
Linux, Locking and Lots of
Processors

Peter Chubb
Senior Consultant
peter.chubb@unsw.edu.au

1 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s

— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70

— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD

— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95

— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987

— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)

◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)

◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)
◦ TCP/IP Networking (BSD 4.1, 1983)

◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)
◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Abstractions

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Interconnect

Linux Kernel

F
ile

s

T
h

re
ad

 o
f

C
o

n
tr

o
l

M
em

o
ry

 S
p

ac
e

4 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Process model

— Root process (init)
— fork() creates (almost) exact copy

◦ Much is shared with parent — Copy-On-Write avoids overmuch copying
— exec() overwrites memory image from a file
— Allows a process to control what is shared

5 Linux © Peter Chubb 2024, CC-BY-SA 4.0

fork() and exec()

— A process can clone itself by calling fork().
— Most attributes copied:

◦ Address space (actually shared, marked copy-on-write)
◦ current directory, current root
◦ File descriptors
◦ permissions, etc.

— Some attributes shared:
◦ Memory segments marked MAP SHARED
◦ Open files

6 Linux © Peter Chubb 2024, CC-BY-SA 4.0

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7 Linux © Peter Chubb 2024, CC-BY-SA 4.0

dup()

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7 Linux © Peter Chubb 2024, CC-BY-SA 4.0

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process B

fork()

dup()

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7 Linux © Peter Chubb 2024, CC-BY-SA 4.0

switch (kidpid = fork()) {
case 0: /* child */

close(0); close(1); close(2);
dup(infd); dup(outfd); dup(outfd);
execve("path/to/prog", argv, envp);
_exit(EXIT_FAILURE);

case -1:
/* handle error */

default:
waitpid(kidpid, &status, 0);

}

8 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Standard File Descriptors

0 Standard Input
1 Standard Output
2 Standard Error

— Inherited from parent
— On login, all are set to controlling tty

9 Linux © Peter Chubb 2024, CC-BY-SA 4.0

The problem with fork()

— Almost perfect in original system
◦ Implemented in a few lines of assembly
◦ Alowed re-use of system calls for changing state
◦ Fast for segment-style (not paged) MMU

— But:
◦ Address spaces now bigger and managed with pages

• Slow to copy page tables
◦ Multi-threading breaks semantics

• Child no longer an exact copy — only one thread fork()ed
• Much more per-process state, not all inheritable

10 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Permissions Model

— Processes are proxies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID

— A process with UID 0 can signal any process, operate on any file∗

11 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Permissions Model

— Processes are proxies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID
— A process with UID 0 can signal any process, operate on any file∗

* Conditions apply

11 Linux © Peter Chubb 2024, CC-BY-SA 4.0

File model

— Separation of names from content.
— ‘regular’ files ‘just bytes’ → structure/meaning supplied by userspace
— Devices represented by files.
— Directories map names to index node indices (inums)
— Simple permissions model based on who you are.

12 Linux © Peter Chubb 2024, CC-BY-SA 4.0

.

..

bash

sh

ls

which

rnano

busybox

setserial

bzcmp

367

368

402

401

265

/ bin / ls

.

..

boot

sbin

bin

dev

var

vmlinux

etc

usr

inode 324

2

300

300

301

324
3

4

5

7

6

2

2

324

8

125

13 Linux © Peter Chubb 2024, CC-BY-SA 4.0

namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache

—
becomes SMP bottleneck

— hide filesystem and device boundaries
— walks pathname, translating symbolic links

14 Linux © Peter Chubb 2024, CC-BY-SA 4.0

namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache —

becomes SMP bottleneck
— hide filesystem and device boundaries
— walks pathname, translating symbolic links

14 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Evolution
KISS

— Simplest possible algorithm used at first

◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Evolution
KISS

— Simplest possible algorithm used at first
◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Evolution
KISS

— Simplest possible algorithm used at first
◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Linux C Dialect

— Extra keywords:
◦ Section IDs: init, exit, percpu etc
◦ Info Taint annotation user, rcu, kernel, iomem
◦ Locking annotations acquires(X), releases(x)
◦ extra typechecking (endian portability) bitwise

16 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Extra iterators
◦ type name foreach()

— Extra O-O accessors
◦ container of()

— Macros to register Object initialisers

17 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Massive use of inline functions
— Quite a big use of CPP macros
— Little #ifdef use in code: rely on optimiser to elide dead code.

18 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Internal Abstractions

— MMU
— Memory consistency model
— Device model

19 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scheduling
Goals

— dispatch O(1) in number of runnable processes, number of processors
◦ good uniprocessor performance

— ‘fair’
— Good interactive response
— topology-aware
— O(log n) in number of runnable processes for scheduling.

20 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Changes from time to time.
— Currently ‘CFS’ by Ingo Molnar.

21 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

22 Linux © Peter Chubb 2024, CC-BY-SA 4.0

CFS

1. Keep tasks ordered by effective CPU runtime weighted by nice in
red-black tree

2. Always run left-most task.
Devil’s in the details:

— Avoiding overflow
— Keeping recent history
— multiprocessor locality
— handling too-many threads
— Sleeping tasks
— Group hierarchy

23 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Thread

24 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Core

24 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

24 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

24 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25 Linux © Peter Chubb 2024, CC-BY-SA 4.0

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— One queue per processor (or hyperthread)
— Processors in hierarchical ‘domains’
— Load balancing per-domain, bottom up
— Aims to keep whole domains idle if possible (power savings)

26 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Memory Management

Memory in zones
Highmem

Normal

DMA

Normal

Physical address 0

16M

900M

DMA

3GLinux kernel

User VM

VirtualPhysical

Id
en

ti
ty

 M
ap

p
ed

 w
it

h
 o

ff
se

t

27 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory: change kernel to refer to memory by struct page

28 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical

— More memory: change kernel to refer to memory by struct page

28 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory: change kernel to refer to memory by struct page

28 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Every frame has a struct page (up to 10 words)
— Track:

◦ flags
◦ backing address space
◦ offset within mapping or freelist pointer
◦ Reference counts
◦ Kernel virtual address (if mapped)

29 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Memory Management

File
(or swap)

struct

address_space

struct

vm_area_struct
struct

vm_area_struct
struct

vm_area_struct

struct mm_struct

In virtual address order....

struct task_struct

P
ag

e
T

ab
le

(h
ar

d
w

ar
e

d
ef

in
ed

)

owner

30 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Memory Management
Address Space

— Misnamed: means collection of pages mapped from the same object
— Tracks inode mapped from, radix tree of pages in mapping
— Has ops (from file system or swap manager) to:

dirty mark a page as dirty
readpages populate frames from backing store
writepages Clean pages — make backing store the same as

in-memory copy
migratepage Move pages between NUMA nodes
Others. . . And other housekeeping

31 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Page fault time

— Special case in-kernel faults
— Find the VMA for the address

◦ segfault if not found (unmapped area)
— If it’s a stack, extend it.
— Otherwise:

1. Check permissions, SIG SEGV if bad
2. Call handle mm fault():

• walk page table to find entry (populate higher levels if nec. until leaf found)
• call handle pte fault()

32 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Page Fault Time
handle pte fault()

Depending on PTE status, can
— provide an anonymous page
— do copy-on-write processing
— reinstantiate PTE from page cache
— initiate a read from backing store.

and if necessary flushes the TLB.

33 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Driver Interface

Three kinds of device:
A enumerable-bus device
B Non-enumerable-bus device

34 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Driver Interface: Device Discovery
Enumerable buses

static DEFINE PCI DEVICE TABLE(cp pci tbl) = {
{ PCI DEVICE(PCI VENDOR ID REALTEK,

PCI DEVICE ID REALTEK 8139), },
{ PCI DEVICE(PCI VENDOR ID TTTECH,

PCI DEVICE ID TTTECH MC322), },
{ },

};
MODULE DEVICE TABLE(pci, cp pci tbl);

35 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Driver Interface
Driver interface

init called to register driver
exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device
open, close, etc as necessary for driver class

36 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Device Tree

— Describe board+peripherals

◦ replaces ACPI on embedded systems
— Names in device tree trigger driver instantiation

37 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37 Linux © Peter Chubb 2024, CC-BY-SA 4.0

uart_A: serial@84c0
compatible = "amlogic,meson6-uart", "amlogic,meson-uart";
reg = <0x84c0 0x18>;
interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;
status = "okay";

;

38 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Debugging device discovery

Add debug initcalls to Linux boot args
— traces all calls to init() functions at boot time.

(See Documentation/admin-guide/kernel-parameters.txt in
the linux kernel source for other useful boot args)

39 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Containers

— Namespace isolation

— Plus Memory and CPU isolation
— Plus other resources

40 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Containers

— Namespace isolation
— Plus Memory and CPU isolation

— Plus other resources

40 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

40 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups

40 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups
Used to implement, e.g., Docker

40 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Summary

— I’ve told you status today

◦ Next week it may be different
— I’ve simplified a lot. There are many hairy details

41 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Summary

— I’ve told you status today
◦ Next week it may be different

— I’ve simplified a lot. There are many hairy details

41 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Summary

— I’ve told you status today
◦ Next week it may be different

— I’ve simplified a lot. There are many hairy details

41 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
The Multiprocessor Effect

— Some fraction of the system’s cycles are not available for application
work:

◦ Operating System Code Paths
◦ Inter-Cache Coherency traffic
◦ Memory Bus contention
◦ Lock synchronisation
◦ I/O serialisation

42 Linux © Peter Chubb 2024, CC-BY-SA 4.0

If a process can be split such that σ of
the running time cannot be sped up,
but the rest is sped up by running on
p processors, then overall speedup is

p
1 + σ(p − 1)

T(1- σ) Tσ

Tσ

T(1- σ)

T(1- σ)

T(1- σ)

43 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

3 processors

2 processors

Applied load

Throughput

Latency

Throughput

45 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Gunther’s law

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:
N is demand
α is the amount of serialisation: represents Amdahl’s law
β is the coherency delay in the system.
C is Capacity or Throughput

46 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

USL with alpha=0,beta=0

T
h
ro

u
g
h
p
u
t

Load

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

USL with alpha=0.015,beta=0

T
h
ro

u
g
h
p
u
t

Load

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

USL with alpha=0.001,beta=0.0000001

T
h
ro

u
g
h
p
u
t

Load

α > 0, β > 0

47 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

USL with alpha=0,beta=0

T
h
ro

u
g
h
p
u
t

Load

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

USL with alpha=0.015,beta=0

T
h
ro

u
g
h
p
u
t

Load

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

USL with alpha=0.001,beta=0.0000001

T
h
ro

u
g
h
p
u
t

Load

α > 0, β > 0

47 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

USL with alpha=0,beta=0

T
h
ro

u
g
h
p
u
t

Load

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

USL with alpha=0.015,beta=0

T
h
ro

u
g
h
p
u
t

Load

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

USL with alpha=0.001,beta=0.0000001

T
h
ro

u
g
h
p
u
t

Load

α > 0, β > 0

47 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Real examples

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

Postgres TPC throughput

T
h
ro

u
g
h

p
u
t

Load49 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

USL with alpha=0.342101,beta=0.017430
Postgres TPC throughput

T
h
ro

u
g
h
p
u
t

Load

50 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

Postgres TPC throughput, separate log disc

T
h

ro
u

g
h

p
u

t

Load51 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Another example

reAIM-7 on HP
16-way Itanium:

α
huge; 12-way
curve below 8 way.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o

b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

52 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Scalability
Another example

reAIM-7 on HP
16-way Itanium: α
huge; 12-way
curve below 8 way.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o

b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

52 Linux © Peter Chubb 2024, CC-BY-SA 4.0

SPINLOCKS HOLD WAIT
UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME
72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30
0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%)1113 14.7% 85.3% 0% find lock page+0x130

53 Linux © Peter Chubb 2024, CC-BY-SA 4.0

SPINLOCKS HOLD WAIT
UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME
72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30
0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%)1113 14.7% 85.3% 0% find lock page+0x130

53 Linux © Peter Chubb 2024, CC-BY-SA 4.0

struct page *find lock page(struct address space *mapping,
unsigned long offset)

{
struct page *page;
spin lock irq(&mapping->tree lock);

repeat:
page = radix tree lookup(&mapping->page tree, offset);
if (page) {

page cache get(page);
if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);
lock page(page);
spin lock irq(&mapping->tree lock);

. . .

54 Linux © Peter Chubb 2024, CC-BY-SA 4.0

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

55 Linux © Peter Chubb 2024, CC-BY-SA 4.0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

Spin lock

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

RWlock

Note Scales!

56 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Tackling scalability problems

— Find the bottleneck

— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Tackling scalability problems

— Find the bottleneck
◦ not always easy

— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Tackling scalability problems

— Find the bottleneck
— fix or work around it

◦ not always easy

— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Tackling scalability problems

— Find the bottleneck
— fix or work around it
— check performance doesn’t suffer too much on the low end.

— Experiment with different algorithms, parameters

57 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Tackling scalability problems

— Find the bottleneck
— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry

58 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry

58 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation

— Many techniques. We cover:
◦ Sequence locks
◦ Read-Copy-Update (RCU)

59 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation
— Many techniques. We cover:

◦ Sequence locks
◦ Read-Copy-Update (RCU)

59 Linux © Peter Chubb 2024, CC-BY-SA 4.0

— Readers don’t lock
— Writers serialised.

60 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Reader:
volatile seq;
do {
do {
lastseq = seq;

} while (lastseq & 1);
rmb();
reader body

} while (lastseq != seq);

Writer:
spinlock(&lck);
seq++; wmb()
writer body ...
wmb(); seq++;
spinunlock(&lck);

61 Linux © Peter Chubb 2024, CC-BY-SA 4.0

RCU

McKenney (2004), McKenney et al. (2002)

1.

2.

3. 4.

62 Linux © Peter Chubb 2024, CC-BY-SA 4.0

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

62 Linux © Peter Chubb 2024, CC-BY-SA 4.0

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3.

4.

62 Linux © Peter Chubb 2024, CC-BY-SA 4.0

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

62 Linux © Peter Chubb 2024, CC-BY-SA 4.0

Background Reading I

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels, PhD
thesis, OGI School of Science and Engineering at Oregon Health and
Sciences University.
URL: http://www.rdrop.com/users/paulmck/RCU/
RCUdissertation.2004.07.14e1.pdf

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. & Russell,
R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.
URL: http://www.rdrop.com/users/paulmck/rclock/rcu.
2002.07.08.pdf

63 Linux © Peter Chubb 2024, CC-BY-SA 4.0

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

	References

