 Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Recv

Block until a message is received on an endpoint.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object to use on a call (only used on
MCS).

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.3 Call

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Call

Call a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 61

10.2.2.4 Non-Blocking Send

LIBSEL4_INLINE_FUNC void seL4_NBSend

Perform a non-blocking send to a capability.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2.5 Reply Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_ReplyRecv

Perform a reply followed by a receive in one system call.

Type Name Description

seL4_CPtr src The capability to perform the receive on.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object, which is first in-
voked and then used for the receive phase to store
a new reply capability.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.6 Non-Blocking Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBRecv

Receive a message from an endpoint but do not block in the case that no messages are pend-
ing.

Type Name Description

seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object to use on a call.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

62 CHAPTER 10. SEL4 API REFERENCE

10.2.2.7 Non-Blocking Send Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBSendRecv

Non-blocking send on one capability, and a blocking receive on another in a single system call.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object, which is first in-
voked and then used for the receive phase to store
a new reply capability.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.8 Non-Blocking Send Wait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBSendWait

Non-blocking invoke of a capability and wait on another in one system call.

Type Name Description

seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 63

10.2.2.9 Yield

LIBSEL4_INLINE_FUNC void seL4_Yield

Yield the remaining timeslice. Periodic threads will not be scheduled again until their next spo-
radic replenishment.

Type Name Description

void

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2.10 Wait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Wait

Perform a wait on an endpoint or notification object.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: Block on a notification or endpoint waiting for a message. No reply object is re-
quired for a Wait. Wait should not be paired with Call, as it does not provide a reply object. If
Wait is paired with a Call the waiter will block after receiving the message.

See the description of seL4_Wait() in Section 2.2.

10.2.2.11 Non-Blocking Wait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBWait

Perform a polling wait on an endpoint or notification object.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: Poll a notification or endpoint waiting for a message. No reply object is required
for a Wait. Wait should not be paired with Call.

See the description of seL4_NBWait() in Section 2.2.

64 CHAPTER 10. SEL4 API REFERENCE

10.2.2.12 Poll

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Poll

Perform a non-blocking receive on a notification object.

Type Name Description

seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The sender infor-

mation is the badge of the endpoint capability that was invoked
by the sender, or the notification word of the notification object
that was signalled. This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: This is not a proper system call known by the kernel. Rather, it is a convenience
wrapper which calls seL4_NBWait(). It is useful for doing a non-blocking wait on a notification.

See the description of seL4_NBWait() in Section 2.2.

10.2.2.13 Signal

LIBSEL4_INLINE_FUNC void seL4_Signal

Signal a notification.

Type Name Description

seL4_CPtr dest The capability to be invoked.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a convenience
wrapper which calls seL4_Send(). It is useful for signalling a notification.

See the description of seL4_Send() in Section 2.2.

10.2. SYSTEM CALLS 65

10.2.3 Debugging System Calls

This section documents debugging system calls available when the kernel is build with the DE-
BUG_BUILD configuration. For any system calls that rely on a kernel serial driver, PRINTINGmust
also be enabled.

10.2.3.1 Put Char

LIBSEL4_INLINE_FUNC void seL4_DebugPutChar

Output a single char through the kernel.

Type Name Description

char c The character to output.

Return value: This method does not return anything.

Description: Use the kernel serial driver to output a single character. This is useful for debugging
when a user level serial driver is not available.

10.2.3.2 Dump Scheduler

LIBSEL4_INLINE_FUNC void seL4_DebugDumpScheduler

Output the contents of the kernel scheduler.

Type Name Description

void

Return value: This method does not return anything.

Description: Dump the state of the all TCB objects to kernel serial output. This system call will
output a table containing:

• Address: the address of the TCB object for that thread,

• Name: the name of the thread (if set),

• IP: the contents of the instruction pointer the thread is at,

• Priority: the priority of that thread,

• State : the state of the thread.

66 CHAPTER 10. SEL4 API REFERENCE

10.2.3.3 Halt

LIBSEL4_INLINE_FUNC void seL4_DebugHalt

Halt the system.

Type Name Description

void

Return value: This method does not return anything.

Description: This debugging system call will cause the kernel immediately cease responding
to system calls. The kernel will switch permanently to the idle thread with interrupts disabled.
Depending on the platform, the kernel may switch the hardware into a low-power state.

10.2.3.4 Snapshot

LIBSEL4_INLINE_FUNC void seL4_DebugSnapshot

Output a capDL dump of the current kernel state.

Type Name Description

void

Return value: This method does not return anything.

Description: This debugging system call will output all of the capabilities in the current kernel
using capDL.

10.2.3.5 Cap Identify

LIBSEL4_INLINE_FUNC seL4_Uint32 seL4_DebugCapIdentify

Identify the type of a capability in the current CSpace.

Type Name Description

seL4_CPtr cap A capability slot in the current CSpace.

Return value: The type of capability passed in.

Description: This debugging system call returns the type of capability in a capability slot in the
current CSpace. The type returned is not a libsel4 type, but refers to an internal seL4 type. This
can be looked up in a built kernel by looking for the (generated) enum cap_tag, type cap_tag_t.

10.2. SYSTEM CALLS 67

10.2.3.6 Name Thread

LIBSEL4_INLINE_FUNC void seL4_DebugNameThread

Name a thread.

Type Name Description

seL4_CPtr tcb A capability to the tcb object for the thread to name.
const char * name The name for the thread.

Return value: This method does not return anything.

Description: Name a thread. This name will then be output by the kernel in all debugging output.
Note that the max name length that can be passed to this function is limited by the number of
chars that will fit in an IPCmessage (seL4_MsgMaxLengthmultiplied by the amount of chars that
fit in a word). However the name is also truncated in order to fit into a TCB object. For some
platforms you may need to increase seL4_TCBBits by 1 in a debug build in order to fit a long
enough name.

10.2.3.7 Send SGI 0-15

LIBSEL4_INLINE_FUNC void seL4_DebugSendIPI

Sends arbitrary SGI.

Type Name Description

seL4_Uint8 target The target core ID.
unsigned irq The SGI number (0-15).

Return value: This method does not return anything.

Description: Send an arbitrary SGI (core-specific interrupt 0-15) to the specified target core.

10.2.3.8 Run

LIBSEL4_INLINE_FUNC void seL4_DebugRun

Run a user level function in kernel mode.

Type Name Description

void(*)(void *) userfn The address in userspace of the function to run.
void * userarg A single argument to pass to the function.

Return value: This method does not return anything.

Description: This extremely dangerous function is for running benchmarking and debugging
code that needs to be executed in kernel mode from userlevel. It should never be used in a
release kernel. This works because the kernel can access all user mappings of device memory,
and does not switch page directories on kernel entry.

Unlike the other system calls in this section, seL4_DebugRun does not depend on the DEBUG_-
BUILD configuration option, but its own config variable DANGEROUS_CODE_INJECTION.

68 CHAPTER 10. SEL4 API REFERENCE

10.2.4 Benchmarking System Calls

This section documents system calls available when the kernel is configured with benchmark-
ing enabled. There are several different benchmarking modes which can be configured when
building the kernel:

1. BENCHMARK_TRACEPOINTS: Enable using tracepoints in the kernel and timing code.

2. BENCHMARK_TRACK_KERNEL_ENTRIES: Keep track of information on kernel entries.

3. BENCHMARK_TRACK_UTILISATION: Allowusers to get CPU timing info for the system, threads
and/or idle thread.

10.2.4.1 Reset Log

LIBSEL4_INLINE_FUNC seL4_Error seL4_BenchmarkResetLog

Reset benchmark logging.

Type Name Description

void

Return value: A seL4_Error error if the user-level log buffer has not been set by the user (BENCHMARK_-
TRACEPOINTS/BENCHMARK_TRACK_KERNEL_ENTRIES).

Description: The behaviour of this system call depends on benchmarking mode in action while
invoking this system call:

1. BENCHMARK_TRACEPOINTS: resets the log index to 0,

2. BENCHMARK_TRACK_KERNEL_ENTRIES: as above,

3. BENCHMARK_TRACK_UTILISATION: resets benchmark and current thread start time (to the
time of invoking this syscall), resets idle thread utilisation to 0, and starts tracking utilisa-
tion.

10.2.4.2 Finalize Log

LIBSEL4_INLINE_FUNC seL4_Word seL4_BenchmarkFinalizeLog

Stop benchmark logging.

Type Name Description

void

Return value: The index of the final entry in the log buffer (if BENCHMARK_TRACEPOINTS/BENCHMARK_-
TRACK_KERNEL_ENTRIES are enabled).

Description: The behaviour of this system call depends on benchmarking mode in action while
invoking this system call:

1. BENCHMARK_TRACEPOINTS: Sets the final log buffer index to the current index,

2. BENCHMARK_TRACK_KERNEL_ENTRIES: as above,

3. BENCHMARK_TRACK_UTILISATION: sets benchmark end time to current time, stops tracking
utilisation.

10.2. SYSTEM CALLS 69

10.2.4.3 Set Log Buffer

LIBSEL4_INLINE_FUNC seL4_Error seL4_BenchmarkSetLogBuffer

Set log buffer.

Type Name Description

seL4_Word frame_cptr A capability pointer to a user allocated frame of seL4_-
LargePage size.

Return value: A seL4_IllegalOperation error if frame_cptr is not valid and couldn’t set the
buffer.

Description: Provide a large frame object for the kernel to use as a log-buffer. The object must
not be device memory, and must be seL4_LargePageBits in size.

10.2.4.4 Null Syscall

LIBSEL4_INLINE_FUNC void seL4_BenchmarkNullSyscall

Null system call that enters and exits the kernel immediately, for timing kernel traps in mi-
crobenchmarks.

Type Name Description

void

Return value: This method does not return anything.

Description: Used to time kernel traps (in and out).

10.2.4.5 Flush Caches

LIBSEL4_INLINE_FUNC void seL4_BenchmarkFlushCaches

Flush hardware caches.

Type Name Description

void

Return value: This method does not return anything.

Description: Flush all possible hardware caches for this platform.

70 CHAPTER 10. SEL4 API REFERENCE

10.2.4.6 Flush L1 Caches

LIBSEL4_INLINE_FUNC void seL4_BenchmarkFlushL1Caches

Flush L1 caches.

Type Name Description

seL4_Word cache_type L1 Cache Type to be flushed

Return value: This method does not return anything.

Description: Flush L1 caches for this platform (currently only support for ARM). Allow to specify
the cache type to be flushed (i.e. instruction cache only, data cache only and both instruction
cache and data cache).

10.2.4.7 Get Thread Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkGetThreadUtilisation

Get utilisation timing information.

Type Name Description

seL4_Word tcb_cptr TCB cap pointer to a thread to get CPU utilisation for.

Return value: This method does not return anything.

Description: Get timing information for the system, requested thread and idle thread. Such in-
formation is written into the caller’s IPC buffer; see the definition of benchmark_track_util_-
ipc_index enum for more details on the data/format returned on the IPC buffer.

10.2.4.8 Reset Thread Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkResetThreadUtilisation

Reset utilisation timing for a specific thread.

Type Name Description

seL4_Word tcb_cptr TCB cap pointer to a thread to get CPU utilisation for.

Return value: This method does not return anything.

Description: Reset the kernel’s timing information data (start time and utilisation) for a specific
thread.

10.2. SYSTEM CALLS 71

10.2.4.9 Dump All Threads Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkDumpAllThreadsUtilisation

Print the current accumulated cycle count for every thread on the current node.

Type Name Description

void

Return value: This method does not return anything.

Description: Uses kernel’s printf to print number of cycles on each line in the following format:
thread_name,thread_cycles

10.2.4.10 Reset All Threads Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkResetAllThreadsUtilisation

Reset the accumulated cycle count for every thread on the current node.

Type Name Description

void

Return value: This method does not return anything.

Description: Reset the cycle count for each thread to 0.

72 CHAPTER 10. SEL4 API REFERENCE

10.2.5 X86 System Calls

10.2.5.1 VM Enter

LIBSEL4_INLINE_FUNC seL4_Word seL4_VMEnter

Change current thread to execute from its bound VCPU.

Type Name Description

seL4_Word * sender The address to write sender information to. If the syscall re-
turns due to receiving a notification on the bound notification
then the sender information is the badge of the notification ca-
pability that was invoked. This parameter is ignored if NULL.

Return value: SEL4_VMENTER_RESULT_NOTIF if a notification was received or SEL4_VMENTER_-
RESULT_FAULT if the guest mode execution faulted for any reason

Description: Changes the execution mode of the current thread from normal TCB execution, to
guest execution using its bound VCPU. For details on VCPUs and execution modes see Sec-
tion 6.4.

Invoking seL4_VMEnter is similar to replying to a fault in that updates to the registers can be
given in themessage, but unlike a fault nomessage info (see Section 4.1) is sent as the registers
are not optional and the number that must be sent is fixed. The mapping of hardware register
to message register is

• SEL4_VMENTER_CALL_EIP_MR Address to start executing instructions at in the guest mode

• SEL4_VMENTER_CALL_CONTROL_PPC_MR New value for the Primary Processor Based VM Ex-
ecution Controls

• SEL4_VMENTER_CALL_CONTROL_ENTRY_MR New value for the VM Entry Controls

On return these same three message registers will be filled with the values at the point that the
privileged mode ceased executing. If this function returns with SEL4_VMENTER_RESULT_FAULT
then the following additional message registers will be filled out

• SEL4_VMENTER_FAULT_REASON_MR

• SEL4_VMENTER_FAULT_QUALIFICATION_MR

• SEL4_VMENTER_FAULT_INSTRUCTION_LEN_MR

• SEL4_VMENTER_FAULT_GUEST_PHYSICAL_MR

• SEL4_VMENTER_FAULT_RFLAGS_MR

• SEL4_VMENTER_FAULT_GUEST_INT_MR

• SEL4_VMENTER_FAULT_CR3_MR

• SEL4_VMENTER_FAULT_EAX

• SEL4_VMENTER_FAULT_EBX

• SEL4_VMENTER_FAULT_ECX

• SEL4_VMENTER_FAULT_EDX

• SEL4_VMENTER_FAULT_ESI

• SEL4_VMENTER_FAULT_EDI

• SEL4_VMENTER_FAULT_EBP

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 73

10.3 Architecture-Independent Object Methods

10.3.1 seL4_CNode

10.3.1.1 Cancel Badged Sends

static inline int seL4_CNode_CancelBadgedSends

The cancel badged sends method is intended to allow for the reuse of badges by an authority.
When used with a badged endpoint capability it will cancel any outstanding send operations for
that endpoint and badge. This operation has no effect on un-badged or other objects.

Type Name Description

seL4_CNode _service CPtr to the CNode at the root of the CSpace where the capa-
bility will be found. Must be at a depth equivalent to the word-
size.

seL4_Word index CPtr to the capability. Resolved from the root of the _service
parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capability being
operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_FailedLookup The index or depth is invalid (see Section 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

the capability does not have full rights to the Endpoint (see
Section 3.1.4).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).

74 CHAPTER 10. SEL4 API REFERENCE

10.3.1.2 Copy

static inline int seL4_CNode_Copy

Copy a capability, setting its access rights whilst doing so

Type Name Description

seL4_CNode _service CPtr to the CNode that forms the root of the desti-
nation CSpace. Must be at a depth equivalent to the
wordsize.

seL4_Word dest_index CPtr to the destination slot. Resolved from the root
of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the
destination slot.

seL4_CNode src_root CPtr to the CNode that forms the root of the source
CSpace. Must be at a depth equivalent to the word-
size.

seL4_Word src_index CPtr to the source slot. Resolved from the root of the
source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the
source slot.

seL4_CapRights_t rights The rights inherited by the new capability. Possible
values for this type are given in Section 3.1.4.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth of the source or destination is invalid

(see Section 3.3). Or, src_root is a CPtr to a capability of
the wrong type. Or, the source slot is empty.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the source capability cannot be derived (see Section 3.1.5).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The dest_depth or src_depth is invalid (see Section 3.3).
seL4_RevokeFirst The source capability cannot be derived (see Section 3.1.5).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 75

10.3.1.3 Delete

static inline int seL4_CNode_Delete

Delete a capability

Type Name Description

seL4_CNode _service CPtr to the CNode at the root of the CSpace where the capa-
bility will be found. Must be at a depth equivalent to the word-
size.

seL4_Word index CPtr to the capability. Resolved from the root of the _service
parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capability being
operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_FailedLookup The index or depth is invalid (see Section 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).

76 CHAPTER 10. SEL4 API REFERENCE

10.3.1.4 Mint

static inline int seL4_CNode_Mint

Copy a capability, setting its access rights and badge whilst doing so

Type Name Description

seL4_CNode _service CPtr to the CNode that forms the root of the desti-
nation CSpace. Must be at a depth equivalent to the
wordsize.

seL4_Word dest_index CPtr to the destination slot. Resolved from the root
of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the
destination slot.

seL4_CNode src_root CPtr to the CNode that forms the root of the source
CSpace. Must be at a depth equivalent to the word-
size.

seL4_Word src_index CPtr to the source slot. Resolved from the root of the
source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the
source slot.

seL4_CapRights_t rights The rights inherited by the new capability. Possible
values for this type are given in Section 3.1.4.

seL4_Word badge Badge or guard to be applied to the new capability.
For badges on 32-bit platforms, the high 4 bits are
ignored.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth of the source or destination is invalid

(see Section 3.3). Or, src_root is a CPtr to a capability of
the wrong type. Or, the source slot is empty.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the source capability cannot be derived (see Section 3.1.5).
Or, the badge or guard value is invalid.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The dest_depth or src_depth is invalid (see Section 3.3).
seL4_RevokeFirst The source capability cannot be derived (see Section 3.1.5).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 77

10.3.1.5 Move

static inline int seL4_CNode_Move

Move a capability

Type Name Description

seL4_CNode _service CPtr to the CNode that forms the root of the destination
CSpace. Must be at a depth equivalent to the wordsize.

seL4_Word dest_index CPtr to the destination slot. Resolved from the root of the
destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the destina-
tion slot.

seL4_CNode src_root CPtr to the CNode that forms the root of the source CSpace.
Must be at a depth equivalent to the wordsize.

seL4_Word src_index CPtr to the source slot. Resolved from the root of the source
CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the source
slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth of the source or destination is invalid

(see Section 3.3). Or, src_root is a CPtr to a capability of
the wrong type. Or, the source slot is empty.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The dest_depth or src_depth is invalid (see Section 3.3).

78 CHAPTER 10. SEL4 API REFERENCE

10.3.1.6 Mutate

static inline int seL4_CNode_Mutate

Move a capability, setting its guard in the process. This operation is mostly useful for setting
the guard of a CNode capability without losing revokability of that CNode capability. All other
uses can be replaced by a combination of Mint and Delete.

Type Name Description

seL4_CNode _service CPtr to the CNode that forms the root of the destination
CSpace. Must be at a depth equivalent to the wordsize.

seL4_Word dest_index CPtr to the destination slot. Resolved from the root of the
destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the destina-
tion slot.

seL4_CNode src_root CPtr to the CNode that forms the root of the source CSpace.
Must be at a depth equivalent to the wordsize.

seL4_Word src_index CPtr to the source slot. Resolved from the root of the source
CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the source
slot.

seL4_Word badge Guard to be applied to the new capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth of the source or destination is invalid

(see Section 3.3). Or, src_root is a CPtr to a capability of
the wrong type. Or, the source slot is empty.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the guard value is invalid.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The dest_depth or src_depth is invalid (see Section 3.3).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 79

10.3.1.7 Revoke

static inline int seL4_CNode_Revoke

Delete all child capabilities of a capability

Type Name Description

seL4_CNode _service CPtr to the CNode at the root of the CSpace where the capa-
bility will be found. Must be at a depth equivalent to the word-
size.

seL4_Word index CPtr to the capability. Resolved from the root of the _service
parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capability being
operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_FailedLookup The index or depth is invalid (see Section 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).

80 CHAPTER 10. SEL4 API REFERENCE

10.3.1.8 Rotate

static inline int seL4_CNode_Rotate

Given 3 capability slots - a destination, pivot and source - move the capability in the pivot slot to
the destination slot and the capability in the source slot to the pivot slot

Type Name Description

seL4_CNode _service CPtr to the CNode at the root of the CSpace where the des-
tination slot will be found. Must be at a depth equivalent
to the wordsize.

seL4_Word dest_index CPtr to the destination slot. Resolved relative to _service.
Must be empty unless it refers to the same slot as the
source slot.

seL4_Uint8 dest_depth Depth to resolve dest_index to.
seL4_Word dest_badge The new capdata for the capability that ends up in the des-

tination slot.
seL4_CNode pivot_root CPtr to theCNode at the root of theCSpacewhere the pivot

slot will be found. Must be at a depth equivalent to the
wordsize.

seL4_Word pivot_index CPtr to the pivot slot. Resolved relative to pivot_root. The
resolved slot must not refer to the source or destination
slots.

seL4_Uint8 pivot_depth Depth to resolve pivot_index to.
seL4_Word pivot_badge The new capdata for the capability that ends up in the pivot

slot.
seL4_CNode src_root CPtr to the CNode at the root of the CSpace where the

source slot will be found. Must be at a depth equivalent
to the wordsize.

seL4_Word src_index CPtr to the source slot. Resolved relative to src_root.
seL4_Uint8 src_depth Depth to resolve src_index to.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst If the destination is not the same slot as the source and the
destination slot contains a capability.

seL4_FailedLookup The index or depth of the source, destination, or pivot is in-
valid (see Section 3.3). Or, src_root or pivot_root is a CPtr
to a capability of the wrong type. Or, the source or pivot slot
is empty.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the pivot is the same slot as the source or destination. Or,
the guard value on the destination or pivot is invalid.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The dest_depth, src_depth, or pivot_depth is invalid (see

Section 3.3).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 81

10.3.1.9 Save Caller

static inline int seL4_CNode_SaveCaller

Save the reply capability from the last time the thread was called in the given CSpace so that it
can be invoked later

Type Name Description

seL4_CNode _service CPtr to the CNode at the root of the CSpace where the ca-
pability is to be saved. Must be at a depth equivalent to the
wordsize.

seL4_Word index CPtr to the slot in which to save the capability. Resolved from
the root of the _service parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the slot being tar-
geted.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).

10.3.2 seL4_DomainSet

10.3.2.1 Set

static inline int seL4_DomainSet_Set

Change the domain of a thread.

Type Name Description

seL4_DomainSet _service Capability allowing domain configuration.
seL4_Uint8 domain The thread’s new domain.
seL4_TCB thread Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.3.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The domain is greater than CONFIG_NUM_DOMAINS. Or, thread

is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

82 CHAPTER 10. SEL4 API REFERENCE

10.3.3 seL4_IRQControl

10.3.3.1 Get IRQ Handler

static inline int seL4_IRQControl_Get

Create an IRQ handler capability

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_Word irq The IRQ that you want this capability to handle.
seL4_CNode root CPtr to the CNode that forms the root of the destination

CSpace. Must be at a depth equivalent to the wordsize.
seL4_Word index CPtr to the destination slot. Resolved from the root of

the destination CSpace.
seL4_Uint8 depth Number of bits of index to resolve to find the destination

slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The root, index, or depth is invalid (see Section 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

on x86, an IOAPIC is being used.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The irq is invalid for the target architecture. Or, on x86, irq

is not in the ISA IRQ range. Or, depth is invalid (see Sec-
tion 3.3).

seL4_RevokeFirst An IRQ handler capability for irq has already been created.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 83

10.3.4 seL4_IRQHandler

10.3.4.1 Acknowledge

static inline int seL4_IRQHandler_Ack

Acknowledge the receipt of an interrupt and re-enable it

Type Name Description

seL4_IRQHandler _service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.4.2 Clear

static inline int seL4_IRQHandler_Clear

Clear the handler capability from the IRQ slot

Type Name Description

seL4_IRQHandler _service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

84 CHAPTER 10. SEL4 API REFERENCE

10.3.4.3 Set Notification

static inline int seL4_IRQHandler_SetNotification

Set the notification which the kernel will signal on interrupts controlled by the supplied IRQ han-
dler capability

Type Name Description

seL4_IRQHandler _service The IRQ handler capability.
seL4_CPtr notification The notification which the IRQs will signal.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or notification is a CPtr to a capability of

the wrong type. Or, notification does not have the Write
right (see Section 3.1.4).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 85

10.3.5 seL4_SchedContext (MCS)

10.3.5.1 Bind

static inline int seL4_SchedContext_Bind

Bind an object to a scheduling context. The object can be a notification object or a thread.

If the object is a thread and the thread is in a runnable state and the scheduling context has
available budget, this will start the thread running.

If the object is a notification, when passive threads wait on the notification object and a signal
arrives, the passive thread will receive the scheduling context and possess it until it waits on
the notification object again.

This operation will fail for notification objects if the scheduling context is already bound to a
notification object, and for thread objects if the scheduling context is already bound to a thread.

Type Name Description

seL4_SchedContext _service Capability to the scheduling context which is being
operated on.

seL4_CPtr cap Capability to a TCB or a notification object

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
Or, _service or cap is already bound to the same type of
object. Or, cap is a TCB in the blocked state and _service
is not schedulable.

seL4_InvalidCapability The _service or cap is a CPtr to a capability of the wrong
type.

86 CHAPTER 10. SEL4 API REFERENCE

10.3.5.2 Consumed

static inline seL4_SchedContext_Consumed_t seL4_SchedContext_Consumed

Return the amount of time used by this scheduling context since this function was last called
or a timeout exception triggered.

Type Name Description

seL4_SchedContext _service Capability to the scheduling context which is being
operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.5.3 Unbind Object

static inline int seL4_SchedContext_UnbindObject

Unbind an object from a scheduling context. The object can be either a thread or a notification.

If the thread being unbound is the thread that is bound to this scheduling context, this will render
the thread passive. However if the thread being unbound received the scheduling context via
scheduling context donation over IPC, the scheduling context will be returned to the thread that
it was originally bound to.

If the object is a notification and it is bound to the scheduling context, unbind it.

Type Name Description

seL4_SchedContext _service Capability to the scheduling context which is being
operated on.

seL4_CPtr cap Capability to a notification that is bound to the
scheduling context or capability to a TCB that is
bound to this scheduling context or has received it
through scheduling context donation.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.8

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
cap is not bound to _service. Or, cap is the current thread’s
TCB.

seL4_InvalidCapability The _service or cap is a CPtr to a capability of the wrong
type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 87

10.3.5.4 Unbind

static inline int seL4_SchedContext_Unbind

Unbind any objects (threads or notification objects) from a scheduling context. This will render
the bound thread passive, see Section 6.1.5.

Type Name Description

seL4_SchedContext _service Capability to the scheduling context which is being
operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the current thread’s TCB is bound to _service.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.5.5 Yield To

static inline seL4_SchedContext_YieldTo_t seL4_SchedContext_YieldTo

If a thread is currently runnable and running on this scheduling context and the scheduling con-
text has available budget, place it at the head of the scheduling queue. If the caller is at an equal
priority to the thread this will result in the thread being scheduled. If the caller is at a higher pri-
ority the thread will not run until the threads priority is the highest priority in the system. The
caller must have a maximum control priority greater than or equal to the threads priority.

Type Name Description

seL4_SchedContext _service Capability to the scheduling context which is being
operated on.

Return value: See Section 6.1.7

Description: Capability to the scheduling context which is being operated on.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is not bound to a TCB or is bound to the current
thread’s TCB. Or, the target thread’s priority is greater than
the current thread’s maximum controlled priority (see Sec-
tion 6.1.5).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

88 CHAPTER 10. SEL4 API REFERENCE

10.3.6 seL4_SchedControl (MCS)

10.3.6.1 Configure Flags

static inline int seL4_SchedControl_ConfigureFlags

Set the parameters of a scheduling context by invoking the scheduling control capability. If the
scheduling context is bound to a currently running thread, the parameters will take effect im-
mediately: that is the current budget will be increased or reduced by the difference between the
new and previous budget and the replenishment time will be updated according to any differ-
ence in the period. This can result in active threads being post-poned or released depending
on the nature of the parameter change and the state of the thread. Additionally, if the schedul-
ing context was previously empty (no budget) but bound to a runnable thread, this can result
in a thread running for the first time since it now has access to CPU time. This call will return
seL4 Invalid Argument if the parameters are too small (smaller than the kernel WCET for this
platform) or too large (will overflow the timer).

Type Name Description

seL4_SchedControl _service Capability to a scheduling control object.
seL4_SchedContext schedcontext Capability to the scheduling context which is

being operated on.
seL4_Time budget Timeslice in microseconds, when the budget

expires the thread will be pre-empted.
seL4_Time period Period in microseconds, if equal to budget, this

thread will be treated as a round-robin thread.
Otherwise, sporadic servers will be used to as-
sure the scheduling context does not exceed
the budget over the specified period.

seL4_Word extra_refills Number of extra sporadic replenishments this
scheduling context should use. Ignored for
round-robin threads.

seL4_Word badge Identifier for this scheduling context. Delivered
to timeout exception handler. Can be used to
determine which scheduling context triggered
the timeout.

seL4_Word flags Bitwise OR’d set of seL4_SchedContextFlag.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or schedcontext is a CPtr to a capability of

the wrong type.
seL4_RangeError The budget or period or extra_refills is too big or too

small. Or, budget is greater than period.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 89

10.3.7 seL4_TCB

10.3.7.1 Bind Notification

static inline int seL4_TCB_BindNotification

Binds a notification object to a TCB

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_CPtr notification Notification to bind.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 5.3

Error Code Possible Cause

seL4_IllegalOperation The _service or notification is a CPtr to a capability of
the wrong type. Or, _service or notification is already
bound. Or, notification does not have Read rights to the
Notification (see Section 3.1.4).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

90 CHAPTER 10. SEL4 API REFERENCE

10.3.7.2 Configure Single Stepping

static inline seL4_TCB_ConfigureSingleStepping_t seL4_TCB_ConfigureSingleStepping

Set or modify single stepping options for the target TCB. Subsequent calls to this function over-
write previous configuration. Depending on your processor architecture, this may or may not
require the consumption of a hardware register.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will be

a positive integer, with values ranging from 0 to
seL4_NumHWBreakpoints - 1.

seL4_Word num_instructions Number of instructions to step over before deliver-
ing a fault to the target thread’s fault endpoint. Set-
ting this to 0 disables single-stepping.

Return value: A seL4_TCB_ConfigureSingleStepping_t: Struct that contains seL4_Error er-
ror, an seL4 API error value, seL4_Bool bp_was_consumed, a boolean which indicates whether
or not the bp_num breakpoint ID that was passed to the function, was consumed in the setup of
the single-stepping functionality: if this is true, the caller should not attempt to re-use bp_num
until it has disabled the single-stepping functionality via a subsequent call to seL4_TCB_Config-
ureSingleStepping with an num_instructions argument of 0.

Description: See Sections 6.2.5 and 6.2.4

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the argument values are inappropriate for the target archi-
tecture.

seL4_InvalidArgument The argument values are inappropriate for the target archi-
tecture.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 91

10.3.7.3 Configure

static inline int seL4_TCB_Configure

Set the parameters of a TCB

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word fault_ep CPtr to the endpoint which receives IPCs when this

thread faults. This capability is in the CSpace of the
thread being configured.

seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of the new

root CNode. If set to zero, this parameter has no ef-
fect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.
seL4_Word buffer Location of the thread’s IPC buffer. Must be 512-byte

aligned. The IPC buffer may not cross a page bound-
ary.

seL4_CPtr bufferFrame Capability to a page containing the thread’s IPC
buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service, bufferFrame, cspace_root, or vspace_root
is a CPtr to a capability of the wrong type. Or, vspace_root
is not assigned to an ASID pool. Or, cspace_root_data is
invalid. Or, buffer is not aligned. Or, bufferFrame is retyped
from a device untyped (see Section 2.4).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst The bufferFrame, cspace_root, or vspace_root is a CPtr to

a capability of the wrong type.

92 CHAPTER 10. SEL4 API REFERENCE

10.3.7.4 Copy Registers

static inline int seL4_TCB_CopyRegisters

Copy the registers from one thread to another

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
This is the destination TCB.

seL4_TCB source Cap to the source TCB.
seL4_Bool suspend_source The invocation should also suspend the source

thread.
seL4_Bool resume_target The invocation should also resume the destination

thread.
seL4_Bool transfer_frame Frame registers should be transferred.
seL4_Bool transfer_integer Integer registers should be transferred.
seL4_Uint8 arch_flags Architecture dependent flags. These have no mean-

ing on x86, ARM, and RISC-V.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: In the context of this function, frame registers are those that are read, modified
or preserved by a system call and integer registers are those that are not. Refer to the seL4
userland library source for specifics. Section 6.1.3

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or source is a CPtr to a capability of thewrong

type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 93

10.3.7.5 Get Breakpoint

static inline seL4_TCB_GetBreakpoint_t seL4_TCB_GetBreakpoint

Read a breakpoint or watchpoint’s current configuration.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will be a positive

integer, with values ranging from 0 to seL4_NumHWBreak-
points - 1.

Return value: A seL4_TCB_GetBreakpoint_t: Struct that contains seL4_Error error, an seL4
API error value, seL4_Word vaddr, the virtual address at which the breakpoint will currently be
triggered; seL4_Word type, the type of operation which will currently trigger the breakpoint,
whether instruction execution, or data access; seL4_Word size, integer value for the span-size
of the breakpoint. Usually a power of two (1, 2, 4, etc.); seL4_Word rw, the access direction that
will currently trigger the breakpoint, whether read, write, or both and seL4_Bool is_enabled,
which indicates whether or not the breakpoint will currently be triggered if the match conditions
are met.

Description: See Section 6.2.4

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The argument values are inappropriate for the target archi-

tecture.

94 CHAPTER 10. SEL4 API REFERENCE

10.3.7.6 Read Registers

static inline int seL4_TCB_ReadRegisters

Read a thread’s registers into the first count fields of a given seL4_UserContext

Type Name Description

seL4_TCB _service Capability to the TCBwhich is being operated
on.

seL4_Bool suspend_source The invocation should also suspend the
source thread.

seL4_Uint8 arch_flags Architecture dependent flags. These have no
meaning on x86, ARM, and RISC-V.

seL4_Word count The number of registers to read.
seL4_UserContext * regs The structure to read the registers into.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.13

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is the current thread’s TCB.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The count requested too few or too many registers.

10.3.7.7 Resume

static inline int seL4_TCB_Resume

Resume a thread

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.3

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 95

10.3.7.8 Set Breakpoint

static inline int seL4_TCB_SetBreakpoint

Set or modify a thread’s breakpoints or watchpoints. Calls to this function overwrite previous
configurations for the target breakpoint. Do not use this with seL4_SingleStep: the API will
reject the call and return an error. Instead, use seL4_TCB_ConfigureSingleStepping to configure
single-stepping.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will be a positive

integer, with values ranging from 0 to seL4_NumHWBreak-
points - 1.

seL4_Word vaddr A virtual address which forms part of the match conditions
for the triggering of the breakpoint.

seL4_Word type One of: seL4_InstructionBreakpoint, which specifies that the
breakpoint should occur on instruction execution at the spec-
ified vaddr or seL4_DataBreakpoint, which states that the
breakpoint should occur on data access at the specified
vaddr.

seL4_Word size A positive integer indicating the trigger-span of the watch-
point. Must be zero when ’type’ is seL4_InstructionBreak-
point.

seL4_Word rw One of seL4_BreakOnRead, meaning the breakpoint will only
be triggered on read-access; seL4_BreakOnWrite meaning
the breakpoint will only be triggered on write-access, and
seL4_BreakOnReadWritemeaning the breakpoint will be trig-
gered on any access.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.2.4

Error Code Possible Cause

seL4_AlignmentError The vaddr is not aligned to size bytes.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The bp_num, size, or rw is not valid for the given type. Or, ar-

gument values are inappropriate for the target architecture.
Or, vaddr is in the kernel virtual address range.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The argument values are inappropriate for the target archi-

tecture.

96 CHAPTER 10. SEL4 API REFERENCE

10.3.7.9 Set CPU Affinity

static inline int seL4_TCB_SetAffinity

Change a thread’s current CPU in multicore machine

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word affinity The thread’s new CPU to run.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
affinity is not a valid CPU number.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.7.10 Set IPC Buffer

static inline int seL4_TCB_SetIPCBuffer

Set a thread’s IPC buffer

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word buffer Location of the thread’s IPC buffer. Must be 512-byte

aligned. The IPC buffer may not cross a page boundary.
seL4_CPtr bufferFrame Capability to a page containing the thread’s IPC buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Sections 6.1 and 4.1

Error Code Possible Cause

seL4_AlignmentError The buffer is not aligned.
seL4_IllegalOperation The _service or bufferFrame is a CPtr to a capability of

the wrong type. Or, bufferFrame is retyped from a device
untyped (see Section 2.4).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst The bufferFrame is a CPtr to a capability of the wrong type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 97

10.3.7.11 Set Maximum Controlled Priority

static inline int seL4_TCB_SetMCPriority

Change a thread’s maximum controlled priority

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when setting the

MCP.
seL4_Word mcp The thread’s new maximum controlled priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.5

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or authority is a CPtr to a capability of the

wrong type.
seL4_RangeError The mcp is greater than the maximum controlled priority of

authority.

10.3.7.12 Set Priority

static inline int seL4_TCB_SetPriority

Change a thread’s priority

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when setting the

priority.
seL4_Word priority The thread’s new priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.5

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or authority is a CPtr to a capability of the

wrong type.
seL4_RangeError The priority is greater than themaximum controlled prior-

ity of authority.

98 CHAPTER 10. SEL4 API REFERENCE

10.3.7.13 Set Sched Params

static inline int seL4_TCB_SetSchedParams

Change a thread’s priority and maximum controlled priority.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when setting the

priority and MCP.
seL4_Word mcp The thread’s new maximum controlled priority.
seL4_Word priority The thread’s new priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.5

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or authority is a CPtr to a capability of the

wrong type.
seL4_RangeError The mcp is greater than the maximum controlled priority of

authority. Or, priority is greater than the maximum con-
trolled priority of authority.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 99

10.3.7.14 Set Space

static inline int seL4_TCB_SetSpace

Set the fault endpoint, CSpace and VSpace of a thread

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word fault_ep CPtr to the endpoint which receives IPCs when this

thread faults. This capability is in the CSpace of the
thread being configured.

seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of the new

root CNode. If set to zero, this parameter has no ef-
fect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service, cspace_root, or vspace_root is a CPtr to
a capability of the wrong type. Or, vspace_root is not as-
signed to an ASID pool. Or, cspace_root_data is invalid.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst The cspace_root or vspace_root is a CPtr to a capability of

the wrong type.

100 CHAPTER 10. SEL4 API REFERENCE

10.3.7.15 Set TLS Base

static inline int seL4_TCB_SetTLSBase

Set the TLS base of the target TCB.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word tls_base The TLS base to set.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: An invocation for setting the Thread Local Storage (TLS) base address. This en-
sures that across all platforms, the TLSBase register is viewed as being completely mutable,
just like all of the general purpose registers, even on platforms where modification is a privi-
leged operation.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.7.16 Suspend

static inline int seL4_TCB_Suspend

Suspend a thread

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.3

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 101

10.3.7.17 Unbind Notification

static inline int seL4_TCB_UnbindNotification

Unbinds any notification object from a TCB

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 5.3

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is not bound to a notification.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3.7.18 Unset Breakpoint

static inline int seL4_TCB_UnsetBreakpoint

Disables a hardware breakpoint or watchpoint. The caller should assume that the underlying
configuration of the hardware registers has also been cleared. Do not use this to clear single-
stepping: the API will reject the call and return an error. Instead, use seL4_TCB_ConfigureSin-
gleStepping to disable single-stepping.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will be a positive

integer, with values ranging from 0 to seL4_NumHWBreak-
points - 1.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.2.4

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
the argument values are inappropriate for the target archi-
tecture.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The argument values are inappropriate for the target archi-

tecture.

102 CHAPTER 10. SEL4 API REFERENCE

10.3.7.19 Write Registers

static inline int seL4_TCB_WriteRegisters

Set a thread’s registers to the first count fields of a given seL4_UserContext

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated
on.

seL4_Bool resume_target The invocation should also resume the desti-
nation thread.

seL4_Uint8 arch_flags Architecture dependent flags. These have no
meaning on x86, ARM, and RISC-V.

seL4_Word count The number of registers to be set.
seL4_UserContext * regs Data structure containing the new register val-

ues.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.13

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is the current thread’s TCB.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 103

10.3.8 seL4_TCB (MCS)

10.3.8.1 Configure (MCS)

static inline int seL4_TCB_Configure

Set the parameters of a TCB

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of the new

root CNode. If set to zero, this parameter has no ef-
fect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.
seL4_Word buffer Location of the thread’s IPC buffer. Must be 512-byte

aligned. The IPC buffer may not cross a page bound-
ary.

seL4_CPtr bufferFrame Capability to a page containing the thread’s IPC
buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_AlignmentError The buffer is not aligned.
seL4_IllegalOperation The _service, bufferFrame, cspace_root, or vspace_root

is a CPtr to a capability of the wrong type. Or, vspace_root
is not assigned to an ASID pool. Or, cspace_root_data is
invalid. Or, bufferFrame is retyped from a device untyped
(see Section 2.4).

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst The bufferFrame, cspace_root, or vspace_root is a CPtr to

a capability of the wrong type.

104 CHAPTER 10. SEL4 API REFERENCE

10.3.8.2 Set Sched Params (MCS)

static inline int seL4_TCB_SetSchedParams

Change a thread’s priority, maximum controlled priority, scheduling context and fault handler.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when setting

the priority and MCP.
seL4_Word mcp The thread’s new maximum controlled priority.
seL4_Word priority The thread’s new priority.
seL4_CPtr sched_context Capability to the scheduling context that the TCB should

run on. If the scheduling context is already bound to a
notification or TCB that is not this TCB this operation will
fail. Similarly, if this TCB is already bound to a scheduling
context that is not this scheduling context, this will also
fail.

seL4_CPtr fault_ep CPtr to the endpointwhich receives IPCswhen this thread
faults.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1.5

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
Or, _service or sched_context is already bound. Or, _ser-
vice is the current thread’s TCB. Or, _service is a TCB in the
blocked state and sched_context is not schedulable.

seL4_InvalidCapability The _service, authority, sched_context, or fault_ep is a
CPtr to a capability of thewrong type. Or, fault_ep does not
have both Write rights and either Grant or GrantReply rights
to the Endpoint (see Section 3.1.4).

seL4_RangeError The mcp is greater than the maximum controlled priority of
authority. Or, priority is greater than the maximum con-
trolled priority of authority.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 105

10.3.8.3 Set Space (MCS)

static inline int seL4_TCB_SetSpace

Set the fault endpoint, CSpace and VSpace of a thread

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_CPtr fault_ep CPtr to the endpoint which receives IPCs when this

thread faults. On MCS this cap gets copied into the
TCB.

seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of the new

root CNode. If set to zero, this parameter has no ef-
fect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.1

Error Code Possible Cause

seL4_IllegalOperation The _service, cspace_root, or vspace_root is a CPtr to
a capability of the wrong type. Or, vspace_root is not as-
signed to an ASID pool. Or, cspace_root_data is invalid.

seL4_InvalidCapability The _service or fault_ep is a CPtr to a capability of the
wrong type. Or, fault_ep does not have both Write rights
and either Grant or GrantReply rights to the Endpoint (see
Section 3.1.4).

seL4_RevokeFirst The cspace_root or vspace_root is a CPtr to a capability of
the wrong type.

106 CHAPTER 10. SEL4 API REFERENCE

10.3.8.4 Set Timeout Endpoint

static inline int seL4_TCB_SetTimeoutEndpoint

Set a thread’s timeout endpoint.

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_CPtr timeout_fault_ep CPtr to the endpoint which receives IPCs when this

thread triggers timeout faults. Can be null.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Timeout exception messages will be delivered to this endpoint if it is not a null
capability.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or timeout_fault_ep is a CPtr to a capabil-

ity of the wrong type. Or, timeout_fault_ep does not have
bothWrite rights and either Grant or GrantReply rights to the
Endpoint (see Section 3.1.4).

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 107

10.3.9 seL4_Untyped

10.3.9.1 Retype

static inline int seL4_Untyped_Retype

Retype an untyped object

Type Name Description

seL4_Untyped _service CPtr to an untyped object.
seL4_Word type The seL4 object type that we are retyping to.
seL4_Word size_bits Used to determine the size of variable-sized objects.
seL4_CNode root CPtr to the CNode at the root of the destination CSpace.
seL4_Word node_index CPtr to the destination CNode. Resolved relative to the

root parameter.
seL4_Word node_depth Number of bits of node_index to translate when ad-

dressing the destination CNode.
seL4_Word node_offset Number of slots into the node at which capabilities start

being placed.
seL4_Word num_objects Number of capabilities to create.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Given a capability, _service, to an untyped object, creates num_objects of the re-
quested type. Creates num_objects capabilities to the new objects starting at node_offset in
the CNode specified by root, node_index, and node_depth.

For variable-sized kernel objects, the size_bits argument is used to determine the size of ob-
jects to create. The relationship between size_bits and object size depends on the type of ob-
ject being created. See Section 2.4.2 for more information about object sizes. See Section 2.4
for more information about how untyped memory is retyped. See Section 3.1.3 for more infor-
mation about the placement of capabilities to created objects.

Error Code Possible Cause

seL4_DeleteFirst A capability exists in the destination window of the CNode.
seL4_FailedLookup The root, node_index, or node_depth is invalid (see Sec-

tion 3.3).
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The size_bits is too big or too small for the requested ob-

ject type. Or, type cannot be created from a device untyped
(see Section 2.4). Or, the requested object type does not
exist.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_NotEnoughMemory The total size of the new objects exceeds the space avail-

able.
seL4_RangeError The num_objects do not fit in the destination CNode at

node_offset. Or, num_objects is greater than CONFIG_RE-
TYPE_FAN_OUT_LIMIT. Or, size_bits is too large.

108 CHAPTER 10. SEL4 API REFERENCE

10.4 x86-Specific Object Methods

10.4.1 seL4_IRQControl

10.4.1.1 Get I/O APIC Handler

static inline int seL4_IRQControl_GetIOAPIC

Create an IRQ handler capability for an interrupt from an IOAPIC.

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_CNode root CPtr to the CNode that forms the root of the destination
CSpace. Must be at a depth equivalent to the wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the root of
the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the destination
slot.

seL4_Word ioapic Zero based index of IOAPIC to get interrupt from, or-
dered the same as in ACPI tables

seL4_Word pin IOAPIC pin that generates the interrupt.
seL4_Word level Indicates whether the IOAPIC should be programmed to

treat this interrupt as level triggered.
seL4_Word polarity Indicates whether the IOAPIC should be programmed to

treat this interrupt as high or low triggered
seL4_Word vector CPU vector to deliver the interrupt to.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1 and Section 8.2.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

an IOAPIC is not in use.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The vector, ioapic, or pin is invalid. Or, level or polarity

is not 0 or 1. Or, depth is invalid (see Section 3.3).
seL4_RevokeFirst An IRQ handler capability for vector has already been cre-

ated.

10.4. X86-SPECIFIC OBJECT METHODS 109

10.4.1.2 Get MSI Handler

static inline int seL4_IRQControl_GetMSI

Create an IRQ handler capability for an interrupt from an MSI.

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_CNode root CPtr to the CNode that forms the root of the destination
CSpace. Must be at a depth equivalent to the wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the root of
the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the destination
slot.

seL4_Word pci_bus PCI bus ID of the device that will generate the interrupt.
seL4_Word pci_dev PCI device ID of the device that will generate the inter-

rupt.
seL4_Word pci_func PCI function ID of the device that will generate the inter-

rupt.
seL4_Word handle Value of the handle programmed into the data portion

of the MSI.
seL4_Word vector CPU vector to deliver the interrupt to.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1 and Section 8.2.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

an IOAPIC is not in use.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The vector, pic_bus, pci_dev, or pci_func is invalid. Or, the

depth is invalid (see Section 3.3).
seL4_RevokeFirst An IRQ handler capability for vector has already been cre-

ated.

110 CHAPTER 10. SEL4 API REFERENCE

10.4.2 seL4_TCB

10.4.2.1 Set EPT Root

static inline int seL4_TCB_SetEPTRoot

Set the EPT root of a thread

Type Name Description

seL4_TCB _service Capability to the TCB which is being operated on.
seL4_X86_EPTPML4 eptpml4 CPtr to an EPT PML4 object to act as the guest mode

vspace root

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 6.4.

Error Code Possible Cause

seL4_IllegalOperation The _service or eptpml4 is a CPtr to a capability of the
wrong type. Or, eptpml4 is not assigned to an ASID pool.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4. X86-SPECIFIC OBJECT METHODS 111

10.4.3 seL4_X86_ASIDControl

10.4.3.1 Make Pool

static inline int seL4_X86_ASIDControl_MakePool

Create an X86 ASID pool.

Type Name Description

seL4_X86_ASIDControl _service The master ASIDControl capability.
seL4_Untyped untyped Capability to an untyped memory object that will

become the pool. Must be 4K bytes.
seL4_CNode root CPtr to the CNode that forms the root of the des-

tination CSpace. Must be at a depth equivalent to
the wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the
root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the des-
tination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Together with a capability to Untyped Memory, which is passed as an argument,
create an ASID Pool. The untyped capability must represent a 4K memory object. This will
create an ASID pool with enough space for 1024 VSpaces.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability. Or, there are no
more ASID pools available.

seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a
CPtr to a capability of the wrong type.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or untyped is a CPtr to a capability of the

wrong type. Or, untyped is not the exact size of an ASID pool
object. Or, untyped is a device untyped (see Section 2.4).

seL4_RangeError The depth is invalid (see Section 3.3).
seL4_RevokeFirst The untyped has been used to retype an object. Or, a copy

of the untyped capability exists.

112 CHAPTER 10. SEL4 API REFERENCE

10.4.4 seL4_X86_ASIDPool

10.4.4.1 Assign

static inline int seL4_X86_ASIDPool_Assign

Assign an ASID pool.

Type Name Description

seL4_X86_ASIDPool _service The ASID pool which is being assigned to. Must not
be full. Each ASID pool can contain 1024 entries.

seL4_CPtr vspace The page directory that is being assigned to an ASID
pool. Must not already be assigned to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Assigns an ASID to the VSpace associated with the Page Directory passed in as
an argument.

Error Code Possible Cause

seL4_DeleteFirst There are no more ASIDs available in _service.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is already assigned to an ASID pool.

10.4. X86-SPECIFIC OBJECT METHODS 113

10.4.5 seL4_X86_EPTPD

10.4.5.1 Map

static inline int seL4_X86_EPTPD_Map

Map an EPT page directory.

Type Name Description

seL4_X86_EPTPD _service Capability to the EPT PD being operated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will contain the

mapping
seL4_Word gpa Guest physical address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in eptpml4 at gpa.
seL4_FailedLookup The eptpml4 is not assigned to an ASID pool. Or, eptpml4

does not have an EPTPDPT mapped at gpa.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or eptpml4 is a CPtr to a capability of the

wrong type. Or, _service is already mapped in a VSpace.
Or, eptpml4 is not assigned to an ASID pool.

10.4.5.2 Unmap

static inline int seL4_X86_EPTPD_Unmap

Unmap an EPT page directory.

Type Name Description

seL4_X86_EPTPD _service Capability to the EPT PD being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

114 CHAPTER 10. SEL4 API REFERENCE

10.4.6 seL4_X86_EPTPDPT

10.4.6.1 Map

static inline int seL4_X86_EPTPDPT_Map

Map an EPT page directory page table.

Type Name Description

seL4_X86_EPTPDPT _service Capability to the EPT PDPT being operated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will contain the

mapping
seL4_Word gpa Guest physical address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in eptpml4 at gpa.
seL4_FailedLookup The eptpml4 is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or eptpml4 is a CPtr to a capability of the

wrong type. Or, _service is already mapped in a VSpace.
Or, eptpml4 is not assigned to an ASID pool.

10.4.6.2 Unmap

static inline int seL4_X86_EPTPDPT_Unmap

Unmap an EPT page directory page table.

Type Name Description

seL4_X86_EPTPDPT _service Capability to the EPT PDPT being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

10.4. X86-SPECIFIC OBJECT METHODS 115

10.4.7 seL4_X86_EPTPT

10.4.7.1 Map

static inline int seL4_X86_EPTPT_Map

Map an EPT page table.

Type Name Description

seL4_X86_EPTPT _service Capability to the EPT PT being operated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will contain the

mapping
seL4_Word gpa Guest physical address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in eptpml4 at gpa.
seL4_FailedLookup The eptpml4 is not assigned to an ASID pool. Or, eptpml4

does not have an EPTPD mapped at gpa.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or eptpml4 is a CPtr to a capability of the

wrong type. Or, _service is already mapped in a VSpace.
Or, eptpml4 is not assigned to an ASID pool.

10.4.7.2 Unmap

static inline int seL4_X86_EPTPT_Unmap

Unmap an EPT page table.

Type Name Description

seL4_X86_EPTPT _service Capability to the EPT PT being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

116 CHAPTER 10. SEL4 API REFERENCE

10.4.8 seL4_X86_IOPageTable

10.4.8.1 Map

static inline int seL4_X86_IOPageTable_Map

Map an IO page table into an IOSpace.

Type Name Description

seL4_X86_IOPageTable _service Capability to the I/O page table being operated on.
seL4_X86_IOSpace iospace The IOSpace to map the page table into.
seL4_Word ioaddr The address to map the page table at.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.3

Error Code Possible Cause

seL4_DeleteFirst All required page tables are already mapped in iospace at
ioaddr.

seL4_FailedLookup The iospace does not have a paging structure at the re-
quired level mapped at ioaddr.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or iospace is a CPtr to a capability of the

wrong type. Or, iospace is not assigned to a PCI device.
Or, _service is already mapped in an IOSpace.

10.4.8.2 Unmap

static inline int seL4_X86_IOPageTable_Unmap

Unmap an IO page table from an IOSpace.

Type Name Description

seL4_X86_IOPageTable _service Capability to the I/O page table being operated
on.The page table to unmap.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.3

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4. X86-SPECIFIC OBJECT METHODS 117

10.4.9 seL4_X86_IOPort

10.4.9.1 In16

static inline seL4_X86_IOPort_In16_t seL4_X86_IOPort_In16

Read 16 bits from an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In16_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
Or, reading from port and port+1 is not authorized by the
capability.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.9.2 In32

static inline seL4_X86_IOPort_In32_t seL4_X86_IOPort_In32

Read 32 bits from an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In32_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
reading from ports port through port+3 is not authorized
by the capability.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

118 CHAPTER 10. SEL4 API REFERENCE

10.4.9.3 In8

static inline seL4_X86_IOPort_In8_t seL4_X86_IOPort_In8

Read 8 bits from an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In8_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
reading from port is not authorized by the capability.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.9.4 Out16

static inline int seL4_X86_IOPort_Out16

Write 16 bits to an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
writing to port and port+1 is not authorized by the capabil-
ity.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4. X86-SPECIFIC OBJECT METHODS 119

10.4.9.5 Out32

static inline int seL4_X86_IOPort_Out32

Write 32 bits to an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
writing to ports port through port+3 is not authorized by
the capability.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.9.6 Out8

static inline int seL4_X86_IOPort_Out8

Write 8 bits to an IO port.

Type Name Description

seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
writing to port is not authorized by the capability.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

120 CHAPTER 10. SEL4 API REFERENCE

10.4.10 seL4_X86_IOPortControl

10.4.10.1 Issue

static inline int seL4_X86_IOPortControl_Issue

Issue an IO port sub range.

Type Name Description

seL4_X86_IOPortControl _service Control capability for I/O ports.
seL4_Word first_port First port of the range of the issued capability.
seL4_Word last_port Last port of the range of the issued capability.
seL4_CNode root CPtr to the CNode that forms the root of the

destination CSpace.
seL4_Word index CPtr to the destination slot. Resolved from

the root of the destination CSpace.
seL4_Uint8 depth Number of bits of index to resolve to find the

destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.2

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The last_port is less than first_port.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).
seL4_RevokeFirst One or more ports in the requested range have already been

issued.

10.4. X86-SPECIFIC OBJECT METHODS 121

10.4.11 seL4_X86_Page

10.4.11.1 Get Address

static inline seL4_X86_Page_GetAddress_t seL4_X86_Page_GetAddress

Get the physical address of the underlying frame.

Type Name Description

seL4_X86_Page _service Capability to the page being operated on.

Return value: A seL4_IA32_Page_GetAddress_t struct that contains a seL4_Word paddr, which
holds the physical address of the page, and int error. See Section 10.1 for a description of the
message register and tag contents upon error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

122 CHAPTER 10. SEL4 API REFERENCE

10.4.11.2 Map EPT

static inline int seL4_X86_Page_MapEPT

Map an extended page table.

Type Name Description

seL4_X86_Page _service Capability to the page being operated on.
seL4_X86_EPTPML4 vspace Capability to the VSpace which will contain the

mapping
seL4_Word vaddr Virtual address at which to map page.
seL4_CapRights_t rights Rights for the mapping. Possible values for this

type are given in Section 3.1.4.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_AlignmentError The vaddr is not aligned to the page size of _service.
seL4_DeleteFirst A mapping already exists in vspace at vaddr.
seL4_FailedLookup The vspace does not have a paging structure at the required

levelmapped at vaddr. Or, vspace is not assigned to anASID
pool.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped. Or, _service has an unsupported
page size.

10.4. X86-SPECIFIC OBJECT METHODS 123

10.4.11.3 Map I/O

static inline int seL4_X86_Page_MapIO

Map a page into an IOSpace.

Type Name Description

seL4_X86_Page _service Capability to the page being operated on.
seL4_X86_IOSpace iospace The IOSpace that the frame is being mapped into
seL4_CapRights_t rights Rights for the mapping. Possible values for this type

are given in Section 3.1.4
seL4_Word ioaddr The address that the frame is being mapped at.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists in iospace at ioaddr.
seL4_FailedLookup The iospace does not have a sufficient number of IO Page

Tables mapped at ioaddr.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument No rights were specified in rights. Or, the rights in the _-

service capability do not include rights.
seL4_InvalidCapability The _service or iospace is a CPtr to a capability of the

wrong type. Or, _service is already mapped. Or, _service
is not a page of size 4 KiB. Or, iospace is not assigned to a
PCI device.

124 CHAPTER 10. SEL4 API REFERENCE

10.4.11.4 Map

static inline int seL4_X86_Page_Map

Map a page into an address space or update the mapping attributes.

Type Name Description

seL4_X86_Page _service Capability to the page being operated on.
seL4_CPtr vspace Capability to the VSpace which will contain the

mapping
seL4_Word vaddr Virtual address to map the page into.
seL4_CapRights_t rights Rights for the mapping. Possible values for this

type are given in Section 3.1.4
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes a VSpace capability, as an argument and installs a reference to the given Page
in the lowest-level unmapped paging structure corresponding to the given address, or updates
the mapping attributes if the page is already mapped at this address. If the required paging
structures are not present this operation will fail, returning a seL4_FailedLookup error.

Error Code Possible Cause

seL4_AlignmentError The vaddr is not aligned to the page size of _service.
seL4_DeleteFirst A mapping already exists in vspace at vaddr.
seL4_FailedLookup The vspace does not have a paging structure at the required

levelmapped at vaddr. Or, vspace is not assigned to anASID
pool.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is already mapped in an IOSpace.

seL4_InvalidArgument The _service is already mapped in vspace at a different vir-
tual address. Or, vaddr is in the kernel virtual address range.

seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong
type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a different VSpace.

10.4. X86-SPECIFIC OBJECT METHODS 125

10.4.11.5 Unmap

static inline int seL4_X86_Page_Unmap

Unmap a page.

Type Name Description

seL4_X86_Page _service Capability to the page being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Removes an existing mapping.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.12 seL4_X86_PageDirectory

10.4.12.1 Get Status Bits

static inline seL4_X86_PageDirectory_GetStatusBits_t seL4_X86_PageDirectory_GetSta-
tusBits

Retrieve the accessed and dirty bits of a page mapped into an address space.

Type Name Description

seL4_X86_PageDirectory _service Capability to the page directory being operated
on.Capability to the address space to query.

seL4_Word vaddr Virtual address of the page to query

Return value: A seL4_X86_PageDirectory_GetStatusBits_t structure.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The _service does not have a mapping at vaddr. Or, vaddr

is in the kernel virtual address range.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

126 CHAPTER 10. SEL4 API REFERENCE

10.4.12.2 Map

static inline int seL4_X86_PageDirectory_Map

Map a page directory.

Type Name Description

seL4_X86_PageDirectory _service Capability to the page directory being operated
on.

seL4_CPtr vspace Capability to the VSpace which will contain the
mapping

seL4_Word vaddr Virtual address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in vspace at vaddr.
seL4_FailedLookup The vspace does not have a PDPT mapped at vaddr. Or,

vspace is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a VSpace.

10.4.12.3 Unmap

static inline int seL4_X86_PageDirectory_Unmap

Unmap a page directory.

Type Name Description

seL4_X86_PageDirectory _service Capability to the page directory being operated
on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

10.4. X86-SPECIFIC OBJECT METHODS 127

10.4.13 seL4_X86_PageTable

10.4.13.1 Map

static inline int seL4_X86_PageTable_Map

Map a page table into an address space.

Type Name Description

seL4_X86_PageTable _service Capability to the page table being operated on.
seL4_CPtr vspace Capability to the VSpace which will contain the

mapping
seL4_Word vaddr Virtual address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes a PageDirectory capability as an argument, and installs a reference to the
invoked PageTable in a specified slot in the PageDirectory.

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in vspace at vaddr.
seL4_FailedLookup The vspace does not have a Page Directory mapped at

vaddr. Or, vspace is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a VSpace.

10.4.13.2 Unmap

static inline int seL4_X86_PageTable_Unmap

Unmap a page table from its address space and zero it out.

Type Name Description

seL4_X86_PageTable _service Capability to the page table being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Removes the reference to the invoked PageTable from its containing PageDirec-
tory. See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

128 CHAPTER 10. SEL4 API REFERENCE

10.4.14 seL4_X86_VCPU

10.4.14.1 Disable I/O Port

static inline int seL4_X86_VCPU_DisableIOPort

Disable I/O port range in privileged execution

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_Word low Start of the I/O port range to disable
seL4_Word high Last I/O port in the range to disable

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Disable a range of I/O ports for direct access by the execution mode in the VCPU.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.14.2 Enable I/O Port

static inline int seL4_X86_VCPU_EnableIOPort

Enable I/O port range in guest execution

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_X86_IOPort ioPort I/O port capability whose authority is being delegating
seL4_Word low Start of the I/O port range to enable
seL4_Word high Last I/O port in the range to enable

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Enables a range of I/O ports for direct access by the execution mode in the VCPU.
The requested port range must be a sub range of the provided I/O port capability.

This also establishes a link between the provided I/O port capability and the VCPU, see Sec-
tion 6.4 for details.

Error Code Possible Cause

seL4_IllegalOperation The _service or ioPort is a CPtr to a capability of thewrong
type.

seL4_InvalidArgument The low or high IO port exceeds the range authorized by
ioPort.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4. X86-SPECIFIC OBJECT METHODS 129

10.4.14.3 Read VMCS

static inline seL4_X86_VCPU_ReadVMCS_t seL4_X86_VCPU_ReadVMCS

Read VMCS field from the hardware

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to vmread instruction

Return value: A seL4_X86_VCPU_ReadVMCS_t struct that contains a seL4_Word value, which holds
the return result of the vmread instruction, and int error. See Section 10.1 for a description of
the message register and tag contents upon error.

Description: Thin wrapper around the vmread instruction that is performed on the VMCS region
that is part of the VCPU object. After validating that a legal field is requested the value of ‘vm-
read‘ is returned directly in the result.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
field is invalid or unsupported.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.14.4 Set TCB

static inline int seL4_X86_VCPU_SetTCB

Bind TCB to VCPU

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_TCB tcb CPtr of the TCB to bind to

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Configures the one-to-one binding of a VCPU and TCB, overwriting any previous
binding in both. See Section 6.4.

Error Code Possible Cause

seL4_IllegalOperation The _service or tcb is a CPtr to a capability of the wrong
type.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

130 CHAPTER 10. SEL4 API REFERENCE

10.4.14.5 Write Registers

static inline int seL4_X86_VCPU_WriteRegisters

Set guest mode registers to the fields of a given seL4_VCPUContext

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_VCPUContext * regs Data structure containing the new register values.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Sets the guest mode registers, which is any registers not already part of the VMCS.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.4.14.6 Write VMCS

static inline seL4_X86_VCPU_WriteVMCS_t seL4_X86_VCPU_WriteVMCS

Write VMCS field to the hardware

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to vmwrite instruction
seL4_Word value Value to write using vmwrite instruction

Return value: A seL4_X86_VCPU_WriteVMCS_t struct that contains a seL4_Word writen, which
holds the final value written with the vmwrite instruction, and int error. See Section 10.1 for a
description of the message register and tag contents upon error.

Description: Thinwrapper around the ‘vmwrite‘ instruction that is performed on the VMCS region
that is part of the VCPU object. As well as validating that a legal field is requested, the valuemay
be modified to ensure any bits that are fixed in the hardware are correct, and that any features
required for kernel correctness are not disabled (see Section 6.4).

The final value written to the hardware is returned and can be compared to the input parameter
to determine what bits the kernel changed.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
field is invalid or unsupported.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.5. IA32-SPECIFIC OBJECT METHODS 131

10.5 IA32-Specific Object Methods

No methods.

132 CHAPTER 10. SEL4 API REFERENCE

10.6 x86_64-Specific Object Methods

10.6.1 seL4_X86_PDPT

10.6.1.1 Map

static inline int seL4_X86_PDPT_Map

Map a page directory page table.

Type Name Description

seL4_X86_PDPT _service Capability to the PDPT being operated on.
seL4_X64_PML4 pml4 Capability to the VSpace which will contain the

mapping.
seL4_Word vaddr Virtual address at which to map page.
seL4_X86_VMAttributes attr VM attributes for the mapping. Possible values

for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in vspace at vaddr.
seL4_FailedLookup The pml4 is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or pml4 is a CPtr to a capability of the wrong

type. Or, pml4 is not assigned to an ASID pool. Or, _service
is already mapped in a VSpace.

10.6.1.2 Unmap

static inline int seL4_X86_PDPT_Unmap

Unmap a page directory page table.

Type Name Description

seL4_X86_PDPT _service Capability to the PDPT being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

10.6. X86_64-SPECIFIC OBJECT METHODS 133

10.6.2 seL4_X86_VCPU

10.6.2.1 Read MSR

static inline seL4_X86_VCPU_ReadMSR_t seL4_X86_VCPU_ReadMSR

Read 64-bit specific MSR field from the hardware

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to rdmsr instruction

Return value: A seL4_X86_VCPU_ReadMSR_t struct that contains a seL4_Word value, which holds
the return result of the rdmsr instruction, and int error. See Section 10.1 for a description of
the message register and tag contents upon error.

Description: Thin wrapper around the rdmsr instruction that is performed on specific, needed
registers. Certain registers might simply be cached and restored later.

10.6.2.2 Write MSR

static inline seL4_X86_VCPU_WriteMSR_t seL4_X86_VCPU_WriteMSR

Write 64-bit specific MSR field to the hardware

Type Name Description

seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to wrsmr instruction
seL4_Word value Value to write using wrsmr instruction

Return value: A seL4_X86_VCPU_WriteMSR_t struct that contains a seL4_Word writen, which
holds the final value written with the wrmsr instruction, and int error. See Section 10.1 for a
description of the message register and tag contents upon error.

Description: Thin wrapper around the wrmsr instruction that is performed on specific, needed
registers. As well as validating that a legal field is requested, the value may be modified to
ensure any bits that are fixed in the hardware are correct, and that any features required for
kernel correctness are not disabled (see Section 6.4).

The final value written to the hardware is returned and can be compared to the input parameter
to determine what bits the kernel changed.

134 CHAPTER 10. SEL4 API REFERENCE

10.7 Arm-Specific Object Methods

10.7.1 seL4_ARM_ASIDControl

10.7.1.1 Make Pool

static inline int seL4_ARM_ASIDControl_MakePool

Create an ASID Pool.

Type Name Description

seL4_ARM_ASIDControl _service Themaster ASIDControl capability being operated
on.

seL4_Untyped untyped Capability to an untyped memory object that will
become the pool. Must be 4K bytes.

seL4_CNode root CPtr to the CNode that forms the root of the des-
tination CSpace. Must be at a depth equivalent to
the wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the
root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the des-
tination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Together with a capability to Untyped Memory, which is passed as an argument,
create an ASID Pool. The untyped capability must represent a 4K memory object. This will
create an ASID pool with enough space for 1024 VSpaces.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability. Or, there are no
more ASID pools available.

seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a
CPtr to a capability of the wrong type.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or untyped is a CPtr to a capability of the

wrong type. Or, untyped is not the exact size of an ASID pool
object. Or, untyped is a device untyped (see Section 2.4).

seL4_RangeError The depth is invalid (see Section 3.3).
seL4_RevokeFirst The untyped has been used to retype an object. Or, a copy

of the untyped capability exists.

10.7. ARM-SPECIFIC OBJECT METHODS 135

10.7.2 seL4_ARM_ASIDPool

10.7.2.1 ASID Pool Assign

static inline int seL4_ARM_ASIDPool_Assign

Assign an ASID Pool.

Type Name Description

seL4_ARM_ASIDPool _service The ASID pool which is being assigned to. Must not
be full. Each ASID pool can contain 1024 entries.

seL4_CPtr vspace The VSpace that is being assigned to an ASID pool.
Must not already be assigned to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Assigns an ASID to the VSpace passed in as an argument.

Error Code Possible Cause

seL4_DeleteFirst There are no more ASIDs available in _service.
seL4_FailedLookup The ASID pool of _service is no longer assigned.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is already assigned to an ASID pool.

10.7.3 seL4_ARM_CB

10.7.3.1 Assign VSpace

static inline int seL4_ARM_CB_AssignVspace

Assigning a VSpace to a context bank.

Type Name Description

seL4_ARM_CB _service ACB capability. This gives you the authority tomake this call.
seL4_CPtr vspace The VSpace that is being assigned to a context bank. Must

already has an assigned ASID.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.3.

Error Code Possible Cause

seL4_DeleteFirst The _service is already assigned to a VSpace.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool.

136 CHAPTER 10. SEL4 API REFERENCE

10.7.3.2 CB Clear Fault

static inline int seL4_ARM_CB_CBClearFault

Clear the fault status of the context bank.

Type Name Description

seL4_ARM_CB _service ACB capability. This gives you the authority tomake this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.3.3 CB Get Fault

static inline seL4_ARM_CB_CBGetFault_t seL4_ARM_CB_CBGetFault

Get the fault status of the context bank.

Type Name Description

seL4_ARM_CB _service ACB capability. This gives you the authority tomake this call.

Return value: A seL4_ARM_SMMU_CB_GetFault_t struct that contains a seL4_Word status, which
holds the fault status of the context bank, seL4_Word address, which holds the faulty address,
and int error. See Section 10.1 for a description of the message register and tag contents
upon error.

Description: See Section 8.3.1.7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7. ARM-SPECIFIC OBJECT METHODS 137

10.7.3.4 TLB Invalidate

static inline int seL4_ARM_CB_TLBInvalidate

Invalidating TLB entries used by the current ASID in this context bank.

Type Name Description

seL4_ARM_CB _service ACB capability. This gives you the authority tomake this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.6.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is not assigned to a VSpace.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.3.5 Unassign VSpace

static inline int seL4_ARM_CB_UnassignVspace

Unassigning a VSpace to a context bank.

Type Name Description

seL4_ARM_CB _service ACB capability. This gives you the authority tomake this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.3.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is not assigned to a VSpace.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

138 CHAPTER 10. SEL4 API REFERENCE

10.7.4 seL4_ARM_CBControl

10.7.4.1 Get CB

static inline int seL4_ARM_CBControl_GetCB

Create a CB capability.

Type Name Description

seL4_ARM_CBControl _service A CBControl capability. This gives you the authority
to make this call.

seL4_Word cb The CB that you want this capability to manage.
seL4_CNode root CPtr to the CNode that forms the root of the desti-

nation CSpace. Must be at a depth equivalent to the
wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the root
of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the desti-
nation slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.2.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3). Or, cb is invalid.
seL4_RevokeFirst A CB capability for cb has already been created.

10.7. ARM-SPECIFIC OBJECT METHODS 139

10.7.4.2 TLB Invalidate All

static inline int seL4_ARM_CBControl_TLBInvalidateAll

Invalidate all TLB entries.

Type Name Description

seL4_ARM_CBControl _service A CBControl capability. This gives you the authority
to make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.6.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.5 seL4_ARM_IOPageTable

10.7.5.1 Map

static inline int seL4_ARM_IOPageTable_Map

Map an IO page table into an IOSpace.

Type Name Description

seL4_ARM_IOPageTable _service Capability to the I/O page table being operated on.
seL4_ARM_IOSpace iospace The IOSpace to map the page table into.
seL4_Word ioaddr Virtual address at which to map the page table.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.2.3

Error Code Possible Cause

seL4_DeleteFirst All required page tables are already mapped in iospace at
ioaddr.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or iospace is a CPtr to a capability of the

wrong type. Or, _service is already mapped in an IOSpace.

140 CHAPTER 10. SEL4 API REFERENCE

10.7.5.2 Unmap

static inline int seL4_ARM_IOPageTable_Unmap

Unmap an IO page table from an IOSpace.

Type Name Description

seL4_ARM_IOPageTable _service Capability to the I/O page table being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.6 seL4_ARM_Page

10.7.6.1 Clean Data

static inline int seL4_ARM_Page_Clean_Data

Cleans the data cache out to RAM. The start and end are relative to the page being serviced.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page inclusive.
seL4_Word end_offset The offset, relative to the start of the page exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The VSpace of _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

_service is not mapped in a VSpace. Or, if hypervisor sup-
port is configured, the requested range overlaps the kernel
physical address range.

seL4_InvalidArgument The start_offset is greater than or equal to end_offset.
Or, start_offset or end_offset exceeds the page size of
_service.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7. ARM-SPECIFIC OBJECT METHODS 141

10.7.6.2 Clean and Invalidate Data

static inline int seL4_ARM_Page_CleanInvalidate_Data

Clean and invalidates the cache range within the given page. The range will be flushed out to
RAM. The start and end offsets are relative to the page being serviced.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page inclusive.
seL4_Word end_offset The offset, relative to the start of the page exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The VSpace of _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

_service is not mapped in a VSpace. Or, if hypervisor sup-
port is configured, the requested range overlaps the kernel
physical address range.

seL4_InvalidArgument The start_offset is greater than or equal to end_offset.
Or, start_offset or end_offset exceeds the page size of
_service.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.6.3 Get Address

static inline seL4_ARM_Page_GetAddress_t seL4_ARM_Page_GetAddress

Get the physical address of the underlying frame.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.

Return value: A seL4_ARM_Page_GetAddress_t struct that contains a seL4_Word paddr, which
holds the physical address of the page, and int error. See Section 10.1 for a description of the
message register and tag contents upon error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

142 CHAPTER 10. SEL4 API REFERENCE

10.7.6.4 Invalidate Data

static inline int seL4_ARM_Page_Invalidate_Data

Invalidates the cache range within the given page. The start and end offsets are relative to
the page being serviced and should be aligned to a cache line boundary where possible. An
additional clean is performed on the outer cache lines if the start and end are not aligned, to
clean out the bytes between the requested and the cache line boundary.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page inclusive.
seL4_Word end_offset The offset, relative to the start of the page exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The VSpace of _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

_service is not mapped in a VSpace. Or, if hypervisor sup-
port is configured, the requested range overlaps the kernel
physical address range.

seL4_InvalidArgument The start_offset is greater than or equal to end_offset.
Or, start_offset or end_offset exceeds the page size of
_service.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7. ARM-SPECIFIC OBJECT METHODS 143

10.7.6.5 Map I/O

static inline int seL4_ARM_Page_MapIO

Map a page into an IOSpace.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_ARM_IOSpace iospace The IOSpace to map the page into.
seL4_CapRights_t rights Rights for the mapping. Possible values for this type

are given in Section 3.1.4.
seL4_Word ioaddr Virtual address at which to map page.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists in iospace at ioaddr.
seL4_FailedLookup The iospace does not have a sufficient number of IO Page

Tables mapped at ioaddr.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument No rights were specified in rights. Or, the rights in the _-

service capability do not include rights.
seL4_InvalidCapability The _service or iospace is a CPtr to a capability of the

wrong type. Or, _service is already mapped. Or, _service
is not a page of size 4 KiB.

144 CHAPTER 10. SEL4 API REFERENCE

10.7.6.6 Map

static inline int seL4_ARM_Page_Map

Map a page into an address space or update the mapping attributes.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_CPtr vspace Capability to the VSpace which will contain the

mapping. Must be assigned to an ASID pool.
seL4_Word vaddr Virtual address to map the page into.
seL4_CapRights_t rights Rights for the mapping. Possible values for this

type are given in Section 3.1.4.
seL4_ARM_VMAttributes attr VM Attributes for the mapping. Possible values

for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes a VSpace capability as an argument and installs a reference to the given Page
in the lowest-level unmapped paging structure corresponding to the given address, or updates
themapping attributes if the page is alreadymapped at this address. The pagemust not already
be mapped through this capability in a different VSpace or at a different address; the page may
be mapped in multiple VSpaces by copying the capability.

Error Code Possible Cause

seL4_AlignmentError The vaddr is not aligned to the page size of _service.
seL4_DeleteFirst A mapping already exists in vspace at vaddr.
seL4_FailedLookup The vspace does not have a paging structure at the required

levelmapped at vaddr. Or, vspace is not assigned to anASID
pool.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The _service is already mapped in vspace at a different vir-

tual address. Or, vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a different VSpace.

10.7. ARM-SPECIFIC OBJECT METHODS 145

10.7.6.7 Unify Instruction

static inline int seL4_ARM_Page_Unify_Instruction

Unify Instruction Cache. Cleans data lines to point of unification, invalidate corresponding in-
struction lines to point of unification, then invalidates branch predictors. The start and end
offsets are relative to the page being serviced.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page inclusive.
seL4_Word end_offset The offset, relative to the start of the page exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The VSpace of _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

_service is not mapped in a VSpace. Or, if hypervisor sup-
port is configured, the requested range overlaps the kernel
physical address range.

seL4_InvalidArgument The start_offset is greater than or equal to end_offset.
Or, start_offset or end_offset exceeds the page size of
_service.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.6.8 Unmap

static inline int seL4_ARM_Page_Unmap

Unmap a page.

Type Name Description

seL4_ARM_Page _service Capability to the page being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Removes an existing mapping.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

146 CHAPTER 10. SEL4 API REFERENCE

10.7.7 seL4_ARM_PageTable

10.7.7.1 Map

static inline int seL4_ARM_PageTable_Map

Map a page table into an address space.

Type Name Description

seL4_ARM_PageTable _service Capability to the page table being operated on.
seL4_CPtr vspace Capability to the VSpace which will contain the

mapping. Must be assigned to an ASID pool.
seL4_Word vaddr Virtual address to map the page into.
seL4_ARM_VMAttributes attr VM Attributes for the mapping. Possible values

for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes a VSpace capability as an argument, and installs a reference to the page
table in the VSpace at the provided virtual address.

Error Code Possible Cause

seL4_DeleteFirst A mapping already exists for this level in vspace at vaddr.
seL4_FailedLookup On aarch64, vspace does not have a Page Directorymapped

at vaddr. Or, vspace is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a VSpace.

10.7.7.2 Unmap

static inline int seL4_ARM_PageTable_Unmap

Unmap a page table from its Page Directory and zero it out.

Type Name Description

seL4_ARM_PageTable _service Capability to the page table being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Removes the reference to the invoked Page Table from its containing Page Direc-
tory.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst A copy of the _service capability exists.

10.7. ARM-SPECIFIC OBJECT METHODS 147

10.7.8 seL4_ARM_SID

10.7.8.1 Bind CB

static inline int seL4_ARM_SID_BindCB

Binding a context bank to a stream ID.

Type Name Description

seL4_ARM_SID _service A SID capability. This gives you the authority to make this
call.

seL4_CPtr cb The CB that is being binded to a stream ID.Must already has
an assigned vspace.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.4.

Error Code Possible Cause

seL4_DeleteFirst The _service is already bound to a context bank.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or cb is a CPtr to a capability of the wrong

type. Or, cb is not assigned to a VSpace.

10.7.8.2 Unbind CB

static inline int seL4_ARM_SID_UnbindCB

Unbinding a context bank from a stream ID.

Type Name Description

seL4_ARM_SID _service A SID capability. This gives you the authority to make this
call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.4.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,
_service is not bound to a context block.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

148 CHAPTER 10. SEL4 API REFERENCE

10.7.9 seL4_ARM_SIDControl

10.7.9.1 Clear Fault

static inline int seL4_ARM_SIDControl_ClearFault

Clear the fault status of the SMMU.

Type Name Description

seL4_ARM_SIDControl _service A SIDControl capability. This gives you the author-
ity to make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.9.2 Get Fault

static inline seL4_ARM_SIDControl_GetFault_t seL4_ARM_SIDControl_GetFault

Get the fault status of the SMMU.

Type Name Description

seL4_ARM_SIDControl _service A SIDControl capability. This gives you the author-
ity to make this call.

Return value: A seL4_ARM_SMMU_GetFault_t struct that contains a seL4_Word status, which
holds the global fault status of the SMMU, seL4_Word syndrome_0, which holds the global fault
syndrome 0 of the SMMU, seL4_Word syndrome_1, which holds the global fault syndrome 1 of
the SMMU, and int error. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7. ARM-SPECIFIC OBJECT METHODS 149

10.7.9.3 Get SID

static inline int seL4_ARM_SIDControl_GetSID

Create a SID capability.

Type Name Description

seL4_ARM_SIDControl _service A SIDControl capability. This gives you the author-
ity to make this call.

seL4_Word sid The SID that you want this capability to manage.
seL4_CNode root CPtr to the CNode that forms the root of the des-

tination CSpace. Must be at a depth equivalent to
the wordsize.

seL4_Word index CPtr to the destination slot. Resolved from the root
of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the desti-
nation slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.3.1.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3). Or, sid is invalid.
seL4_RevokeFirst An SID capability for sid has already been created.

150 CHAPTER 10. SEL4 API REFERENCE

10.7.10 seL4_ARM_VCPU

10.7.10.1 Acknowledge Virtual PPI IRQ

static inline int seL4_ARM_VCPU_AckVPPI

Acknowledge a PPI IRQ previously forwarded from a VPPIEvent fault.

Type Name Description

seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Word irq irq to ack.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Acknowledge and unmask the PPI interrupt so that further interrupts can be for-
warded through VPPIEvent faults.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The irq is invalid.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.10.2 Inject IRQ

static inline int seL4_ARM_VCPU_InjectIRQ

Inject an IRQ to a virtual CPU.

Type Name Description

seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Uint16 virq Virtual IRQ ID
seL4_Uint8 priority Priority of the IRQ to be injected
seL4_Uint8 group IRQ group
seL4_Uint8 index VGIC list register

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Used to queue IRQs towards the VCPU. Writes ICH_LRn_EL2 for GICv3 or LRn for
GICv2, where n is determined by index. The list register becomes available again when the
guest acknowledges the injected interrupt.

Error Code Possible Cause

seL4_DeleteFirst The index is in use and not yet handled by the guest.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The virq, priority, group, or index is invalid.

10.7. ARM-SPECIFIC OBJECT METHODS 151

10.7.10.3 Read Registers

static inline seL4_ARM_VCPU_ReadRegs_t seL4_ARM_VCPU_ReadRegs

Read a virtual CPU register.

Type Name Description

seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_VCPUReg field Register to read from a VCPU

Return value: A seL4_ARM_VCPU_ReadRegs_t struct that contains a seL4_Word value, which holds
the value of the system register, and int error, which will be non-zero when an error occurred.
See Section 10.1 for a description of the message register and tag contents upon error.

Description: Provides a way to read EL1 system registers, as well as VMPIDR_EL2.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The field is invalid.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7.10.4 Set TCB

static inline int seL4_ARM_VCPU_SetTCB

Bind a TCB to a virtual CPU.

Type Name Description

seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_TCB tcb Capability to TCB to bind to a virtual CPU

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: There is a 1:1 relationship between a virtual CPU and a TCB. If either (or both) of
them is associated with another one, they will be dissociated, and then associated to the ones
called in this system calls.

Error Code Possible Cause

seL4_IllegalOperation The _service or tcb is a CPtr to a capability of the wrong
type.

seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

152 CHAPTER 10. SEL4 API REFERENCE

10.7.10.5 Write Registers

static inline int seL4_ARM_VCPU_WriteRegs

Write a virtual CPU register.

Type Name Description

seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_VCPUReg field Register ID to write to a VCPU
seL4_Word value Value to be written to the VCPU register

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Provides a way to write EL1 system registers, as well as VMPIDR_EL2.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The field is invalid.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.7. ARM-SPECIFIC OBJECT METHODS 153

10.7.11 seL4_IRQControl

10.7.11.1 Get IRQ Handler (SMP)

static inline int seL4_IRQControl_GetTriggerCore

Create an IRQ handler capability and specify the trigger method (edge or level) and the target
core.

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_Word irq The IRQ that you want this capability to handle.
seL4_Word trigger Indicates whether this IRQ is edge (1) or level (0) trig-

gered.
seL4_CNode root CPtr to the CNode that forms the root of the destination

CSpace. Must be at a depth equivalent to the wordsize.
seL4_Word index CPtr to the destination slot. Resolved from the root of

the destination CSpace.
seL4_Uint8 depth Number of bits of index to resolve to find the destination

slot.
seL4_Word target Indicates the target core ID towhich this IRQwill be sent.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

SMP support is not enabled.
seL4_InvalidArgument The target is invalid.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The depth is invalid (see Section 3.3).
seL4_RevokeFirst An IRQ handler capability for irq has already been created.

154 CHAPTER 10. SEL4 API REFERENCE

10.7.11.2 Get IRQ Handler with Trigger Type

static inline int seL4_IRQControl_GetTrigger

Create an IRQ handler capability and specify the trigger method (edge or level).

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_Word irq The IRQ that you want this capability to handle.
seL4_Word trigger Indicates whether this IRQ is edge (1) or level (0) trig-

gered.
seL4_CNode root CPtr to the CNode that forms the root of the destination

CSpace. Must be at a depth equivalent to the wordsize.
seL4_Word index CPtr to the destination slot. Resolved from the root of

the destination CSpace.
seL4_Uint8 depth Number of bits of index to resolve to find the destination

slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

the platform does not support setting the IRQ trigger.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The irq is invalid. Or, depth is invalid (see Section 3.3).
seL4_RevokeFirst An IRQ handler capability for irq has already been created.

10.8. AARCH32-SPECIFIC OBJECT METHODS 155

10.8 Aarch32-Specific Object Methods

10.8.1 seL4_ARM_PageDirectory

10.8.1.1 Clean Data

static inline int seL4_ARM_PageDirectory_Clean_Data

Clean cached pages within a page directory

Type Name Description

seL4_ARM_PageDirectory _service Capability to the page directory being operated
on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

start or end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

156 CHAPTER 10. SEL4 API REFERENCE

10.8.1.2 Clean and Invalidate Data

static inline int seL4_ARM_PageDirectory_CleanInvalidate_Data

Clean and invalidate cached pages within a page directory

Type Name Description

seL4_ARM_PageDirectory _service Capability to the page directory being operated
on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

start or end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

10.8.1.3 Invalidate Data

static inline int seL4_ARM_PageDirectory_Invalidate_Data

Invalidate cached pages within a page directory

Type Name Description

seL4_ARM_PageDirectory _service Capability to the page directory being operated
on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

start or end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

10.8. AARCH32-SPECIFIC OBJECT METHODS 157

10.8.1.4 Unify Instruction

static inline int seL4_ARM_PageDirectory_Unify_Instruction

Clean and invalidate cached instruction pages to point of unification

Type Name Description

seL4_ARM_PageDirectory _service Capability to the page directory being operated
on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

start or end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

158 CHAPTER 10. SEL4 API REFERENCE

10.9 Aarch64-Specific Object Methods

10.9.1 seL4_ARM_SMC

10.9.1.1 SMC Call

static inline int seL4_ARM_SMC_Call

Tell the kernel to make the real SMC call.

Type Name Description

seL4_ARM_SMC _service Capability to allow threads to make Secure
Monitor Calls.

seL4_ARM_SMCContext * smc_args The structure that has the provided argu-
ments.

seL4_ARM_SMCContext * smc_response The structure to capture the responses.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes x0-x7 as arguments to an SMC call which are defined as a seL4_ARM_SM-
CContext struct. The kernel makes the SMC call and then returns the results as a new seL4_-
ARM_SMCContext.

10.9.2 seL4_ARM_VSpace

10.9.2.1 Clean Data

static inline int seL4_ARM_VSpace_Clean_Data

Clean cached pages within a top level translation table

Type Name Description

seL4_ARM_VSpace _service Capability to the top level translation table being oper-
ated on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

10.9. AARCH64-SPECIFIC OBJECT METHODS 159

10.9.2.2 Clean and Invalidate Data

static inline int seL4_ARM_VSpace_CleanInvalidate_Data

Clean and invalidate cached pages within a top level translation table

Type Name Description

seL4_ARM_VSpace _service Capability to the top level translation table being oper-
ated on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

10.9.2.3 Invalidate Data

static inline int seL4_ARM_VSpace_Invalidate_Data

Invalidate cached pages within a top level translation table

Type Name Description

seL4_ARM_VSpace _service Capability to the top level translation table being oper-
ated on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

160 CHAPTER 10. SEL4 API REFERENCE

10.9.2.4 Unify Instruction

static inline int seL4_ARM_VSpace_Unify_Instruction

Clean and invalidate cached instruction pages to point of unification

Type Name Description

seL4_ARM_VSpace _service Capability to the top level translation table being oper-
ated on.

seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_FailedLookup The _service is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

end is in the kernel virtual address range.
seL4_InvalidArgument The start is greater than or equal to end.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type. Or,

_service is not assigned to an ASID pool.
seL4_RangeError The specified range crosses a page boundary.

10.10. RISCV-SPECIFIC OBJECT METHODS 161

10.10 RISCV-Specific Object Methods

10.10.1 General RISCV Object Methods

10.10.2 seL4_IRQControl

10.10.2.1 Get IRQ Handler with Trigger Type

static inline int seL4_IRQControl_GetTrigger

Create an IRQ handler capability and specify the trigger method (edge or level).

Type Name Description

seL4_IRQControl _service An IRQControl capability. This gives you the authority to
make this call.

seL4_Word irq The IRQ that you want this capability to handle.
seL4_Word trigger Indicates whether this IRQ is edge (1) or level (0) trig-

gered.
seL4_CNode root CPtr to the CNode that forms the root of the destination

CSpace. Must be at a depth equivalent to the wordsize.
seL4_Word index CPtr to the destination slot. Resolved from the root of

the destination CSpace.
seL4_Uint8 depth Number of bits of index to resolve to find the destination

slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Section 8.1.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability.
seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a

CPtr to a capability of the wrong type.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type. Or,

the platform does not support setting the IRQ trigger.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RangeError The irq is invalid. Or, depth is invalid (see Section 3.3).
seL4_RevokeFirst An IRQ handler capability for irq has already been created.

162 CHAPTER 10. SEL4 API REFERENCE

10.10.3 seL4_RISCV_ASIDControl

10.10.3.1 Make Pool

static inline int seL4_RISCV_ASIDControl_MakePool

Create an ASID Pool.

Type Name Description

seL4_RISCV_ASIDControl _service The master ASIDControl capability to invoke.
seL4_Untyped untyped Capability to an untyped memory object that

will become the pool. Must be 4K bytes.
seL4_CNode root CPtr to the CNode that forms the root of the

destination CSpace. Must be at a depth of 32.
seL4_Word index CPtr to the CNode that forms the root of the

destination CSpace. Must be at a depth of 32.
seL4_Uint8 depth Number of bits of index to resolve to find the

destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Together with a capability to Untyped Memory, which is passed as an argument,
create an ASID Pool. The untyped capability must represent a 4K memory object. This will
create an ASID pool with enough space for 1024 VSpaces.

Error Code Possible Cause

seL4_DeleteFirst The destination slot contains a capability. Or, there are no
more ASID pools available.

seL4_FailedLookup The index or depth is invalid (see Section 3.3). Or, root is a
CPtr to a capability of the wrong type.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or untyped is a CPtr to a capability of the

wrong type. Or, untyped is not the exact size of an ASID pool
object. Or, untyped is a device untyped (see Section 2.4).

seL4_RangeError The depth is invalid (see Section 3.3).
seL4_RevokeFirst The untyped has been used to retype an object. Or, a copy

of the untyped capability exists.

10.10. RISCV-SPECIFIC OBJECT METHODS 163

10.10.4 seL4_RISCV_ASIDPool

10.10.4.1 Assign

static inline int seL4_RISCV_ASIDPool_Assign

Assign an ASID Pool.

Type Name Description

seL4_RISCV_ASIDPool _service The ASID Pool capability to invoke, which must be
to an ASID pool that is not full.

seL4_CPtr vspace The top-level PageTable that is being assigned to
an ASID pool. Must not already be assigned to an
ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Assigns an ASID to the VSpace passed in as an argument.

Error Code Possible Cause

seL4_DeleteFirst There are no more ASIDs available in _service.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is already assigned to an ASID pool. Or,
vspace is mapped in a VSpace.

10.10.5 seL4_RISCV_Page

10.10.5.1 Get Address

static inline seL4_RISCV_Page_GetAddress_t seL4_RISCV_Page_GetAddress

Get the physical address of a page.

Type Name Description

seL4_RISCV_Page _service Capability to the page to invoke.

Return value: A seL4_RISCV_Page_GetAddress_t struct that contains a seL4_Word paddr, which
holds the physical address of the page, and int error. See Section 10.1 for a description of the
message register and tag contents upon error.

Description: See Chapter 7.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

164 CHAPTER 10. SEL4 API REFERENCE

10.10.5.2 Map

static inline int seL4_RISCV_Page_Map

Map a page into a page table.

Type Name Description

seL4_RISCV_Page _service Capability to the page to invoke.
seL4_RISCV_PageTable vspace VSpace to map the page into.
seL4_Word vaddr Virtual address at which to map the page.
seL4_CapRights_t rights Rights for the mapping. Possible values for

this type are given in Section 3.1.4.
seL4_RISCV_VMAttributes attr VM Attributes for the mapping. Possible val-

ues for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Takes a VSpace, or top-level Page Table, capability as an argument and installs a
reference to the given Page in the page table slot corresponding to the given address. If a page
is already mapped at the same virtual address, update the mapping attributes. If the required
paging structures are not present this operation will fail, returning a seL4_FailedLookup error.

Error Code Possible Cause

seL4_AlignmentError The vaddr is not aligned to the page size of _service.
seL4_DeleteFirst A mapping already exists in vspace at vaddr.
seL4_FailedLookup The vspace does not have a paging structure at the required

levelmapped at vaddr. Or, vspace is not assigned to anASID
pool.

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The _service is already mapped in vspace at a different vir-

tual address. Or, vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not the root of a VSpace. Or, vspace is not
assigned to an ASID pool. Or, _service is already mapped
in a different VSpace.

10.10. RISCV-SPECIFIC OBJECT METHODS 165

10.10.5.3 Unmap

static inline int seL4_RISCV_Page_Unmap

Unmap a page.

Type Name Description

seL4_RISCV_Page _service Capability to the page to invoke.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Removes an existing mapping.

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.

10.10.6 seL4_RISCV_PageTable

10.10.6.1 Map

static inline int seL4_RISCV_PageTable_Map

Map a page table at a specific virtual address.

Type Name Description

seL4_RISCV_PageTable _service Capability to the page table to invoke.
seL4_RISCV_PageTable vspace VSpace to map the lower-level page table into.
seL4_Word vaddr Virtual address at which to map the page ta-

ble.
seL4_RISCV_VMAttributes attr VM Attributes for the mapping. Possible val-

ues for this type are given in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: Starting from the VSpace, map the page table object at any unpopulated level for
the provided virtual address. If all paging structures and mappings are present for this virtual
address, return an seL4_DeleteFirst error.

Error Code Possible Cause

seL4_DeleteFirst A page is mapped in vspace at vaddr. Or, all required page
tables are already mapped in vspace at vaddr.

seL4_FailedLookup The vspace is not assigned to an ASID pool.
seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidArgument The vaddr is in the kernel virtual address range.
seL4_InvalidCapability The _service or vspace is a CPtr to a capability of thewrong

type. Or, vspace is not assigned to an ASID pool. Or, _ser-
vice is already mapped in a VSpace.

166 CHAPTER 10. SEL4 API REFERENCE

10.10.6.2 Unmap

static inline int seL4_RISCV_PageTable_Unmap

Unmap a page table.

Type Name Description

seL4_RISCV_PageTable _service Capability to the page table to invoke.

Return value: A return value of 0 indicates success. A non-zero value indicates that an error
occurred. See Section 10.1 for a description of the message register and tag contents upon
error.

Description: See Chapter 7

Error Code Possible Cause

seL4_IllegalOperation The _service is a CPtr to a capability of the wrong type.
seL4_InvalidCapability The _service is a CPtr to a capability of the wrong type.
seL4_RevokeFirst The _service is the root of a VSpace. Or, a copy of the _-

service capability exists.

Glossary

ASID Address Space Identifier. Depending on architecture, the kernel provides software ASIDs,
which are associated with VSpace root objects, and define the virtual address space of a
thread. They are mapped to hardware ASIDs on demand when the architecture supports
these. Multiple threads may be in the same address space.

Badge A badge is a piece of extra information stored in a capability, mostly used for endpoint
and notification capabilities. It can be used by applications to identify caps previously
handed out to clients.

Capability Themain access control concept in seL4. A capability conceptually is a reference to
a kernel object together with a set of access rights. Most seL4 capabilities store additional
bits of information. Some of this additional information may be exposed to the user, but
the bulk of it is kernel-internal book-keeping information. Capabilities are stored in CNodes
and TCBs.

CDT Capability Derivation Tree. A kernel-internal data structure that tracks the child/parent
relationship between capabilities. Capabilities to new objects are children of the Untyped
capability the object was created from. Capabilities can also be copied and result in either
child or sibling capabilities, depending on the operation that was used and the depth of
the existing derivation tree. The revoke operation will delete all children of the invoked
capability.

CNode Capability Node. Kernel-controlled storage that holds capabilities. Capability nodes can
be created in different sizes and be shared between CSpaces.

CPtr Capability Pointer. A user-level reference to a capability, relative to a specified root CNode
or the thread’s CSpace root.

CSpace A directed graph of CNodes. The CSpace of a thread defines the set of capabilities
it has access to. The root of the graph is the CNode capability in the CSpace slot of the
thread. The edges of the graph are the CNode capabilities residing in the CNodes spanned
by this root.

Endpoint IPC is facilitated by small kernel objects known as endpoints, which act as general
communication ports. Invocations on endpoint objects are used to send and receive IPC
messages.

Guard Guard of a CNode capability. From the user’s perspetive the CSpace of a thread is organ-
ised as a guarded page table. The kernel will resolve user capability pointers into internal
capability slot pointers. The guard of one link/edge in the CSpace graph defines a se-
quence of bits that will be stripped from the user-level capability pointer before resolving
resumes at the next CNode.

167

168 Glossary

IOMMU Input–OutputMemoryManagement Unit. Applies virtual address translation andmem-
ory protection to DMA capable I/O devices.

IOPageTable This object represents a node in themultilevel page-table structure usedby IOMMU
hardware to translate hardware memory accesses.

IOSpace This object represents the address space associated with a hardware device. It rep-
resents the right to modify a device’s address space. See Chapter 8.

IPC Inter Process Communication is facilitated by endpoints, which act as general communi-
cation ports. Invocations on endpoint objects are used to send and receive messages.

IRQControl A single capability from which IRQHandler capabilities to all IRQ numbers in the
system can be derived. This capability can be moved between CSpaces and CSpace slots
but cannot be duplicated. Revoking this capability removes all IRQHandlers.

IRQHandler Capabilities that represent the ability of a thread to handle a certain interrupt. See
Chapter 8.

Notification Object A word-size array of flags that provides a non-blocking signalling mecha-
nism similar to a binary semaphore. Operations are signalling a subset of flags in a single
operation, polling to check any flags, and blocking until any are signalled. Notification
capabilities can be signal-only or wait-only.

Reply Object (MCS only) A reply object is a vessel for tracking reply messages, used to send a
reply message and wake up the caller.

Scheduling Context (MCS only) An abstraction of CPU execution time.

TCB Thread Control Block. The kernel object that stores management data for threads, such
as the thread’s CSpace, VSpace, thread state, or user registers.

Untyped Memory Memory that can be used to create kernel objects via the seL4_Untyped_-
Retype() invocation. It is the foundation of memory allocation in the seL4 kernel. See
Section 2.4.

VM Virtual Memory. The concept of translating virtual memory addresses to physical frames.
See Chapter 7.

VSpace Virtual Address Space. In analogy to CSpace, the virtual memory space of a thread.
See Chapter 7.

Bibliography

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Gernot Heiser.
Timing analysis of a protected operating system kernel. In IEEE Real-Time Systems Sympo-
sium, pages 339–348, Vienna, Austria, November 2011.

Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt response time in a verifiable
protected microkernel. In EuroSys, pages 323–336, Bern, Switzerland, April 2012.

Andrew Boyton. A verified shared capability model. In Gerwin Klein, Ralf Huuck, and Bastian
Schlich, editors, Proceedings of the 4th Workshop on Systems Software Verification, volume
254 of Electronic Notes in Computer Science, pages 25–44, Aachen, Germany, October 2009.
Elsevier.

David Cock, Gerwin Klein, and Thomas Sewell. Securemicrokernels, statemonads and scalable
refinement. In OtmaneAitMohamed, CésarMuñoz, and Sofiène Tahar, editors, Proceedings of
the 21st International Conference on Theorem Proving in Higher Order Logics, volume 5170 of
LectureNotes in Computer Science, pages 167–182, Montreal, Canada, August 2008. Springer-
Verlag. doi: 10.1007/978-3-540-71067-7_16.

Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel M. T. Chakravarty. Run-
ning the manual: An approach to high-assurance microkernel development. In Proceedings
of the ACM SIGPLAN Haskell Workshop, Portland, OR, USA, September 2006.

Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified protection model of the
seL4 microkernel. In Jim Woodcock and Natarajan Shankar, editors, Proceedings of Verified
Software: Theories, Tools and Experiments 2008, volume 5295 of Lecture Notes in Computer
Science, pages 99–114, Toronto, Canada, October 2008. Springer-Verlag.

Gernot Heiser. The seL4 microkernel, an introduction, June 2020. URL https://sel4.systems/
About/seL4-whitepaper.pdf.

Intel Corporation. Intel Virtualization Technology for Directed I/O — Architecture Specifica-
tion, February 2011. http://download.intel.com/technology/computing/vptech/Intel(r)_VT_
for_Direct_IO.pdf.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dham-
mika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. seL4: Formal verification of an OS kernel. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT, USA, October
2009. ACM. doi: 10.1145/1629575.1629596.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski,
and Gernot Heiser. Comprehensive formal verification of an OS microkernel. ACM Transac-
tions on Computer Systems, 32(1):2:1–2:70, February 2014. doi: 10.1145/2560537.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean Seefried,
Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from general purpose to a proof of information

169

https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/About/seL4-whitepaper.pdf
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

170 BIBLIOGRAPHY

flow enforcement. In IEEE Symposium on Security & Privacy, pages 415–429, San Francisco,
CA, May 2013.

Ameya Palande. Capability-based secure DMA in seL4. Masters thesis, Vrije Universiteit, Ams-
terdam, January 2009.

seL4 Authors. The seL4 documentation site, September 2021a. URL https://docs.sel4.systems/
projects/sel4/verified-configurations.html.

seL4 Authors. Abstract formal specification of the seL4 API, September 2021b. URL https:
//github.com/seL4/l4v/tree/master/spec/abstract.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June Andronick, and Gerwin
Klein. seL4 enforces integrity. In Marko van Eekelen, Herman Geuvers, Julien Schmaltz,
and Freek Wiedijk, editor, Interactive Theorem Proving (ITP), pages 325–340, Nijmegen, The
Netherlands, August 2011.

Tom Shanley and Don Anderson. PCI System Architecture. Mindshare, Inc., 1999.

Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. In Mar-
tin Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 97–108, Nice, France, January
2007. ACM.

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and Michael Nor-
rish. Mind the gap: A verification framework for low-level C. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in Com-
puter Science, pages 500–515, Munich, Germany, August 2009. Springer-Verlag.

https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://github.com/seL4/l4v/tree/master/spec/abstract
https://github.com/seL4/l4v/tree/master/spec/abstract

	List of Tables
	List of Figures
	Introduction
	Kernel Services and Objects
	Capability-based Access Control
	System Calls
	Kernel Objects
	Kernel Memory Allocation
	Reusing Memory
	Summary of Object Sizes

	Capability Spaces
	Capability and CSpace Management
	CSpace Creation
	CNode Methods
	Capabilities to Newly-Retyped Objects
	Capability Rights
	Capability Derivation Tree

	Deletion and Revocation
	CSpace Addressing
	Capability Address Lookup
	Addressing Capabilities

	Lookup Failure Description
	Invalid Root
	Missing Capability
	Depth Mismatch
	Guard Mismatch

	Message Passing (IPC)
	Message Registers
	Endpoints
	Endpoint Badges
	Capability Transfer
	Errors
	Calling and Replying

	Notifications
	Notification Objects
	Signalling, Polling and Waiting
	Binding Notifications

	Threads and Execution
	Threads
	Thread control blocks
	Thread Creation
	Thread Deactivation
	Affinity
	Scheduling
	MCS Scheduling
	Scheduling Contexts
	Passive Threads
	Scheduling Context Creation
	Scheduling Context Donation
	Scheduling algorithm
	Exceptions
	Standard Exceptions
	Timeout Exceptions (MCS Only)

	Message Layout of the Read-/Write-Registers Methods

	Faults
	Capability Faults
	Unknown Syscall
	User Exception
	Debug Exception: Breakpoints and Watchpoints
	Debug Exception: Single-stepping
	Timeout Fault (MCS only)
	VM Fault
	Arm Virtualisation Faults

	Domains
	Virtualisation
	Arm
	x86

	Address Spaces and Virtual Memory
	Objects
	Hardware Virtual Memory Objects
	IA-32
	x64
	AArch32
	AArch64

	RISC-V
	RISC-V 32-bit
	RISC-V 64-bit

	Page
	AArch32 page sizes
	AArch64 page sizes
	IA-32 page sizes
	X64 page sizes
	RISC-V 32-bit page sizes
	RISC-V 64-bit page sizes

	ASID Control
	ASID Pool

	Mapping Attributes
	Sharing Memory
	Page Faults

	Hardware I/O
	Interrupt Delivery
	x86-Specific I/O
	Interrupts
	I/O Ports
	I/O Space

	Arm-Specific I/O
	Arm SMMU version 2.0
	Creating seL4_ARM_SID capabilities
	Creating seL4_ARM_CB capabilities
	Configuring context banks
	Configuring streams (transactions)
	Copying and Deleting caps
	TLB invalidation
	Fault handling

	System Bootstrapping
	Initial Thread's Environment
	BootInfo Frame
	Boot Command-line Arguments

	seL4 API Reference
	Error Codes
	Invalid Argument
	Invalid Capability
	Illegal Operation
	Range Error
	Alignment Error
	Failed Lookup
	Truncated Message
	Delete First
	Revoke First
	Not Enough Memory

	System Calls
	General System Calls
	Send
	Recv
	Call
	Reply
	Non-Blocking Send
	Reply Recv
	Non-Blocking Recv
	Yield
	Signal
	Wait
	Poll

	General System Calls (MCS)
	Send
	Recv
	Call
	Non-Blocking Send
	Reply Recv
	Non-Blocking Recv
	Non-Blocking Send Recv
	Non-Blocking Send Wait
	Yield
	Wait
	Non-Blocking Wait
	Poll
	Signal

	Debugging System Calls
	Put Char
	Dump Scheduler
	Halt
	Snapshot
	Cap Identify
	Name Thread
	Send SGI 0-15
	Run

	Benchmarking System Calls
	Reset Log
	Finalize Log
	Set Log Buffer
	Null Syscall
	Flush Caches
	Flush L1 Caches
	Get Thread Utilisation
	Reset Thread Utilisation
	Dump All Threads Utilisation
	Reset All Threads Utilisation

	X86 System Calls
	VM Enter

	Architecture-Independent Object Methods
	seL4_CNode
	Cancel Badged Sends
	Copy
	Delete
	Mint
	Move
	Mutate
	Revoke
	Rotate
	Save Caller

	seL4_DomainSet
	Set

	seL4_IRQControl
	Get IRQ Handler

	seL4_IRQHandler
	Acknowledge
	Clear
	Set Notification

	seL4_SchedContext (MCS)
	Bind
	Consumed
	Unbind Object
	Unbind
	Yield To

	seL4_SchedControl (MCS)
	Configure Flags

	seL4_TCB
	Bind Notification
	Configure Single Stepping
	Configure
	Copy Registers
	Get Breakpoint
	Read Registers
	Resume
	Set Breakpoint
	Set CPU Affinity
	Set IPC Buffer
	Set Maximum Controlled Priority
	Set Priority
	Set Sched Params
	Set Space
	Set TLS Base
	Suspend
	Unbind Notification
	Unset Breakpoint
	Write Registers

	seL4_TCB (MCS)
	Configure (MCS)
	Set Sched Params (MCS)
	Set Space (MCS)
	Set Timeout Endpoint

	seL4_Untyped
	Retype

	x86-Specific Object Methods
	seL4_IRQControl
	Get I/O APIC Handler
	Get MSI Handler

	seL4_TCB
	Set EPT Root

	seL4_X86_ASIDControl
	Make Pool

	seL4_X86_ASIDPool
	Assign

	seL4_X86_EPTPD
	Map
	Unmap

	seL4_X86_EPTPDPT
	Map
	Unmap

	seL4_X86_EPTPT
	Map
	Unmap

	seL4_X86_IOPageTable
	Map
	Unmap

	seL4_X86_IOPort
	In16
	In32
	In8
	Out16
	Out32
	Out8

	seL4_X86_IOPortControl
	Issue

	seL4_X86_Page
	Get Address
	Map EPT
	Map I/O
	Map
	Unmap

	seL4_X86_PageDirectory
	Get Status Bits
	Map
	Unmap

	seL4_X86_PageTable
	Map
	Unmap

	seL4_X86_VCPU
	Disable I/O Port
	Enable I/O Port
	Read VMCS
	Set TCB
	Write Registers
	Write VMCS

	IA32-Specific Object Methods
	x86_64-Specific Object Methods
	seL4_X86_PDPT
	Map
	Unmap

	seL4_X86_VCPU
	Read MSR
	Write MSR

	Arm-Specific Object Methods
	seL4_ARM_ASIDControl
	Make Pool

	seL4_ARM_ASIDPool
	ASID Pool Assign

	seL4_ARM_CB
	Assign VSpace
	CB Clear Fault
	CB Get Fault
	TLB Invalidate
	Unassign VSpace

	seL4_ARM_CBControl
	Get CB
	TLB Invalidate All

	seL4_ARM_IOPageTable
	Map
	Unmap

	seL4_ARM_Page
	Clean Data
	Clean and Invalidate Data
	Get Address
	Invalidate Data
	Map I/O
	Map
	Unify Instruction
	Unmap

	seL4_ARM_PageTable
	Map
	Unmap

	seL4_ARM_SID
	Bind CB
	Unbind CB

	seL4_ARM_SIDControl
	Clear Fault
	Get Fault
	Get SID

	seL4_ARM_VCPU
	Acknowledge Virtual PPI IRQ
	Inject IRQ
	Read Registers
	Set TCB
	Write Registers

	seL4_IRQControl
	Get IRQ Handler (SMP)
	Get IRQ Handler with Trigger Type

	Aarch32-Specific Object Methods
	seL4_ARM_PageDirectory
	Clean Data
	Clean and Invalidate Data
	Invalidate Data
	Unify Instruction

	Aarch64-Specific Object Methods
	seL4_ARM_SMC
	SMC Call

	seL4_ARM_VSpace
	Clean Data
	Clean and Invalidate Data
	Invalidate Data
	Unify Instruction

	RISCV-Specific Object Methods
	General RISCV Object Methods
	seL4_IRQControl
	Get IRQ Handler with Trigger Type

	seL4_RISCV_ASIDControl
	Make Pool

	seL4_RISCV_ASIDPool
	Assign

	seL4_RISCV_Page
	Get Address
	Map
	Unmap

	seL4_RISCV_PageTable
	Map
	Unmap

	Glossary
	Bibliography

