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Overview
Multiprocessor OS (Background and Review)

• How does it work? (Background)
• Scalability (Review)

Multiprocessor Hardware
• Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
• Experimental (Intel, MS, Polaris)

OS Design for Multiprocessors
• Guidelines
• Design approaches

• Divide and Conquer (Disco, Tesselation)
• Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
• No Sharing (Barrelfish, fos)
• Deal with Heterogeneity (de facto OS)
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Summary
Scalability

• 100+ cores
• Amdahl’s law really kicks in

Heterogeneity
• Heterogeneous cores, memory, etc.
• Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between different 

AMD platforms)
NUMA

• Also variable latencies due to topology and cache coherence
Cache coherence may not be possible

• Can’t use it for locking
• Shared data structures require explicit work

Computer is a distributed system
• Message passing
• Consistency and Synchronisation
• Fault tolerance
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OS DESIGN for 
Multiprocessors
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Optimisation for Scalability
Reduce amount of code in critical sections

• Increases concurrency
• Fine grained locking

• Lock data not code (big kernel lock vs fine-grained locking)
• Tradeoff: more concurrency but more locking (and locking causes serialisation)

• Lock free data structures

Avoid expensive memory access
• Avoid uncached memory
• Access cheap (close) memory
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Optimisation for Scalability
Reduce false sharing

• Pad data structures to cache lines

Reduce cache line bouncing
• Reduce sharing
• E.g: MCS locks use local data

Reduce cache misses
• Affinity scheduling: run process on the core where it last ran.
• Avoid cache pollution

• Don’t evict all application cache when OS runs
• Don’t evict all OS cache when app runs
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OS Design Guidelines for Modern (and 
future) Multiprocessors
Avoid shared data

• Performance issues arise less from lock contention than from data locality
Explicit communication

• Regain control over communication costs (and predictability)
• Cache coherence is expensive, and opaque

• Sometimes it’s the only option
Tradeoff: parallelism vs synchronisation

• Synchronisation introduces serialisation
• Make concurrent threads independent: reduce critical sections & cache misses
• Aim for: embarrassingly parallel 

Allocate for locality
• E.g. provide memory local to a core

Schedule for locality
• With cached data
• With local memory

Tradeoff: uniprocessor performance vs scalability
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Design approaches
Divide and conquer

• Divide multiprocessor into smaller bits, use them as normal
• Using virtualisation
• Using exokernel

Reduced sharing
• Brute force & Heroic Effort

• Find problems in existing OS and fix them
• E.g Linux rearchitecting: BKL -> fine grained locking

• By design
• Avoid shared data as much as possible

No sharing
• Computer is a distributed system

• Do extra work to share!

Accept heterogeneity
• Model whole (heterogeneous) system
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Divide and Conquer
Disco

• Scalability is too hard!
Context: 

• ca. 1995, large ccNUMA multiprocessors appearing
• Scaling OSes requires extensive modifications

Idea:
• Implement a scalable VMM
• Run multiple OS instances

VMM has most of the features of a scalable OS:
• NUMA aware allocator
• Page replication, remapping, etc. 

VMM substantially simpler/cheaper to implement
Modern incarnations of this

• Virtual servers (Amazon, etc.)
• Research (Cerberus)

COMP9242 T3/2024 W10 | Multiprocessor OS 9  |Running commodity OSes on scalable multiprocessors [Bugnion et al., 1997]
http://www-flash.stanford.edu/Disco/ 



Disco Architecture
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Disco Performance
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Space-Time Partitioning
Tessellation

• Space-Time partitioning
• 2-level scheduling

Context: 
• 2009-… highly 
  parallel multicore 
  systems
• Berkeley Par Lab
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http://tessellation.cs.berkeley.edu/



Tessellation
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Co-kernels
Fukaga and McKernel

• Specialised kernel for HPC

Context
• 2020 – exascale supercomputer
• Fukaga: world’s fastest supercomputer 2020

ARM-based supercomputer
• Fujitsu A64FX, 48 core per processor, for supercomputer applications
• 158,976 A64FX CPUs, TofuD interconnect

IHK/McKernel
• Lightweight multi-kernel OS. Linux + McKernel on Interface for Heterogeneous Kernels (IHK)
• McKernel: small, lightweight, for HPC, Linux ABI compatible, offloads to Linux kernels
• IHK: partitions resources (cores, memory), inter-kernel messaging
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IHK/McKernel
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Reduce Sharing
K42
Context:

• 1997-2006: OS for ccNUMA systems
• IBM, U Toronto (Tornado, Hurricane)

Goals: 
• High locality
• Scalability

Object Oriented
• Fine grained objects

Clustered (Distributed) Objects
• Data locality

Deferred deletion (RCU)
• Avoid locking 

NUMA aware memory allocator
• Memory locality
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http://www.research.ibm.com/K42/



K42: Fine-grained objects
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K42: Clustered objects
Globally valid object reference
Resolves to 

• Processor local representative
Sharing, locking strategy local to each 
object
Transparency

• Eases complexity
• Controlled introduction of locality

Shared counter:
• inc, dec: local access
• val: communication

Fast path:
• Access mostly local structures
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K42 Performance
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Corey
Context

• 2008, high-end multicore servers, MIT

Goals:
• Application control of OS sharing

OS
• Exokernel-like, higher-level services as libraries
• By default only single core access to OS data structures
• Calls to control how data structures are shared

Address Ranges
• Control private per core and shared address spaces

Kernel Cores
• Dedicate cores to run specific kernel functions

Shares
• Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.

COMP9242 T3/2024 W10 | Multiprocessor OS 20  |Corey: An Operating System for Many Cores [Boyd-Wickizer et al., 2008]
http://pdos.csail.mit.edu/corey



Linux Brute Force Scalability
Context

• 2010, high-end multicore servers, MIT

Goals:
• Scaling commodity OS

Linux scalability 
• 2010 – scale Linux (to 48 cores)

COMP9242 T3/2024 W10 | Multiprocessor OS 21  |An Analysis of Linux Scalability to Many Cores [Boyd-Wickizer et al., 2010]



Linux Brute Force Scalability
Apply lessons from parallel computing and past research

• sloppy counters, 
• per-core data structs, 
• fine-grained lock, lock free, 
• cache lines 
• 3002 lines of code changed

Conclusion: 
• no scalability reason to give up on traditional operating system organizations just yet.
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Scalability of the API
Context

• 2013, previous multicore projects at MIT

Goals
• How to know if a system is really scalable?

Workload-based evaluation
• Run workload, plot scalability, fix problems
• Did we miss any non-scalable workload?
• Did we find all bottlenecks?

Is there something fundamental that makes a system non-
scalable?

• The interface might be a fundamental bottleneck

COMP9242 T3/2024 W10 | Multiprocessor OS 23  |The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors
[Clements et al., 2013]



Scalable Commutativity Rule
The Rule

• Whenever interface operations commute, they can be implemented in a way that scales.
Commutative operations: 

• Cannot distinguish order of operations from results
• Example:

• Creat:
• Requires that lowest available FD be returned
• Not commutative: can tell which one was run first

Why are commutative operations scalable?
• results independent of order ⇒ communication is unnecessary
• without communication, no conflicts

Informs software design process
• Design: design guideline for scalable interfaces
• Implementation: clear target
• Test: workload-independent testing
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(sv6)

Commuter: An Automated Scalability 
Testing Tool

COMP9242 T3/2024 W10 | Multiprocessor OS 25  |



FlexSC
Context:

• 2010, commodity multicores
• U Toronto

Goal:
• Reduce context switch overhead of system calls

Syscall context switch:
• Usual mode switch overhead
• But: cache and TLB pollution!

COMP9242 T3/2024 W10 | Multiprocessor OS 26  |FlexSC: Flexible System Call Scheduling with Exception-Less System Calls 
[Soares and Stumm., 2010]



FlexSC
Asynchronous system calls

• Batch system calls
• Run them on dedicated cores

FlexSC-Threads 
• M on N
• M >> N

COMP9242 T3/2024 W10 | Multiprocessor OS 27  |



FlexSC Results
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Apache
FlexSC: batching, 
sys call core redirect



No sharing
Multikernel

• Barrelfish
• fos: factored operating system

COMP9242 T3/2024 W10 | Multiprocessor OS 29  |The Multikernel: A new OS architecture for scalable multicore systems [Baumann et al., 2009]
http://www.barrelfish.org/



Barrelfish
Context: 

• 2007 large multicore machines appearing
• 100s of cores on the horizon
• NUMA (cc and non-cc)
• ETH Zurich and Microsoft

Goals:
• Scale to many cores
• Support and manage heterogeneous hardware

Approach:
• Structure OS as distributed system

Design principles:
• Interprocessor communication is explicit
• OS structure hardware neutral
• State is replicated

Microkernel
• Similar to seL4: capabilities

COMP9242 T3/2024 W10 | Multiprocessor OS 30  |The Multikernel: A new OS architecture for scalable multicore systems 
[Baumann et al., 2009]   http://www.barrelfish.org/



Barrelfish
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Barrelfish: Replication
Kernel + Monitor:

• Only memory shared for message channels
Monitor:

• Collectively coordinate system-wide state
System-wide state:

• Memory allocation tables
• Address space mappings
• Capability lists

What state is replicated in Barrelfish
• Capability lists

Consistency and Coordination
• Retype: two-phase commit to globally execute operation in order
• Page (re/un)mapping: one-phase commit to synchronise TLBs
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Barrelfish: Communication
Different mechanisms:

• Intra-core
• Kernel endpoints

• Inter-core
• URPC

URPC
• Uses cache coherence + polling
• Shared bufffer

• Sender writes a cache line
• Receiver polls on cache line
• (last word so no part message)

• Polling?
• Cache only changes when sender writes, so poll is cheap
• Switch to block and IPI if wait is too long.
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Barrelfish: Results
Message passing vs caching
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Barrelfish: Results
Broadcast vs Multicast
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Barrelfish: Results
TLB shootdown
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seL4: verifying multicore OS
Context:

• 2013 - 2024+ verified SMP microkernel
• Embedded/ARM multicore systems
• UNSW/TS (+ Kry10, Proofcraft)

Goals:
• Verified multicore kernel

Approach
• Biglock SMP vs multikernel

Design Principles
• Divide and Conquer
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Multiprocessing on seL4 with verified kernels [McLeod, 2023]
https://sel4.systems/Foundation/Summit/2022/slides/d1_07_Multiprocessing_on_seL4_with_verified_kernels_Kent_Mcleod.pdf



Usable CPU count by kernel configuration
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seL4 SMP Kernel (Big Lock)

SMP kernel has shared state
• Concurrency in the kernel
Big kernel lock:
• Simplifies verification, but not by a lot initially
• Adds locking overhead to all kernel operations
Non-negligible code changes for 
implementing SMP design
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Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel
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What are the trade-offs?

42

Multikernel SMP

Kernel State Partitioned Shared

Concurrency in 
Kernel

No - better 
verification

Yes - hard to 
verify

Cross-core 
communications

Implemented at 
userlevel

Implemented by 
kernel



Dealing with Heterogeneity
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De Facto OS and Kirsch
• Modern Operating Systems have a blind spot for modern hardware

Context
• 2020+: highly heterogeneous SoC
• ETH Zurich

Goals
• Identify a de facto OS: All the memory accesses and privileges on a SoC
• Kirsch: OS to replace de facto OS, based on formal HW semantics

Approach
• Model the hardware and software
• Analyse it to determine trust requirements and properties

COMP9242 T3/2024 W10 | Multiprocessor OS 44
Putting out the Hardware Dumpster Fire [Fiedler et al, 2023]
https://sigops.org/s/conferences/hotos/2023/papers/fiedler.pdf 



Heterogeneous SoCs – the problem
Example: QualPWN

• over-the-air compromise of DSP
• DSP asks Linux driver to map all of 

physical memory for it through SMMU
How it normally works:

• Linux driver -> DSP: use this address for 
DMA

• DSP -> Linux driver: give me SMMU 
mappings for DMA

Exploit
• DSP -> Linux driver: asks for malicious 

SMMU mappings
Problem

• Trust driver(s) to filter out bad mappings…
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Cross-SoC Attacks
• Untrustworthy devices/peripherals
• Trusted by OS and other devices

Exploiting Qualcomm WLAN and Modem Over the Air [Gong et al, 2019]
https://i.blackhat.com/USA-19/Thursday/us-19-Pi-Exploiting-Qualcomm-WLAN-And-Modem-Over-The-Air-wp.pdf
mmapx: uniform memory protection in a heterogeneous world [Achermann et al, 2021] 
https://people.inf.ethz.ch/troscoe/pubs/achermann-hotos-2021.pdf

HotOS ’23, June 22–24, 2023, Providence, RI, USA Fiedler, et al.

replaced (e.g. deeply-embedded �rmware). We must, there-
fore, construct a holistic model of an operating system for
real hardware that reaches some overall security/function-
ality goal by composing mutually-untrusting (or partially-
trusting) components.
This paper advocates a radical, but realistic, approach

to this crisis. Instead of trying to �x point bugs, or to re-
design the software ecosystem from scratch, we start from
with a formal model of the semantics of the hardware
platform which can capture the full panoply of SoC and
server designs. From here, we derive a network of strong
trust statements between execution contexts: (cores, de-
vices, etc.). This is then extended to virtual contexts (pro-
cesses, privilege levels, virtual machines, enclaves, etc.).

What pops out for the �rst time is, for a given platform and
collection of system software, a clear statement about exactly
what must be blindly trusted by an application program. We
expect this to be, initially, “everything”, but it provides a
solid basis to replace parts of the system software stack on
a machine with components that can begin to narrow this
trust obligation down. In this way, we start to rule out a
priori whole classes of cross-SoC hardware-enabled software
bugs rather than waiting for exploits to appear.

2 THE PROBLEM
We �rst discuss the state of hardware-related software bugs
and vulnerabilities, the failures that led us here, and why
existing approaches are doomed to fail.

2.1 The growing threat of cross-SoC bugs
Protection in a modern computer system is about much more
than programming the MMU correctly to ensure isolation
between di�erent user processes and the kernel: the OS must
interact with hundreds of devices that can access arbitrary
memory locations via DMA and increasingly have their own
processors, running their own system software. Mutual trust
between such devices and their drivers can lead to serious
problems, and despite the existence of IOMMUs or System
MMUs, new “cross-SoC” attacks which rely on compromising
an intelligent device are regularly demonstrated.
Some exploit incorrect or incomplete IOMMU con�gura-

tion [14, 17], while others exploit subtle features of how data
structures are shared with peripheral devices [16]. Prevent-
ing such bugs by veri�cation seems hard: many years after
its introduction, seL4’s correctness proofs either rely on the
absence of DMA devices, or assume they are trusted [20].

Often, device �rmware is much less rigorously engineered
than, say, the Linux kernel, and less likely to be updated. Re-
mote code execution vulnerabilities have been demonstrated
for many of the Wi-Fi chips in mobile devices [4, 11, 21];
all exploit bu�er over�ows using specially crafted packets.

Figure 1: A cross-SoC attack vulnerability

OS kernel’s mitigations like Kernel Address Space Layout
Randomization (KASLR) and Executable Space Protection
(ESP) [13] are often missing from peripherals [4].

Figure 1 shows this: a Wi-Fi Digital Signal Processor (DSP)
is compromised over the air, and a further bug in the device
driver allows arbitrary RAM to be mapped to the Wi-Fi DSP
via the IOMMU, allowing the DSP �rmware to access the
CPU kernel’s private memory and compromise it.

The authors of these attacks all suggest that this is likely
the tip of the iceberg for these kinds of problems. Classen
et al. show exploits spreading between peripherals without
involving the OS kernel on the CPU [8], using bu�ers shared
between Bluetooth and Wi-Fi chips to attack one from the
other. In Figure 1, compromised Bluetooth �rmware can
in turn compromise the Wi-Fi �rmware since it can access
on-chip RAM containing the �rmware.
The current software response is to �x each particular

bug in the device driver that allowed the exploit to spread to
the main CPU and move on – a game of “whac-a-mole” that
results in every new bug opening a window of vulnerability
in a large number of deployed devices. With new hardware
appearing all the time, this approach is doing nothing to
make the problem go away.

2.2 What’s really going on?
Stepping back from the endless sequence of vulnerabilities
and bugs, there is a fundamental problem here. In principle, it
is the function of the OS to provide, using the hardware facil-
ities, protection and isolation between application programs.
In these cases, however, the kernel has been completely by-
passed by other, highly privileged software running on the
machine. Focussing on kernel design is missing the point.

For this reason, we adopt the de�nition of “operating sys-
tem” used in [19] as, roughly, that body of software that
manages the machine and securely multiplexes it between
applications. This de�nition �nesses the issue of �rmware
sidestepping protection in the Linux kernel: this still con-
stitutes a bug in the OS as we de�ne it, even if it is not
a bug in Linux per se. It also emphasizes that the OS for
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Modelling the whole system
OS, isolation, and protection

• OS: provide protection and isolation between application programs
• Kernel (e.g. Linux, seL4) not the most privileged software on machine

De facto OS
• Consider HW (and firmware) that reads/writes to address spaces

• DMA access: e.g. NICs, WiFi chips, video co-processors
• Other (non-main memory) address spaces

• GLAS: Global logical address space

Formal specification (Sockeye3): 
• directed graph: nodes = address spaces, edges = translation between address spaces
• Context: can generate memory operations (CPU, GPU, DMA engine, etc.)
• Translation regions: contains metadata that configures translation operations
• Component: complex behaviour = Rust code
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De Facto OS
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OS isolation on modern SoCs

23.10.23 3KISV '23: Specifying the de facto OS of a production SoC
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Memory Operations
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Memory operations are software interactions

23.10.23 5KISV '23: Specifying the de facto OS of a production SoC
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Decoding Net
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Decoding nets model the underlying topology

23.10.23 7KISV '23: Specifying the de facto OS of a production SoC
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Analysis
De facto OS characteristics

• No design
• Many parts cannot be changed

Goals
• Make security and correctness claims about de facto OS

• hard guarantees about what the individual soft- and firmware components can and cannot do.
• Understand how to Improve a real-world de facto OS

Analysis
• Compute overlaps between “victim” context and other contexts (critical regions)

• (i.e. which agents can read and write which RAM regions and control registers)
• -> integrity, confidentiality violations

• What trust assumptions need to change (and how) to remove violations?

Status
• i.MX8 8X model
• Make hardware assumptions explicit for OS (e.g. seL4)
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Summary
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Summary
Trends in multicore

• Scale (100+ cores)
• NUMA
• No cache coherence 
• Distributed system
• Heterogeneity

OS design guidelines
• Avoid shared data
• Explicit communication
• Locality

Approaches to multicore OS
• Partition the machine (Disco, Tessellation)
• Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
• No sharing (Barrelfish, fos)
• Dealing with heterogeneity (Kirsch/de facto OS)
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