

School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

Copyright Notice

These slides are distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License

• You are free:

1

- to share—to copy, distribute and transmit the work
- to remix-to adapt the work
- under the following conditions:
 - Attribution: You must attribute the work (but not in any way that suggests that the author endorses you or your use of the work) as follows:

"Courtesy of Gernot Heiser, UNSW Sydney"

The complete license text can be found at http://creativecommons.org/licenses/by/4.0/legalcode

Today's Lecture

- Security Intro
- Access-Control Principles
- ACLs vs Capabilities
- Mandatory AC Policies

What is Security?

Different things to different people:

On June 8, as the investigation into the initial intrusion response team shared with relevant agencies that there was a nign degree of confidence that OPM systems containing information related to the background investigations of current, former, and prospective Federal government employees, and those for whom a Federal background investigation was conducted, may have been compromised.

3

Computer Security

Protecting *my interests* (that are under computer control) from *threats*

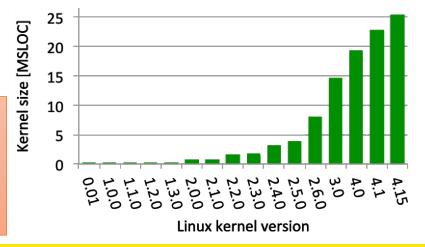
- Inherently subjective
 - Different people have different interests
 - Different people face different threats
- Don't expect one-size-fits-all solutions
 - Grandma doesn't need an air gap
 - Windows insufficient for protecting TOP SECRET (TS) classified data on an Internet-connected machine

Security claims only make sense

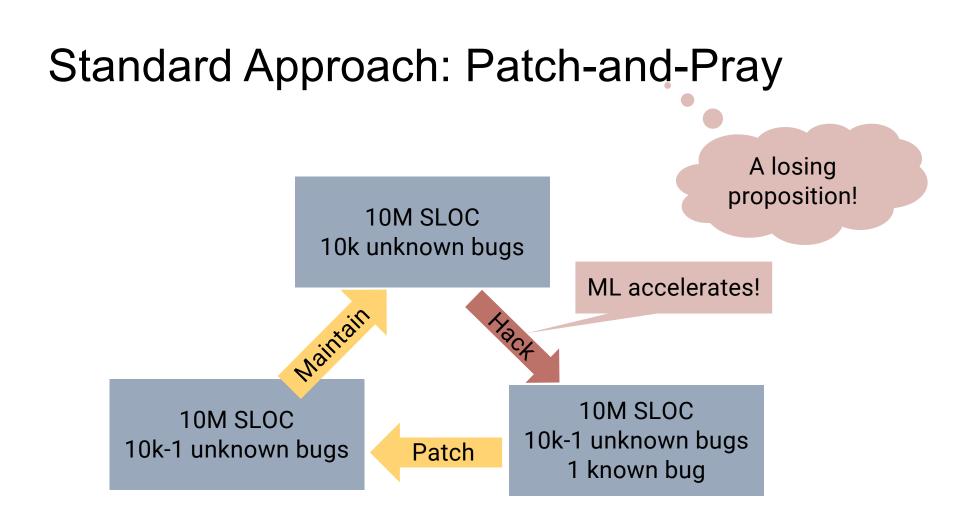
- wrt defined objectives
- while identifying threats
- and identifying secure statesç

4

State of OS Security


- Traditionally:
 - Has not kept pace with evolving user demographics
 - Focused on e.g. Defence and Enterprise
 - Has not kept pace with evolving threats
 - Much security work is reactive rather than proactive

Some things are getting better:


- more systematic hardening of OSes
- Better security models in smartphones compared to desktops

Other things are getting worse:

- OS kernel sizes keep growing
- Fast growth in attacker capabilities
- Slow growth in defensive capabilities

OS Security

- What is the role of the OS for security?
- Minimum:
 - provide **mechanisms** to allow the construction of secure systems
 - that are capable of securely implementing the intended users'/administrators' policies
 - while ensuring these mechanisms cannot be subverted

Good Security Mechanisms

- Are widely applicable
- Support general security principles
- Are easy to use correctly and securely
- Do not hinder non-security priorities (e.g. productivity, generativity)
 - Principle of "do not pay for what you don't need"

Good mechanisms lend themselves to correct implementation and *verification*!

Security Design Principles

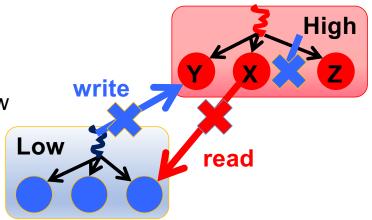
Saltzer & Schroeder [SOSP '73, CACM '74]

- Economy of mechanisms KISS
- Fail-safe defaults as in any good engineering
- Complete mediation check everything
- Open design no security by obscurity
- Separation of privilege defence in depth
- Least privilege aka principle of least authority (POLA)
- Least common mechanisms minimise sharing
- Psychological acceptability if it's hard to use it won't be

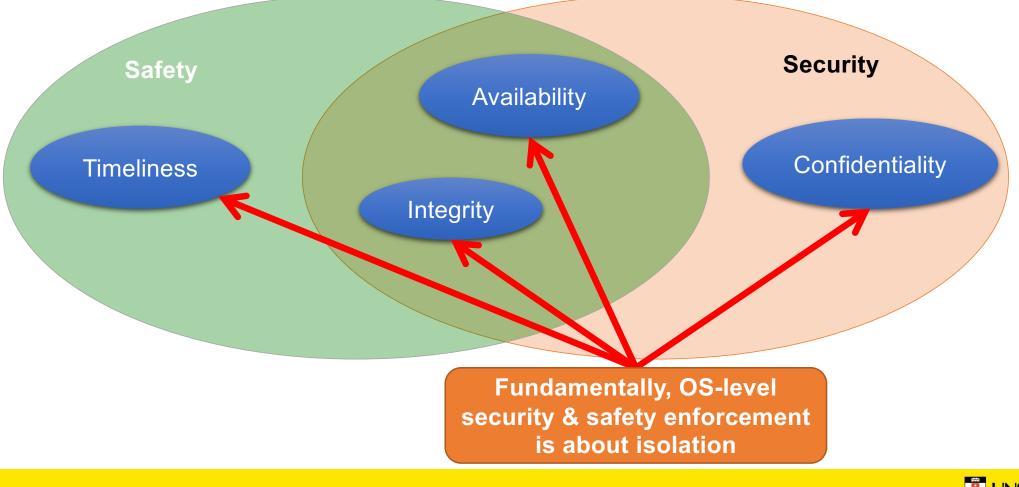
Mainstream OSes violate most of them! Especially KISS, POLA

Common OS Security Mechanisms

Access Control Systems


Fundamental mechanism

- control what each process can access
- Authentication Systems
 - confirm the identity on whose behalf a process is running
- Logging
 - for audit, detection, forensics and recovery
- Filesystem Encryption
- Credential Management
- Automatic Updates


Security Policies

- Define what should be protected, and from whom
- Often in terms of common security goals (*CIA properties*):
 - Confidentiality
 - X should not be learnt by Low
 - Integrity
 - Y should not be tampered with by Low
 - Availability
 - Z should not be made unavailable to High by Low

Security vs Safety

© Gernot Heiser 2019 – CC BY 4.0

Assumptions

- All policies and mechanisms operate under certain assumptions
 - e.g. TS-cleared users can be trusted not to write TS data into the UNCLASS window
 - some *trusted* entities behave as expected
- Problem: implicit or poorly understood assumption

Good assumptions are

- clearly identified
- verifiable!

Trust

- Systems always have trusted entites
 - whose misbehaviour can cause insecurity
 - hardware, OS, sysadmin ...

Trusted computing base (TCB): The set of all trusted entities

- Secure systems require the TCB to be trustworthy
 - achieved through assurance and verification
 - shows that the TCB is unlikely to misbehave

Minimising the TCB is key for ensuring correct behaviour

Assurance and Formal Verification

• Assurance:

- systematic evaluation and testing
- essentially an intensive and onerous form of quality assurance

Formal verification:

mathematical proof

Assurance and formal verification aim to establish correctness of

- mechanism design
- mechanism implementation
- Certification: independent examination
 - confirming that the assurance or verification was done right

Covert Channels

- Information flow not controlled by security mechanisms
 - Confidentiality requires absence of all such channels
- Storage Channel: Attribute of shared resource used as channel
 - Controllable by access control
- Timing Channel: Temporal order of shared resource accesses
 - Outside of access-control system
 - Much more difficult to control and analyse
- Other **physical** channels:
 - Power draw
 - Temperature (fan speed)
 - Electromagnetic emanation
 - Acoustic emanation

void leak(secret){ if (secret) { create ("/tmp/true"); } else { create ("/tmp/false");

Covert Timing Channels

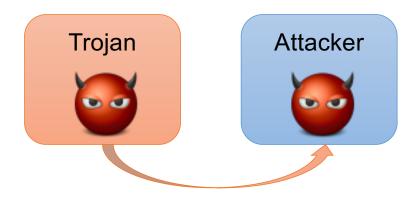
- Created by shared resource whose effect on timing can be monitored
 - network bandwidth, CPU load, memory latency ...
- Requires access to a time source
 - Anything that allows processes to synchronise
 - In general any relative occurrence of two event
- Critical issue is channel bandwidth
 - · low bandwidth limits damage
 - why DRM ignores low bandwidth channels

Usually based on some hidden state (e.g. caches) ⇒ timing/storage channel distinction is not deep!

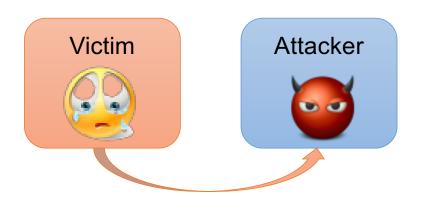
Typical timing channels:

Measure server response times

Beware of amplification!


eg leaking passwords

Measure own progress



Covert Channels vs Side Channels

Covert Channel

- Trojan intentionally creates signal through targeted resource use
- Worst-case bandwidth

Side Channel

- Attacker uses signal created by victim's innocent operations
- Much lower bandwidth

Summary of Introduction

- Security is very subjective, needs well-defined objectives
- OS security:
 - provide good security mechanisms
 - that support users' policies
- Security depends on establishing trustworthiness of trusted entities
 - TCB: set of all such entities
 - should be as small as possible
 - Main approaches: assurance and verification

The OS is necessarily part of the TCB

Access-Control Principles

20 COMP9242 2024 T3 W05 Part 2: Security Fundamentals

© Gernot Heiser 2019 – CC BY 4.0

Access Control

Who can access what in which ways

- The "who" are called subjects (or agents).
 - e.g. users, processes etc.
- The "what" are called objects
 - e.g. individual files, sockets, processes etc.
 - includes all subjects
- The "ways" are called permissions
 - e.g. read, write, execute etc.
 - · are usually specific to each kind of object
 - include those meta-permissions that allow modification of the protection state
 - e.g. own

LOV

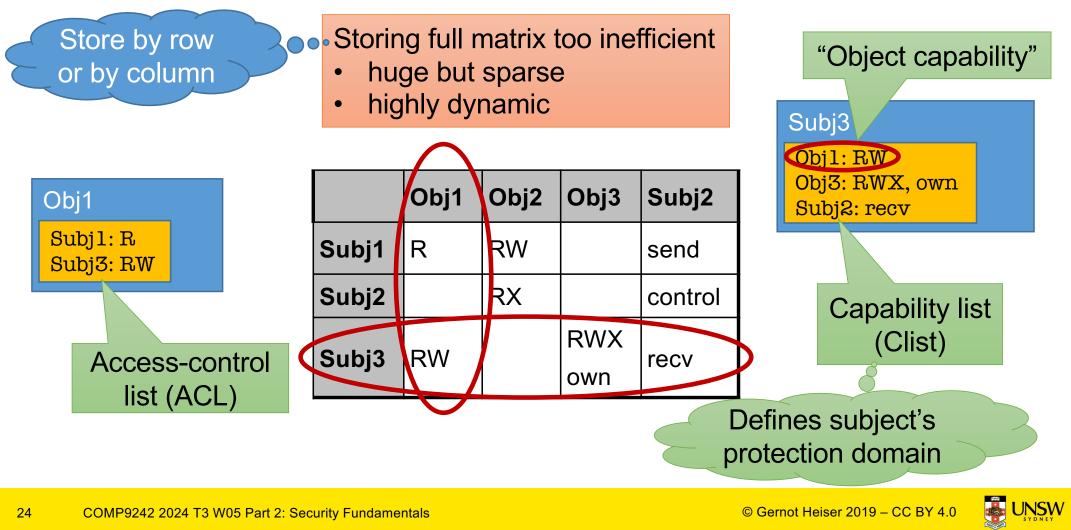
write

High

Access Control Mechanisms & Policies

- Access Control Policy
 - Specifies allowed accesses
 - And how these can change over time
- Access Control Mechanism
 - Used to implement the policy
- Certain mechanisms lend themselves to certain kinds of policies
- Some policies cannot be expressed using your OS's mechanisms

Protection State: Access-Control Matrix

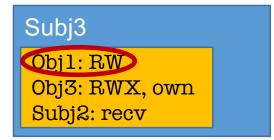

Defines system's protection state at a particular time instance [Lampson '71]

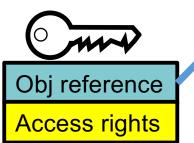
	Obj1	Obj2	Obj3	Subj2
Subj1	R	RW		send
Subj2		RX		control
Subj3	RW		RWX	roov
			own	recv

Representing Protection State

Access Control Lists (ACLs)

- Subjects usually aggregated into classes
 - e.g. UNIX: owner, group, everyone
 - more general lists in Windows, recent Linux
 - Can have negative rights eg. to overwrite group rights
- Meta-permissions (e.g. own)
 - control class membership
 - allow modifying the ACL


Obj1 Subj1: R Subj3: RW


Used by all mainstream OSes

Capability = Access Token: Prima-facie evidence of privilege

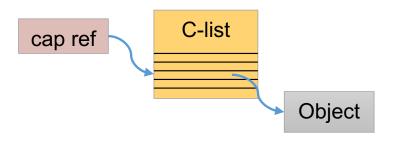
Any system call is invoking a capability: err = cap.method(args); Object

Linux "capabilities" do not have these properties (aren't *object* capabilities)!

Object capabilities provide:

- Fine-grained access control
- Delegation of rights
- Reasoning about information flow

Used in very few commercial systems:


- IBM System/38→AS/400→i-Series
- KeyKOS [Bomberger et al, 1992]
- L4 microkernels, Google Fuchsia

Capabilities: Implementations

- Capabilities must be unforgeable
 - Traditionally protected by hardware (tagged memory), eg System-38
 - · Can be copied etc like data
 - eg IBM System/38, Hydra, CHERI
- On conventional hardware, either:
 - Stored as ordinary user-level data, but unguessable due to sparseness
 - contains password or secure hash: PCS [Anderson'86], Mungi [Heiser'98]
 - "sparse" capabilies

- signature address
- Privileged kernel data
 - referred to by user programs by index/address
 - eg Mach [Accetta'86], EROS [Shapiro'99], seL4, Unix file descriptors
 - "partitioned" or "segregated" capabilities

© Gernot Heiser 2019 – CC BY 4.0

tag word word word word

ACLs vs Capabilities

28 COMP9242 2024 T3 W05 Part 2: Security Fundamentals

© Gernot Heiser 2019 – CC BY 4.0

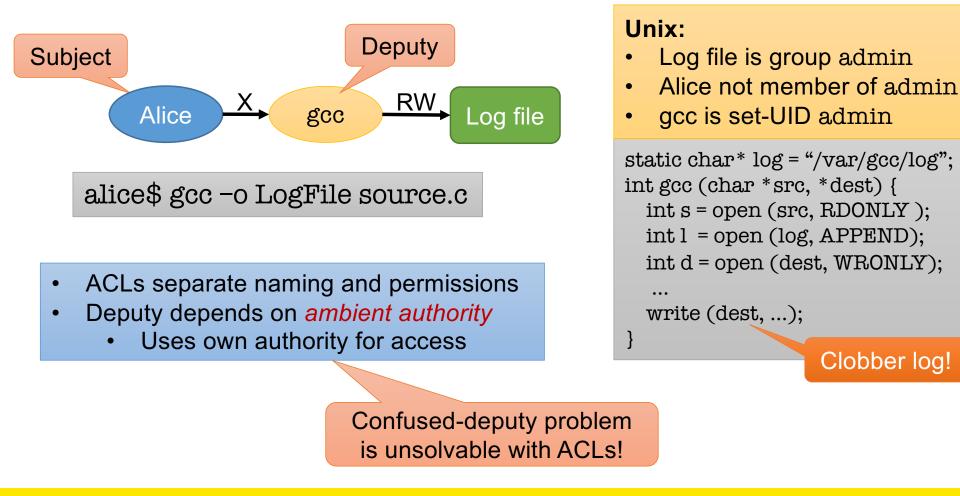
ACLs & Object Capabilities – Duals?

- In theory dual representations of access control matrix
- Practical differences:
 - Naming and namespaces
 - Ambient authority
 - Deputies
 - Evolution of protection state
 - Process creation
 - Auditing of protection state

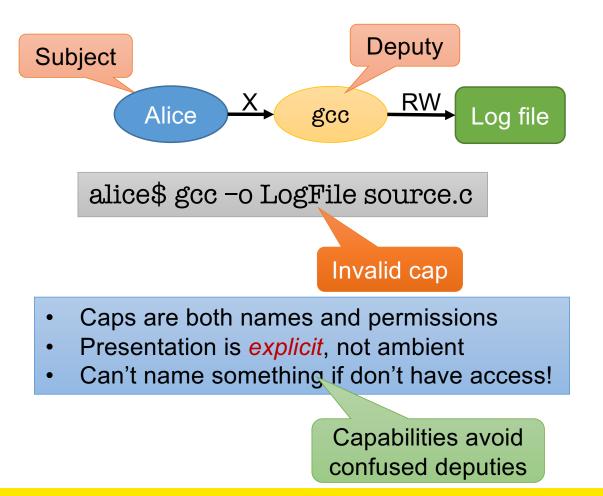
Duals: Naming and Name Spaces

- ACLs:
 - objects referenced by name
 - requires separate (global) name space
 - e.g. open("/etc/passwd",O_RDONLY)
 - require a subject (class) namespace
 - e.g. UNIX users and groups
- Capabilities:
 - objects referenced by capability
 - no further namespace required object discovery orthogonal to access control
 - cannot even *name* object without access

Least common


Covert storage channel?

mechanisms!



Duals: Confused Deputy

Duals: Confused Deputy

Cap system:

- gcc holds w cap for log file
- Alice holds r cap for source, w cap for destination
- Alice holds no cap for log file

static cap_t log = <cap>; int gcc (cap_t src, dest) { fd_t s = open (src, RDONLY); fd_t l = open (log, APPEND); df_t d = open (dest, WRONLY);

write (d, ...);

Open fails!

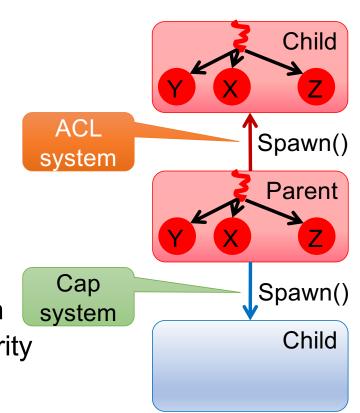
Linux "capabilities" do not help!

Duals: Evolution of Protection State

ACLs: Protection state changes by modifying ACLs

• Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps


- Fundamental properties enable reasoning about *information flow*:
 - A can send message to B only if A holds cap to B
 - A can obtain access to C only if it receives message with cap to C
- *Right to delegate* may also be controlled by capabilities, e.g.:
 - A can delegate to B only if A has a *delegatable* capability to B
 - A can delegate X to B only if it has *grant* authority on X

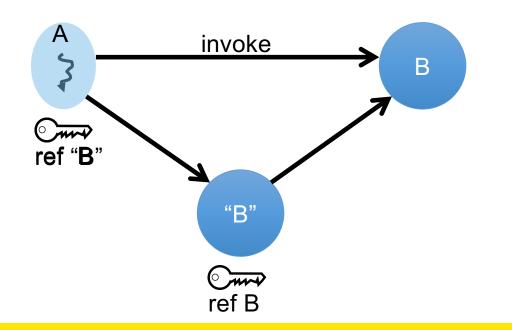
seL4: Grant right on endpoint

Duals: Process Creation

- What permissions should children get?
- ACLs: depends on the child's subject
 - UNIX etc.: child inherits parent's subject
 - Inherits all of the parent's permissions
 - Any program you run inherits all of your authority
 - Opposite of least privilege!
- Capabilities: child has no caps by default
 - Parent gets a capability to the child upon spawn
 - Used to delegate explicitly the necessary authority
 - Defaults to least privilege

Duals: Auditing of Protection State

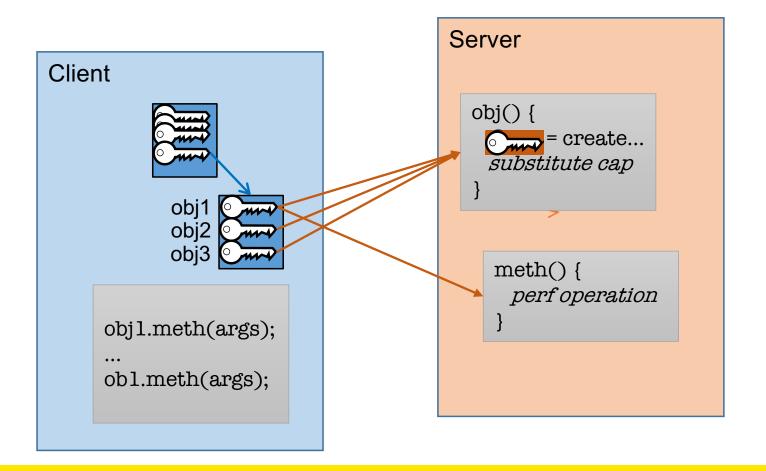
- Who has permission to access a particular object (right now)?
 - ACLs: Just look at the ACL
 - Caps:
 - sparse or tagged caps: hard/impossible without full memory scan
 - partitioned caps: doable (maintain derivation tree)
- What objects can a particular subject access (right now)?
 - Capabilities: Just look at its capabilities
 - ACLs: may be impossible to determine without full scan


"Who can access my stuff?" vs "How much damage can X do?"

Interposing Access

Caps are opaque object references (pure names)

- Holder cannot tell which object a cap references nor the authority
- Supports transparent interposition (virtualisation)



Usage:

- API virtualisation
- Reference (security) monitor
 - Security policy enforcement
 - Info flow tracing
 - Packet filtering...
- Secure logging
- Debugging
- Lazy object creation

Example: Lazy Object Construction

Duals: Satzer & Schroeder Principles

Security Principle	ACLs	Capabilities
Economy of Mechanism	Dubious	Yes!
Fail-safe defaults	Generally not	Yes!
Complete mediation	Yes (if properly done)	Yes (if properly done)
Open design	Neutral	Neutral
Separation of privilege	No	Doable
Least privilege	No	Yes
Least common mechanism	No	Yes, but
Psychological acceptability	Neutral	Neutral

Mandatory AC Policies

39 COMP9242 2024 T3 W05 Part 2: Security Fundamentals

© Gernot Heiser 2019 – CC BY 4.0

Mandatory vs Discretionary Access Control

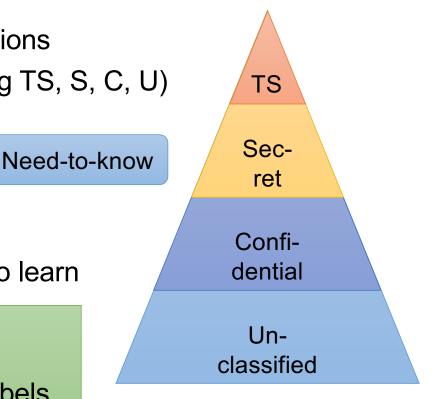
Discretionary Access Control (DAC):

- Users can make access control decisions
 - Delegate their access to other users etc.

Mandatory Access Control (MAC): •

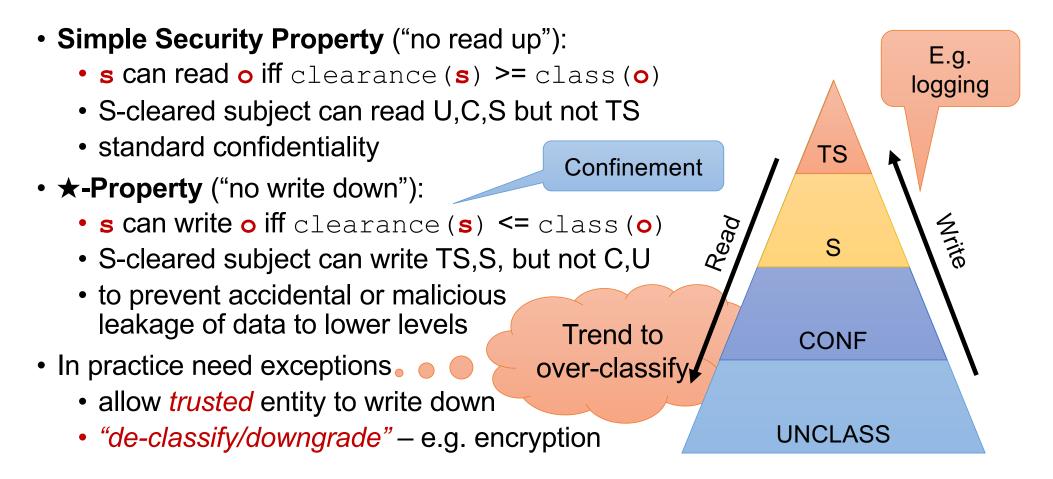
- System enforces administrator-defined policy
- Users can only make access control decisions subject to mandatory policy
- Can limit damage caused by untrusted applications
- Traditionally used in national security environments

Can I stop my browser leaking secrets?

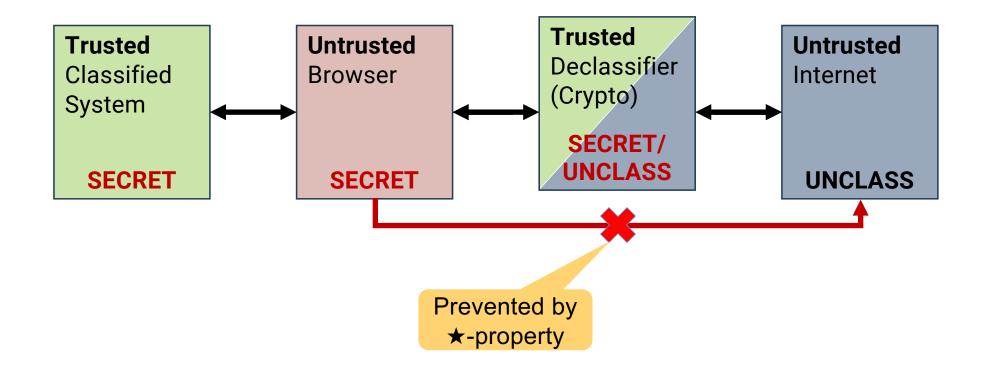


MAC: Bell & LaPadula (BLP) Model [1966]

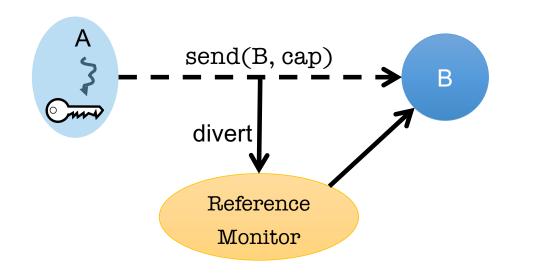
- MAC Policy/Mechanism
 - Formalises national security classifications
- Every object assigned a classification (eg TS, S, C, U)
 - orthogonal security compartments
- Classifications ordered in a lattice
 - e.g. TS > S > C > U
- Every subject assigned a **clearance**
 - Highest classification they're allowed to learn


Labelled security:

- Subjects and objects are *labelled*
- Permitted accesses: relation over labels allow(subject.label, object.label, operation)

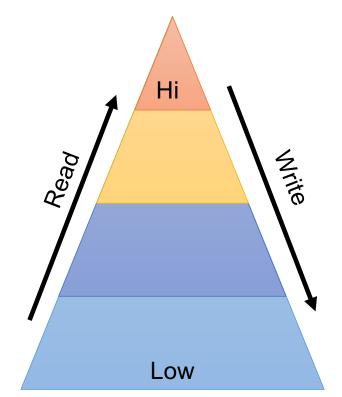


BLP: Rules



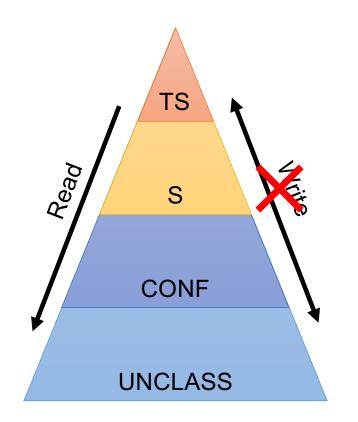
Web Browser Example

MAC With Caps: Reference Monitor

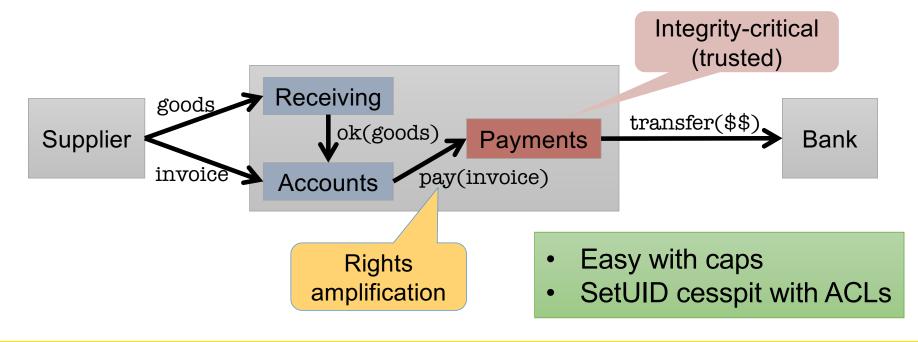


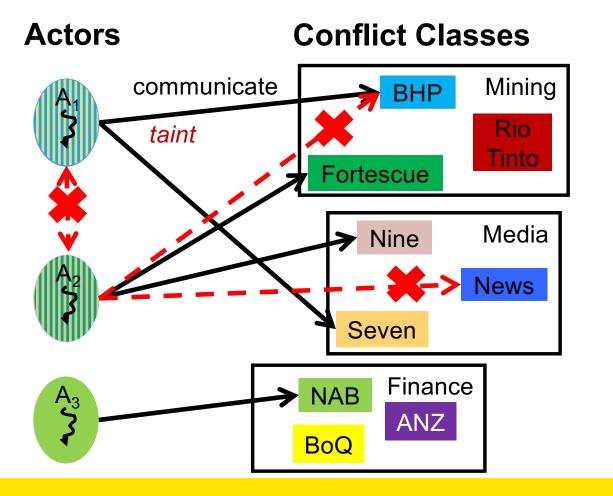
<pre>interpose_transfer(cap) {</pre>		
if (A.clear > B.clear) {		
c = mint(cap, -r);		
send(B,c);		
} else if (A.clear < B.clear) {		
c = mint(cap, -w);		
send(B,c);		
} else {		
send(B,cap);		
}		
}		

MAC: Biba Integrity Model


- Bell-LaPadula enforces confidentiality
- Biba: Its dual, enforces integrity
- Objects now carry integrity classification
- Subjects labelled by lowest level of data each subject is allowed to learn
- BLP order is inverted:
 - **s** can read **o** iff clearance (**s**) <= class (**o**)
 - **s** can write **o** iff clearance (**s**) >= class (**o**)

Confidentiality + Integrity

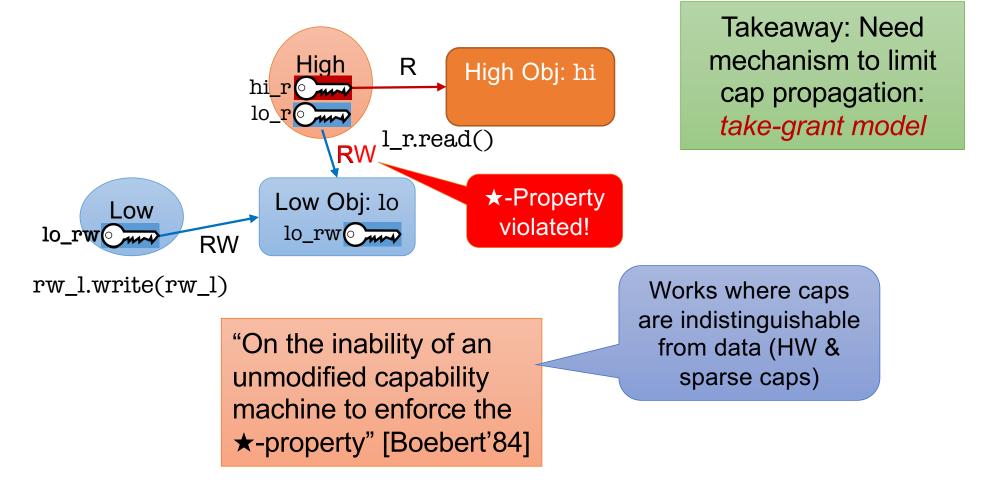

- BLP+Biba allows no information flow across classes
- Practicality requires weakening
 - Assume high-classified subject to treat low-integrity info responsibly
 - Allow read-down
 - Independent labelling for confidentiality and integrity
- Strong *-Property ("matching writes only"):
 - **s** can write **o** iff clearance (**s**) = class (**o**)
 - Eg for logging, high reads low data and logs


Clark & Wilson Model

- In commercial settings integrity is more important than confidentiality
- Restrict possible operations to well-formed transactions
 - eg payment issued only after goods and invoice received

Chinese Wall (aka Brewer & Nash) Model

Communication taints actor:


 tainted actor cannot communicate with other entity in same conflict class

Conflict-of-interest prevention

- Law practices
- Consultancies

Boebert's Attack on Capability Machines

Decidability

Safety: Given initial *safe state s*, system will never reach *unsafe state s*'

Decidability: AC system is decidable if safety can aways be computationally determined Equivalent to halting problem [Harrison, Ruzzo, Ullman '75]

- Most capability systems are decidable
- Unclear for many common ACL systems

Summary: AC Principles

- ACLs and Capabilities:
 - Capabilities tend to better support least privilege
 - But ACLs can be better for auditing
- MAC good for global security requirements
- Not all mechanisms can enforce all policies
 - e.g. \star -property with sparse or HW capabilities
- AC systems should be decidable so we can reason about security

