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Performance (vs. VAX-11/780)

CPU performance increases are slowing
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Multiprocessor System

A single CPU can only go so fast

 |dea: Use more than one CPU to improve performance
— Note: CPU = core

e Assumes
— Workload can be parallelised
— Workload is not I/0O-bound or memory-bound
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Amdahl’s Law

Given:
 Parallelisable fraction P

* Number of processor N

« Speedup S
S(N) =
(1-P)+7
S(w) =

(1-P)
Parallel computing takeaway:

o Useful for small numbers of CPUs

(V)

* Or, high values of P
— Aim for high P values by design
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Types of Multiprocessors (MPs)

Classic symmetric
multiprocessor (SMP)

* Uniform Memory Access

o Access to all memory occurs at the
same speed for all processors.

* Processors with local caches
o Separate cache hierarchy
— Cache coherency issues

CPU

Cache

CPU

Cache

Main
Memory

Bus ‘ ‘ ‘
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Cache Coherency

What happens if one CPU writes to address 0x1234 (and it
Is stored in its cache) and another CPU reads from the

same address (and gets what is in its cache)?
» Can be thought of as managing replication and migration of data

between CPUs

* Note: The unit of replication and consistency is the cache line

CPU

Cache

CPU

Cache

Bus ‘ ‘ ‘

Main
Memory
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Problematic Example

a = 1 b = 1
if b == @ then { if a == @ then {
/* critical section */ /* critical section */
a =20 b =20
} else { } else {
CPUA CPUB _
Main
Memory

Bus ‘ ‘ ‘



Memory Model: Sequential Consistency

“the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.” [Lamport, 1979]
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With sequential consistency

a = 1 b = 1
if b == @ then { if a == @ then {
/* critical section */ /* critical section */
a =20 b =20
} else { } else {
CPUA CPUB _
Main
Memory

Bus ‘ ‘ ‘
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Write-through Caches

* For classic SMP a hardware solution is used
* Write-through caches
« Each CPU cache snoops bus activity to invalidate stale lines

* Reduces cache effectiveness — all writes go out to the bus.
Longer write latency
Reduced bandwidth

a =1 b =1
if b == @ then { if a == 0@ then {
/* critical section */ /* critical section */
a =0 b =0
} else { } else {
CPUA CPUB _
Main
Memory

Bus ‘ ‘ ‘



Types of Multiprocessors (MPs)

CPU Main

Cache Memory

NUMA MP _I_I_I_
, Interconnect
« Non-uniform memory access

o Access to some parts of memory is = |

faster for some processors than 2uoed Main
other parts of memory Ndo Memory

* Provides high-local bandwidth
and reduces bus contention

o Assuming locality of access



How is such a machine kept consistent?

Snooping caches assume
» write-through caches

» cheap “broadcast” to all CPUs

Many alternative cache coherency protocols
» They improve performance by tackling above assumptions

« We’ll examine MESI (four state)
— Optimisations exist (MOESI, MESIF)

* ‘Memory bus’ becomes message passing system between caches
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Example Coherence Protocol MESI

Each cache line is in one of four states

Invalid (I)

» This state indicates that the addressed line is not resident in the cache and/or any data
contained is considered not useful.

Exclusive (E)
 The addressed line is in this cache only.
 The data in this line is consistent with system memory.

Shared (S)
e The addressed line is valid in the cache and in at least one other cache.

« Ashared line is always consistent with system memory. That is, the shared state is
shared-unmodified; there is no shared-modified state.

Modified (M)
 The line is valid in the cache and in only this cache.

* The line is modified with respect to system memory—that is, the modified data in the
line has not been written back to memory.



Example

CPU

CPU

Cache

Cache

Main Memory
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MESI (with snooping & broadcast invalidate)

Events
RH = Read Hit
RMS = Read miss, shared

RME = Read miss, exclusive

WH = Write hit

WM = Write miss

SHR = Snoop hit on read LRU Sll-ll W.M

SHI = Snoop hit on invalidate [Plushj [Push] [Readj [Pushj RME wi

LRU = LRU replacement

Bus Transactions Modified RH

Push = Write cache line back to memory

Invalidate = Broadcast invalidate ‘K

WH

Read = Read cache line from memory

Performance improvement via write-back caching

Less bus traffic



Directory

Each memory bloCck has a home
node

Home node keeps directory of
caches that have a copy

« E.g., a bitmap of processors per
cache-line-sized memory region

Pro

» Invalidation/update messages can
be directed explicitly

o No longer rely on broadcast/snooping

Con

« Requires more storage to keep
directory
o E.g. each 256 bits of memory (cache

line) requires 32 bits (processor mask)
of directory

-based coherence

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

/0 Memory 1/0 Memory /0 Memory /0

[ Interconnection network }

Multicore
processor
+ caches

processor
+ caches

processor
+ caches

processor
+ caches

processor
+ caches
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Example

CPUA

Cache

CPUB

CPUC

Cache

Cache

CPUD

Cache

Memory

Main
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Summary

Hardware-based cache coherency:
* Provide a consistent view of memory across the machine.

* Aread will get the result of the last write to the memory hierarchy
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Memory Ordering

CPU CPU Main

Cache Cache Memory

Bus ‘ ‘ ‘

Example: a tail of a critical section

/* assuming lock already held */
/% counter++ */

lToad rl1, counter

add r1, rl1, 1

store rl, counter

/* unlock(mutex) */

store zero, mutex

Relies on all CPUs seeing update of counter before update of mutex

Depends on assumptions about ordering of stores to memory



Memory Models: Strong Ordering

Sequential consistency

— the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program

Traditionally used by many architectures

Assume X =Y = 0 initially

4 CPUDO N CPU 1 N
store 1, X store 1, Y
load r2, Y load r2, X
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Potential interleavings

At least one CPU must load the other's new value
 Forbidden result: X=0,Y=0

store 1, X store 1, X store 1, X
load r2, v store 1, Y store 1, Y
store 1, Y load r2, Y load r2, X
load r2, X load r2, X load r2, v
X=1,Y=0 X=1,Y=1 X=1,Y=1

store 1, Y store 1, Y store 1, Y
load r2, X store 1, X store 1, X
store 1, X load r2, X load r2, Y
load r2, Y load r2, Y load r2, X
X=0,Y=1 X=1,Y=1 X=1,Y=1



Realistic Memory Models

Modern hardware features can interfere with store order:
« write buffer (or store buffer or write-behind buffer)

* instruction reordering (out-of-order or speculative execution)

» superscalar execution and pipelining

Each CPU/core keeps its own execution consistent, but how
s it viewed by others?

UNSW



Write-buffers and SMP

Stores go to write buffer to hide memory latency

 And cache invalidates

Loads read from write buffer if possible

-~

store
store
store
load

CPU ©
rl,
r2,
r3,
r4,

> N W >

2N

CPUO

v

Store C
Store B

Store A
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Write-buffers and SMP

When the buffer eventually drains, what order does CPU1 see CPUQ’s
memory updates?

~

\_

CPU ©

store rl, A
store r2, B
store r3, C

~

J

~

\_

CPU 1

~

CPUO

What happens in our example?

v

Store C
Store B

Store A




Total Store Ordering (e.g. x86)

Stores are guaranteed to occur in FIFO order

/
CPU ©

store 1, A
store 2, B
store 3, C

\_

~

J

/,7 CPU

1

N o >
o

sees

wnN B

~

CPUO

v

Store C

Store B

Store A




Total Store Ordering (e.g. x86)

Stores are guaranteed to occur in FIFO order

CPUO
ﬁ* counter++ */ \ / \ ‘1'
load rl1, count CPU 1 sees
add ri, ri, 1 count updated o
store rl, counter mutex = 0 mutex
/* unlock(mutex) */ Stors
\stor‘e zero, mutex / \ /




Total Store Ordering (e.g. x86)

Assume X =Y = 0 initially

g CPUO h
store 1, X
load r2, v

& J

CPUO

CPU1

[ CPU1

store 1, Y
load r2, X

"

What is the problem here?

Store X

Store Y

Cache




Total Store Ordering (e.g. x86)

Stores are buffered in write-buffer and don’t appear on other CPU in time.

Can get X=0, Y=0!l

CPUO CPU1

v v

Loads can “appear” re-ordered with preceding stores

4 N\ [ )
CPUDO CPU 1
store 1, X store 1, Y Store X Store Y
load r2, v load r2, X
\_ VRS J
load r2, Y ‘l' ‘L
load r2, X
StO re 11 X Cache Cache
store 1, Y




Memory “fences”

Also called “barriers”

The provide a “fence” between instructions to

prevent apparent re-ordering CPUO CPU1
Effectively, they drain the local CPU’s write- ‘1, ‘1,
buffer before proceeding.
4 N\ [ )
CPUO CPU 1
store 1, X store 1, Y Store X Store Y
fence fence '
\Joad r2, v J \Jdoad r2, X J
Cache Cache
UNSW



Total Store Ordering

Stores are guaranteed to occur in FIFO order

Atomic operations?

( CcPUO \( CPU1 )
11 rl, addrl 11 rl, addrl
sc rl, addrl sc rl, addrl

& VAN J

 Need hardware support, e.g.

« atomic swap
* test & set

 load-linked + store-conditional
 Stall pipeline and drain (and/or bypass) write buffer
* Ensures addr1 held exclusively

CPU

v

Store A
Store B

Store A




Partial Store Ordering (e.g. ARM MPcore)

All stores go to write buffer

Loads read from write buffer if possible

Redundant stores are cancelled or merged

~

\_

CPU ©

store BUSY, addrl
store VAL, addr2
store IDLE, addrl

~

-

CPU 1 sees
addr2 = VAL
addrl = IDLE

J

\_

N

CPU

)

» Stores can appear to overtake (be re-ordered) other

stores

 Need to use memory barrier

v

Store A
Store B

Store A




Partial Store Ordering (e.g. ARM MPcore)

The barriers prevent preceding stores appearing after
successive stores

* Note: Reality is a little more complex (read barriers, write barriers), CPU
but principle similar.
load rl, counter ‘1’

add rl1, ri1, 1
store rl, counter

1 Store A
barrier "
store zero, mutex Stf?l_r.eB

Store A

e Store to counter can overtake store to mutex
* i.e. update moves outside of the lock l'

* Need to use memory barrier
 Failure to do so will introduce subtle bugs:
- Critical section “leaking” outside the lock Cache




MP Hardware Take Away

Each core/cpu sees sequential execution of own code

Other cores see execution affected by
« Store order and write buffers

« Cache coherence model

« Qut-of-order execution

Systems software needs to understand:

« Specific system (cache, coherence, etc..)
« Synch mechanisms (barriers, test_n_set, load_linked — store_cond).

...to build cooperative, correct, and scalable parallel code



MP Hardware Take Away

Existing sync primitives (e.g. locks) will have
appropriate fences/barriers in place

* |n practice, correctly synchronised code can ignore memory model.

However, racey code, i.e. code that updates shared memory

outside a lock (e.g. lock free algorithms) must use
fences/barriers.

* You need a detailed understanding of the memory coherence model.

» Not easy, especially for partial store order (ARM).



Memory ordering for various Architectures

SPARC SPARC SPARC x86

PA-RISC POWER 3/~ PSO TSO oostore

Type Alpha AMD64  |A-64 zSeries

Loads
reordered
after loads

Loads
reordered
after stores

Stores
reordered
after stores

Stores
reordered
after loads

Atomic
reordered
with loads

Atomic
reordered
with stores

Dependent
loads
reordered

Incoherent
instruction
cache
pipeline



Concurrency Observations

Locking primitives require exclusive access to the “lock”

« Care required to avoid excessive bus/interconnect traffic

YYYYYY



Kernel Locking

Several CPUs can be executing kernel code
concurrently.

Need mutual exclusion on shared kernel data.

Issues:
e Lock implementation
« Granularity of locking (i.e. parallelism)

YYYYYY



Mutual Exclusion Techniques

Disabling interrupts (CLI — STI).
 |Insufficient for multiprocessor systems.

Spin locks.

« Busy-waiting wastes cycles.

Lock objects (locks, semaphores).
« Flag (or a particular state) indicates object is locked.

* Manipulating lock requires mutual exclusion.

UNSW



Hardware Provided Locking Primitives

int test and set(lock *);
int compare and swap(int c,

int v, lock *);
int exchange (int v, lock *)

int atomic inc(lock ¥*)

v = load linked(lock *) / bool
store conditional (int, lock ¥*)

 LL/SC can be used to implement all of the above

YYYYYY



Spin locks

void lock (volatile lock t *1) {
while (test and set(l)) ;

}

void unlock (volatile lock t *1) {
*1 = 0;

}

Busy waits. Good idea?

YYYYYY



Spin Lock Busy-waits Until Lock Is Released

Stupid on uniprocessors, as nothing will change while
spinning.

« Should release (block) thread on CPU immediately.

Maybe ok on SMPs: lock holder executes on another CPU.

« Minimal overhead (if contention low).

« Should only spin for short time.

Generally restrict spin locking to:
 short critical sections,

 unlikely to (or preferably can’t) be contended by thread on same CPU.

— local contention can be prevented
» by design (per-CPU data structure)
» by turning off interrupts

UNSW



Spinning versus Switching

* Blocking and switching

— to another process takes time
» Save context and restore another
» Cache contains current process not new
= Adjusting the cache working set also takes time
» TLB is similar to cache

— Switching back when the lock is free encounters the same again

« Spinning wastes CPU time directly
Trade off

* If lock is held for less time than the overhead of switching
to and back

= It's more efficient to spin



Spinning versus Switching

The general approaches taken are
* Spin forever

* Spin for some period of time, if the lock is not acquired,
block and switch

— The spin time can be
» Fixed (related to the switch overhead)
» Dynamic

= Based on previous observations of the lock
acquisition time

YYYYYY



Interrupt Disabling

Assume no local contention by design, is disabling interrupt
important?

Hint: What happens if a lock holder is preempted (e.g., at
end of its timeslice)?

All other processors spin until the lock holder is re-scheduled



Alternative to spinning:
Conditional Lock (TryLock)

bool cond lock (volatile lock t *1) {
if (test and set(l))
return FALSE; //couldn’t lock

else

return TRUE; //acquired lock
}

Can do useful work if fail to acquire lock.

But may not have much else to do.

Livelock: May never get lock!

YYYYYY



Another alternative to spinining.

void mutex lock (volatile lock t *1) {
while (1) {
for (int i=0; i<MUTEX N; i++)
if ('test and set(l))
return;

yield() ;

}

Spins for limited time only
« assumes enough for other CPU to exit critical section

Useful if critical section is shorter than N iterations.
Starvation possible.
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Common Multiprocessor Spin Lock

void mp spinlock (volatile lock t *1) ({
cli(); // prevent preemption

while (test and set(l)) ; // lock

}
void mp unlock (volatile lock t *1) {

*1 = 0;
sti();
}

Only good for short critical sections

Does not scale for large number of processors
Relies on bus-arbitrator for fairness

Not appropriate for user-level

Used in practice in small SMP systems
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Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990



Compares Simple Spinlocks

Test and Set
void lock (volatile lock t *1) {

while (test and set(l)) ;

Test and Test and Set
void lock (volatile lock t *1) {

while (*1 == BUSY || test and set(l))

YYYYYY



test and _test and_set LOCK

Avoid bus traffic contention caused by test and_set until it is likely to succeed
Normal read spins in cache

Can starve in pathological cases

YYYYY



Benchmark

for i =1 .. 1,000,000 ({
lock (1)
crit section()
unlock ()

compute ()

}

Compute chosen from uniform random distribution
of mean 5 times critical section

Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate
caches)



Elapsad timea (sac.)

8 & 38

— Keal
! =+ snin testisol
EH:I-: =% &nin on read
Eﬂ_
10 4
K P —
1 5 q 13 17

number of processors



Results

Test and set performs poorly once there is enough CPUs to
cause contention for lock

« Expected

Test and Test and Set performs better
» Performance less than expected

« Still significant contention on lock when CPUs notice release and all
attempt acquisition

Critical section performance degenerates
 Critical section requires bus traffic to modify shared structure

* Lock holder competes with CPU that missed as they test and set
— lock holder is slower

 Slower lock holder results in more contention



Idea

Can inserting delays reduce bus traffic and improve
performance?

Explore 2 dimensions

 Location of delay
— Insert a delay after observing release prior to attempting acquire
— Insert a delay after each attempt to acquire (memory reference)

* Delay is static or dynamic
— Static — assign delay “slots” to processors
» Issue: delay tuned for expected contention level
— Dynamic — use a back-off scheme to estimate contention

» Similar to ethernet
» Degrades to static case in worst case.
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Examining Inserting Delays

TABLE 111
DELAY AFTER SPINNER NOTICES RELEASED LOCK

Lock while (lock = BUSY or TestAndSet (Lock) = BUSY)
begin
while (lock = BUSY) ;
Delay ();
end;
TABLE IV

DELAY BETWEEN EACH REFERENCE

Lock while (lock = BUSY or TestAndSct (lock) = BUSY)
Delay ():




Queue Based Locking

Each processor inserts itself into a waiting queue

* |t waits for the lock to free by spinning on its own separate
cache line

* Lock holder frees the lock by “freeing” the next processors
cache line.




Results

Clvarhead (sac. )
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Results

Static backoff has higher overhead when backoff is
Inappropriate

Dynamic backoff has higher overheads when static
delay is appropriate

« as collisions are still required to tune the backoff time

Queue is better when contention occurs, but has
higher overhead when it does not.

 |ssue: Preemption of queued CPU blocks rest of queue
(worse than simple spin locks)



John Mellor-Crummey and Michael Scott, “Algorithms for
Scalable Synchronisation on Shared-Memory
Multiprocessors™, ACM Transactions on Computer
Systems, Vol. 9, No. 1, 1991
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MCS Locks

Each CPU enqueues its own private lock variable into a queue and spins
on it

* No contention

On lock release, the releaser unlocks the next lock in the queue

* Only have bus contention on actual unlock

* No livelock (order of lock acquisitions defined by the list)

CPU3—> 3

CPU 3 spins on this (private) lock

CPU 2 spins on this (private) lock _ _ /
\ W CPU 4 spins on this (private) lock
2 ; 4
A ‘\"‘Wh CPU 1 is finished with th
en is finished wi E
Shared memory / / real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the ] is spinning on

real lock



MCS Lock

Requires
« compare_and_swap()

« exchange()
— Also called fetch _and_store()
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type qnode = record
next : “qnode
locked : Boolean

type lock = “qnode

// parameter I, below, points to a qnode record allocated
// (in an enclosing scope) in shared memory locally-accessible
// to the invoking processor

procedure acquire_lock (L : "lock, I : ~“qnode)
I->next := mal
predecessor : “gnode := fetch_and_store (L, I)
if predecessor '= nil // queue was non-empty
I->locked := true
predecessor->next := I
repeat while I->locked // span

procedure release_lock (L : “lock, I: “gnode)

1f I->next = nil // ne known successor
1f compare_and_swap (L, I, nil)
return
// compare_and_swap returns true iff it swapped
repeat while I->next = nil // spin
I->next->locked := false






Sample MCS code for ARM MPCore

void mcs_acquire(mcs_lock *L, mcs_gnode ptr I)

{
I->next = NULL;

MEM_BARRIER;
mcs_gnode_ptr pred = (mcs_gnode*) SWAP_PTR( L, (void *)I);
if (pred == NULL)

{ /* lock was free */

MEM_BARRIER;

return;

}
I->waiting = 1; // word on which to spin
MEM_BARRIER;

pred->next = I; // make pred point to me



Selected Benchmark

Compared
 test and test and set
 Anderson’s array based queue

+ test and set with exponential back-off
« MCS
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Fig. 17. Performance of spin locks on the Symmetry (empty critical section),



Confirmed Trade-off

Queue locks scale well but have higher overhead

Spin Locks have low overhead but don’t scale well

What do we use?
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