School of Computer Science & Engineering
N COMP9242 Advanced Operating Systems
UNSW | gz
SYDNEY niversity

2024 T3 Week 7 Part 2

selL4 in the Real World &
selL4 Research at TS@UNSW
@GernotHeiser

Client <———» Val. BY
IP Stack <«——— Copy «———> MUX

NIC

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

2

Today’s Lecture

* selL4 in the real world
« HACMS & incremental cyber-retrofit
« Adption and sel.4 Foundation

» seL4-related research at UNSW Trustworthy Systems
« Usability 1: Microkit
 Usability 2: Lions OS
« Pancake: Verifying device drivers
» Secure multi-server OS

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

SYDNEY
[eal
=

sel4 in the Real World

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

SYDNEY

D)

DARPA HACMS (2012-17)

Retrofit
existing
system!

=, Develop
\e technology

Off-the-shelf
Drone airframe

vvvvvv

4 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

@=el4 ULB Architecture

Sensors

5 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

Motors

© Gernot Heiser 2019-24 — CC BY 4.0

YYYYYY

;:

6

Original Trusted

Mission N
ooy ission Manager

Trusted Crypto

Local NW GPS

Mission Manager

Crypto Camera Ground Stn Link

Local NW GPS -

Ground Stn Link

Virt-Mach Monitor

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

=)

Incremental Cyber Retrofit

Trusted GS Lk

Miss
\le]g

Crypto Cam-
PS era

Local
NW VMM

© Gernot Heiser 2019-24 — CC BY 4.0

Incremental Cyber Retrofit
Original |

Mission Trusted GS Lk
Computer

Miss
Trusted

GPS era Trusted era

N L =Y oo [wission

: I Mngr
oca
VMM Sl GPS VMM

7 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

;:

Mission Manac

Crypto Ca

Linux

Local NW

Ground Stn Li

Local
NW

© Gernot Heiser 2019-24 — CC BY 4.0

Incremental Cyber Retrofit

Original [Klein et al, CACM, Oct’'18]
Mission Computer

Cyber-secure Mission
Computer
Mission Manager Cam-

Trusted era

Mission Linux
Mnqgr

Comms GPS VMM

Trusted

Crypto Camera

— Crypto
Local NW GPS o
W

Local
Ground Stn Link N

8 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0

9

World’s Most Secure Drone

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

2021-08-06

< Tweet

AR DARPA &
@DARPA

We brought a hackable quadcopter with defenses built
on our HACMS program to @defcon
#AerospaceVillage. As program manager
@raymondrichards reports, many attempts to
breakthrough were made but none were successful.
Formal methods FTW!

© Gernot Heiser 2019-24 — CC BY 4.0 UNSW

10

HACMS Outcomes & Consequences

« Demonstrated real-world suitability of seL4 and formal methods
* Reversal of bad vibes from over-promising and under-delivering

* Major re-think in US defence

 Dis-proved “security must be designed in from the start”

 Retrofit is possible (under the right circumstances!)

* Led to follow-on funding for seL4 and deployment in the field

 DARPA CASE, Feb'16 — Dec’22

* seL4 Summits, since Nov’18 (initially sponsored by DARPA)

» selL.4 Foundation, since April'20

« TIl (UAE), Dec’21 — ongoing

« NCSC (UK), Jan’22 — ongoing

« DARPA PROVERS, Q1°24-Q3°26
* More TBA soon!

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

VVVVVV

sel4 in Products

Commercial cars
(NIO), Sep’24

11 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Usability Issues

SYDNEY

12 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

@seld Issue: seL4 Objects are Low-Level

PD,
VSpace Thread CSpace CSpace Thread VSpace
Object Object

Fram PT
[= |
||

CNodee—m PD PT Fram

Receive

>50 kernel objects
for trivial program!

YYYYYY

13 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gemnot Heiser 2019-24 —CCBY 4.0 &) UNSW
2

Simple But Non-Trivial System

......

14 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

VVVVVV

el

15

Microkernel: Assembly Language of OS

selL4 provides Programmer wants
e threads * Processes

« scheduling contexts » Sockets

* pages * Files

« endpoints

. notifications Result: everyone

builds their own

.. but good design on selL 4

requires deep expertise
’if’

».u

J] I’l"doﬁi .

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

Enter LionsOS

Stop The Train Wrecks!

16 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

LionsOS Aims: Fast, Secure, Adaptable

Aim 1: Practical, easy-to-use, open-source OS for wide
range of embedded/loT/cyberphysical use cases

Can use

Must be well , ,
static architecture

designed!

Aim 3: Most

Aim 2: Best-performing secure OS ever

microkernel-based OS ever
Must be verified!

17 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

P CYBNEX
o

Step 1: Microkit — Simple selL4 Abstraction

Minimal base for loT, cyberphysical, other embedded use

 Restrict to static architectures
* i.e. components & communication channels defined at build time

« Ease development and deployment
« SDK, integrate with build system of your choice

« Retain near-minimal trusted computing base (TCB)
« TCB suitable for formal verification

» Retain selL4’s superior performance

18 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

vvvvvv
R

19

Microkit Abstractions

Simple, Protection Protection
single-threaded Domain 1 Domain 2

event-driven

notified(...)

notified(...)

protected(...)

Minimal abstractions
May be a

Thin wrapper of selL4 _ _ |
Encourage “correct” Memory Region virtual machine

use of selL4 primitives
Static architecture

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW
Gz

libmicrokit: Event-handler loop

for (5;) {

if (have_reply) {
tag = seLLl4_ReplyRecv(INPUT_CAP, reply_tag, &badge, REPLY_CAP);

} else if (have_signal) {
tag = seLL4_NBSendRecv(signal, signal_msg, INPUT_CAP, &badge, REPLY_CAP);
have_gsignal = false;

} else {
tag = seLLl4_Recv(INPUT_CAP, &badge, REPLY_CAP);

}
event_handle(badge, &have_reply, &reply_tag, ¬ified);

© ® % o Ok A W

 —
O

11.)

=]

20 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

ssssss
el

libmicrokit: Invoking user code

event_handle(badge, &have_reply, &reply_tag, ¬ified) {
if ((have_reply) = badge >> 63) {
reply_tag = protected(badge & 0x3f, tag);
} else {
unsigned int idx = O;
do {
if (badge & 1) {
notified(idx);
}
badge >>= 1; idx++;
} while (badge !=0);

© ® % o Ok A W

—
~ O

=
SR AY

}

21 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

ssssss
el

Microkit System Description File (SDF)

1. <system>
2. <memory_region name="uart" size="0x1000" phys_addr="0x9000000" />
3. <memory_region name="buf" size="0x1000" />
4, <protection_domain name="serial” priority="2507">
5. <irq irq="33" id="0" />
6. <program_image path="serial_server.elf" />
7. <map mr="wuart" vaddr="0x4000000" perms="rw'" cached="false” .. />
8. <map mr="buf" vaddr="0x4001000" perms="rw" setvar_vaddr="1input" />
9. </protection_domain>
10. <protection_domain name="main">
11. <program_image path="main.elf" />
12. </protection_domain>
13.
<end pd="serial" did="1" />
<end pd="client" +id="0" />
17. </system>
22 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Verifying Microkit: libmicrokit

seL4spec 4 Microkit spec

from sel4
verification

Take-away:

« Doable but cumbersome

« Annotations should be done in
source code, not GraphLang

23 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

Push-
button!

from sel4
binary Control-
verification flow graph
Manual
assertions

© Gernot Heiser 2019-24 — CC BY 4.0 E: UNSW

VVVVVV

@ seld Verifying Microkit: System Initialisation

selL4
caps
Generate
Gene- Gene-
rate Translation
Isabelle Validation Isabelle
SDF ﬂ CapDL
Links to
initialisation
proofs!

24 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0

Microkit Verification in Context

Conditions \ sel4 spec
apply Microkit SDF microkit spec
N \
N \
CapDL spec N \
PDy PD; | ~ \
Bfgjeei? CSpace CSpace ggj.gacg Proof- N . \\'
E generating A
. PD1.c libmicrokit.c -
translation A == Push

button
Compiler/ proof
v Linker
¥ system.elf
init.o
25 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 - CCBY 4.0 s UNSW

Microkit Status

« Easy to use — non-experts productive within hours
» Supports AArch64, RV64 (x64 in progress)
* Verification presently for initial version & hacky, doing properly

* Limited dynamic features:

* fault handlers
« start/stop protection domains

* empty protection domains H(.
(for late app loading) CE;

 To come: PD PD

* re-initialise protection domains

 “template PDs” — discretionary access

26 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UM%W

LionsOS

Fast — secure — adaptable!

Lions

27 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UH&W

Lions OS: Highly Modular OS on Microkit

LionsOS
Networking File Sy stem
2 [=
D
Stack Vet Microkit
Microkernel

Hardware

28 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UM%W
=2

29

Lions OS:

Least Privilege

Radical simplicity

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

Principles

Strict separation of concerns

Overarching principle: KISS
“Keep it simple, stupid!”

Use-case—specific policies

Design for verification

ssssss

Least Privilege: Device Drivers

Pr—

Virtualiser Driver
3 3 Driver does
not need
Control Metadata access to
data region!
Data

30 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW
A

Strict Separation of Concerns: Networking

Tx device virtualisation
Validati » Packet arbitration Each component has
aliaation « Address translation :
|
e g one and only one job!

>-<—> Tx

L
N

>-\ Virt NIC
Broadcasts ARP Driver I I
> Val. / Rx

Client <
IP Stack <« > Copy e Virt Interface
translation
Separates Rx device virtualisation:
clients « packet distribution

« Address translation
» Cache management

=]

31 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Radical Simplicity ™

Provide exactly the

functionality needed, Simple programming model:

not more strictly sequential code (Microkit)
event-based (Microkit)

single-producer, single-consumer queues
location transparency

Static architecture,
mostly static resource
management

32 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

vvvvvv

Driver Programming Model Driver model

 Single-threaded

» Lock-free, bounded queues » Event-driven
« Single producer, single consumer e Simplel
« Similar to ring buffers used by NICs

Mostly moves

Packetj Buffers pointers

to sen 8 IS between queues

Virt Control region (Tx part’ NIC Tx Metadatareg. EN\l[&
Driver

E E tail

head
3 3. 3 1 1 é Data region

33 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Crs)

Use-Case—Specific Policies

Source of '‘80s model of
massive computer use!
complexity

Lions-0S: Use-case diversity through policies that are:
« optimised for one specific use case

» simple, localised implementation

» easy to replace by swapping component

34 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

© Gernot Heiser 2019-24 — CC BY 4.0 UNSW

VVVVVV

Networking System

_ Most components
Client can small & simple -

Tx Mux encapsulates verification possible?
traffic-shaping policy

NIC
o Tx
i
OO Driver QE
Rx O0Q <>
[Rx

Driver can

bea VM

IP stack is library —

not in system’s TCB! Location-transparent

modules

35 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gemnot Heiser 2019-24 —CCBY 4.0 &) UNSW

YYYYYY

Comparison to Linux (i.MX8)

Linux: Performance?

 NW driver: 4k line
« NW system tot
Written by second-

selL4 design: year student!

« NW driver: 700 lines
Virtualiser: 400 lines
Copier: 200 lines

IP stack: much simpler, clientl
shared NW system total(< 2,000 lines

36 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0

UNSW

Gz

i} Evaluation Setup

37

External load

2 context switches generator
per packet Client echoes

packets

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

10 context switches
per packet

Copy T\‘ TX

<> Copy \
Driver
Rx

gy Virt
Copy

9:clq

Client

© Gernot Heiser 2019-24 - CCBY 4.0 a8 UNSW

YYYYYY

38

Performance: i.MX8M, 1Gb/s E/N, UDP

1000
Q)
g 800
3
£ 600
(@)]
-]
o
= 400
o
()
>
(]
= 200
(&]
<C

0

Linux Xput —%— Linux CPU - -¥% - Lions Xput Lions CPU
T T % S N 100
/*]
B ‘ Biggeris | 80
Smaller w-- X better!
| . * --" ____—M —
is better! x w—3% | 60
- X - 40
— X <1 20
*l
33(| | | | 0
0 200 400 600 800 1000

Applied Load (Mb/s)

Single-core configuration

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

CPU utilisation (%)

VVVVVV

39

Performance: i.MX8M, 1Gb/s E/N, UDP

Linux 2C Xput Linux 4C CPU - -% - Lions MC Xput —#—
Linux 2C CPU Lions SC Xput Lions MC CPU - - -
Linux 4C Xput —%— Lions SC CPU

1000 T T 250

w

e

= 800 200 —
= X
3 N
Q c
5, 600 -4 150 8
= ©
S 2
= 400 4 100 5
g)
o o
Q2 200 ds50 ©O
<

&}

<

0 0
0 200 400 600 800 1000
Applied Load (Mb/s)
Multicore configuration
COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Underneath https://seld4.systems/
=

microPython

TIMER CONSOLE VFS LWIP

LionsOS

40 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gemnot Heiser 2019-24 —CCBY 4.0 &) UNSW

SYDNEY

41

The TS “Kitty”

MicroPython

TIMER CONSOLE VFS LWIP PN532

A

ETHERNET

LionsOS

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

UIO GRAPHICS

FRAMEBUF

Welcome to Kitty v5

Running on LionsOS?
Server Time: 09:55:22 AM

SYDNEY

Lions OS Status

* Funding secured (DARPA, NIO, ...)

* Networking, storage done

« Sound, I°C, file system, hot-plugging close to merging
* Display supported by frame driver in Linux VM

* Deployed:
» selL4.systems web server
 Point-of-sale system

« Working on verification

42 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

SYDNEY
sl
=

43

Scaling Verification

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

© Gernot Heiser 2019-24 — CC BY 4.0

Remember: Verification Cost in Context

2 ¢)sel
Revolution! S4OO Green Hills
o INTEGRITY
% $1000
= Fast! '/
(/)]
7))
<
L4
Pistachio
S100-150
100 250 500 750 1000
Cost ($/SLOC)

44 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

el

Driver Dilemma

High sel4 verification
costs partially due to

C language
selL4 is one-off, SR

justifies cost Better language

Drivers are low-
would reduce cost

Drivers are level, need C-like
commodity, language
must be cheap!

| Idea: « Well-defined semantics
Lions OS 1. Simplify drivers Memory-safe
2. Design verification-friendly
* Verified compiler systems language: Pancake
* de-compilation 3. Automate (part of) verification

45 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

Values Languages Transformations

|] [[]
. &S
> Parse concrete syntax
n > Infertypes, exitif fail
Introdi lobals 3
s
replace constructor
g IF“!“-W‘Q 1f names with numbers
£ ;,::ig“l:;g:w; > Gilobal dead code elim.
;‘ high-level Turn pattern matches into
21| | tang. features > fihemelse dedsion frees
s Switch to de Bruijn
8/ > indexed local variables
2 Fuse function calls/:
E O it ag calvams
u] ClosLang: (= Track where closure values
ﬁ last language flow & inline small functions
ature tunctional language B | Mt | moaeeconers
3 (has multi-arg calls wherever possible
K) > Remove deadcode
. E > Annotate closure creations
Large and active ecosystem of developers i 2 et o
BVL: > Inline small functions
functional > Fold constants and
language shrink Lets
a n u S e rS without > Split over-sized functions
closures into many small functions
> Comopile global vars into a
dynamically resized array
. e BVI: |, Optimise Let-expressions
Code generation from abstract specs IR o
e8 varial recursive using an acc.
e > Switch to i ive style
[%3 Datalang: > Reduce caller-saved vars
£& imperative > Combine adjacent
dnaged = Not sultable 10r systems codae ie| (e)< ey
> Remove data abstraction
> Simplify program
- . a WordLang: > Select target instructions
v Used for verified application code g | o S s
machine Worgs, > Force two-reg code (if req.)
memory an
aGC primitive | > Remove deadcode
> Allocate register names
w” 2> Concretise stack
E > Introduce (raw) calls past
f StackLang: function preambles
2 imperative | > Implement GC primitive
° "I:nguag_?ke > Turn stack accesses into
5 W sl;:’l:aayml! memory acceses
Re-use framework f| [> s
e > Flatten code
K] > Delete no-ops (Tick, Skip)
f E Encode program as
or new systems
st
language: Pancake . g :
s
: https://cakeml.org ~ “me)
L] L] Silver CPU E'
Prond " as HOL functions =
Verilog generator <:
46 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 INOV

Pancake: New Systems Language CakeML

CakeML passes
Languages Transformations

) e

D i pen, i

\l‘lmduce g\gﬂhz‘\s vars,
— e Soodas g6
language | <> Global dead code elim
without
high-level
features

P Pancake passes T
Pancake e oo
Parse concrete
Approach: T <)

Flatten structs <

Tum pattern matches into
if-then-else decision trees.

Switch to de Bruijn
indexed local variables

> Fuse tuncton cals
into mult-arg calls

Costang: Track dosure values &
e e smaiomet
CrepLang: dlosures Introduce C-stle fast
y - imperative (has multi-arg Cals where possitie
language closures) = Remove deadcode
without structs > Annotate closure creations,

> Pertarm dosure conv.

> Inine smailfurctions

> Fod constams sk
Les

Normalise program

CakeML compiler stack S —

« Get verified Pancake ptans-s B
compiler quickly o R
* Retain mature

framework/ecosystem

> Seitoversized fincions

Compile global vars intoa
iynamicaly resized amay

> opiiise Letepressions

Make some functions
tall-recursive

O swikhto imperatie stle
> Reduce callersaved vars

Combine adjacent
memory allocations

‘) Remove data abstraction
N\

> Simplify program \
WordLang: > Select target instructions
imperative " N

language with > Perform SSA-like renaming

machine words, > Force two-reg code (if req.

memory and
aGC p:iymmve > Remove deadcode

> Allocate register names
<> Concretise stack

> Introduce (raw) calls past
StackLang: function preambles

imperative > Implement GC primitive

language .
o f Turn stack accesses into
with array-like memory acceses

stack and

optional GC Rename registers to match
Pl > arch registers/conventions

> Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

S

ARMv8 x86-64)| MIPS-64) | RISC-V
\
\ -

UNSW

SYDNEY

47 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0

Received Throughput (Mb/s)

48

Pancake Performance: LionsOS Networking

Oct’23: Pancake Muxes

1,000 — ‘ 100
900 |- 90
800 |- 80 w©
700 | 70 o
600 |- 60 %
500 | 50 .4
400 | | —@— Xput Pancake 40 5
300 | —o—Xput C 30 D
200 | —=— CPU Pancake || 20 %
100 | —=—-CPUC - 10
0 0
O

Overall utilisation —
Pancake overhead >100%!

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

Oct’24: Pancake Driver

C vs. Pancake Ethernet Driver User Cycles (Maaxboard)

B Cdrivercycles [Pancake drivercycles @ overhead (vs.C)

26 .! I II I
26.0 L
24%5 o0I0 22% . 200 M0
' 418130 o¥p 1132 113%

10 20 50 100 200 300 400 500 600 700 800 900 1000

4.00E+9 100.0

3.00E+9

75.0

2.00E+9

[$)]

0.0

1.00E+9 250

0.00E+0 0.0

Requested Throughput (Mb/s)

Cycles in driver only —
Pancake overhead 13-28%

© Gernot Heiser 2019-24 — CC BY 4.0

VVVVVV

Pancake: New Systems Language

Pancake

Status:
« “Usable” rump language
« sufficient for drivers
« presently need C-escapes for cache management
instructions

* In progress:
« performance improvements
« automatic translation to SMT input language (Viper)
« decompilation from Pancake to HOL
* new semantics for non-terminating programs
« efficient verification framework (Hoare logic)

49 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS

o Pancake passes T

CakeML

Languages

CakeML passes
Transformations

) e

Parse concrete
syntax

Flatten structs <

Normalise program

<

Call optimisation <

§h|ri"k cutsetg and
lelete unuse:
assignments (

Replace loops
\ with taitcalle <
\

Pancake syntax
Pancake AST

L 1

CrepLang:

imperative

language
without structs
~——

)

LoopLang:
expressions
occur only on
RHS of
assignment
statements

b —
‘\\ A\,
N
N
N
N
N
N
\

~

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

StackLang:
imperative
language
with array-like
stack and
optional GC

LabLang:
assembly lang.
ARMv6

>

ARMv8 MIPS-64) (RISC-V
\ /
\ /

> Simplify program
> Select target instructions
) Perform SSA-like renaming
> Force two-reg code (if rqu)i
> Remove deadcode
> Allocate register names
<> Concretise stack

> Introduce (raw) calls past
function preambles

> Implement GC primitive

Turn stack accesses into
memory acceses

) Rename registers to match
arch registers/conventions

> Flatten code
> Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

Silver ISA

© Gernot Heiser 2019-24 — CC BY 4.0

Crs)

=

UNSW

SYDNEY

selL4-Related Researchin TS

50 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 UNSW

SYDNEY

D)

access Reference
- Object
monitor

Enforces mandatory protection:

51

Recap: Secure Operating Systems

Secure OS: [Jaeger: OS Security]
Access enforcement satisfies the reference monitor concept

Reference Monitor
{subj,obj,acc}

Protection Labelling Transition
State State State

non-bypassable

Permission: relation over labels

tamperproof
verifiable

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gernot Heiser 2019-24 — CC BY 4.0 E?: YYYYYY

@ seld Secure, General-Purpose OS

Security Server Connection Server

. Policy
Policy Store Enforcement

Requires:
, « mandatory policy
File Server Ele enforcement

Policy
Enforce-

 policy diversity

« minimal TCB

* |ow-overhead
enforcement

ment

52 COMP9242 2024 T3 W07 Part 2: seL4 Deployments & seL4 Research at TS © Gemnot Heiser 2019-24 —CCBY 4.0 &) UNSW
2

YYYYYY

53

Real-World Use
Courtesy Boeing, DARPA

COMP9242 2024 T3 W07 Part 2: seL4 Deployments & selL4 Research at TS

ssssss

