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Today’s Lecture
• Caches

• What are caches, why do we have them?
• How do they work (in detail)?
• Why you need to understand them? – Software effects
• Cache hierarchy
• Translation caches: TLB

• Devices

Later: Concurrency effects and memory models
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Cache Basics
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Speed gap still 
widens by approx 
18% per year!
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Use temporal & spatial 
locality to improve 
average memory latency

Caches
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Registers CPU Cache Main Memory DiskDisk Cache

Software

Slow: 10s–100s cycles
Large: GiB

Core
Chip

Hardware

Fast: 1–3 cycles
Small: 32 KiB – 16 MiB

• Holds recently used data/instructions
• Load/fetch hits in cache ⇒ fast access
• Miss not much worse than no cache
• Key is high hit rate (>90%)
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Cache Organisation: Unit of Data Transfer
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Registers CPU Cache Main Memory
byte…word

1–16 B
line

32–64 B

Reduce memory transactions:
• Reads – locality
• Writes – clustering 

Line is also unit of allocation, holds data and
• valid bit
• modified (dirty) bit
• tag
• access stats (for replacement)
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Cache Access
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CPU

MMU

Main 
Memory

Virtual
Address

Virtually
indexed
Cache

Physically
indexed
Cache

Data Data Data

Physical
Address

Physical
Address

• Looked up by virtual address
• Operates concurrently with 

address translation

• Looked up by physical address
• Requires result of address 

translation

Usually a hierarchy: L1, L2, …, LLC
• L1 closest to CPU
• LLC: last-level cache
• Only L1 may be virtually addressed
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Indexing
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Cache Indexing
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tag1

Address

tag0

tag2

Byte #

datatag

Tag

Set #

tag set byte

• Within set associate lookup: match tag
• Tag = high-order addresses not used for indexing

Set

• Address hashed to 
produce set index

• Hashing must be 
simple (HW) – usually 
just the low-order bits
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• n lines per set: n-way set-associative cache
• n = 1: direct mapped
• 2 ≤ n < # lines: set associative
• n = # lines: fully associative

Many conflicts
⇒ low hit rate

Cache Indexing
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CPU
Registers

Main
Memory

Line 1

Line 2
Line 3
Line 4

Set 0

Set 1

Slow & power-hungry
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Cache Indexing: Direct Mapped

11 COMP9242 2024 T3 W02 Part 1: HW Considerations

tag(25) index(3) offset(4)
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Offset bits used to 
select appropriate 
bytes from line

Index bits 
used to select 
unique line

Tag used to check 
whether line contains 
requested address
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Cache Indexing: Fully Associative
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tag(28) offset(4)

Tag compared with 
all lines for a match

Offset bits used to select 
appropriate bytes from line

Lookup hardware for many tags is 
large and slow ⇒ does not scale
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Cache Indexing: 2-Way Associative
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tag(26) index(2) offset(4)
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Offset bits used to 
select appropriate 
bytes from line

Index bits 
used to select 
unique set to 
match within

Tag checked against 
both lines for match
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index(2)tag(19) offset(11)

Cache Associativity vs Paging

14 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

page number offset
31 12 11 0

Colour
Subset

When index overlaps page number, 
a particular page can only reside in a 
specific subset (colour) of the cache!index(2)

C
ol

ou
r 0

C
ol

ou
r 1

Se
t 0

Se
t 1



© Gernot Heiser 2019 – CC BY 4.0

Cache Mapping Implications
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Cache

RAM

Multiple memory 
locations map to 
same cache line

A page can only reside 
in the part of the cache 
defined by its colour

If c index bits overlap page #, a page 
can only reside in 2-c of the cache 

Cache is said to have 2c colours
2c = cache_size/(page_size × assoc)

11  10  01  00  Colour



© Gernot Heiser 2019 – CC BY 4.0

Misses & Replacement Policy
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Cache Misses
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• n-way associative cache can hold n lines with the same index value
• More than n lines are competing for same index forces a miss!
• There are four different types of cache misses (“the four Cs”):

• Compulsory miss: data cannot be in the cache (of infinite size)
• First access (after loading data into memory or cache flush) – unavoidable

• Capacity miss: all cache entries are in use by other data
• Would not miss on infinite-size cache

• Conflict miss: all lines with the same index value are in use by other data
• Would not miss on fully-associative cache

• Coherence miss: miss forced by hardware coherence protocol
• Covered later (multiprocessing lecture)
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Cache Replacement Policy
• Indexing (using address) points to specific line set
• On miss (no match and all lines valid): replace existing line

• Dirty-bit determines whether write-back needed

• Replacement strategy must be simple (hardware!)
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Address
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tag(26) index(2) byte(4)
Typical policies:
• LRU
• pseudo-LRU
• FIFO
• “random”
• toss clean



© Gernot Heiser 2019 – CC BY 4.0

Cache Write Policy
• Treatment of store operations

• write back: Stores only update cache;
memory is updated once dirty line is replaced
or explicitly flushed
þclusters writes
zmemory inconsistent with cache
zmulti-processor cache-coherency challenge

• write through: stores update cache and memory immediately
þmemory is always consistent with cache
zincreased memory/bus traffic

• On store to a line not presently in cache (write miss):
• write allocate: allocate a cache line and store there

• typically requires reading line into cache first!
• no allocate: store directly to memory, bypassing the cache
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Typical combinations:
• write-through & 

no-allocate
• write-back & 

write allocate

Most common 
these days
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Cache Indexing Schemes
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Cache Indexing Schemes
• So far pretended cache only sees one type of address: virtual or physical
• However, indexing and tagging can use different addresses!
• Four possible addressing schemes:

• virtually-indexed, virtually-tagged (VV) cache
• virtually-indexed, physically-tagged (VP) cache
• physically-indexed, virtually-tagged (PV) cache
• physically-indexed, physically-tagged (PP) cache
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Nonsensical except with 
weird MMU designs

Rare these days,
will ignore
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Virtually-Indexed, Physically-Tagged Cache
• Virtual address for accessing line (lookup)
• Physical address for tagging
• Needs complete address translation

for looking up retrieving data
• Indexing concurrent with MMU access
• Used for on-core L1
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Physical Memory

CPU

index(2) byte(4) tag(26)

Use MMU for 
tag check & 
permissions
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Physically-Indexed, Physically-Tagged Cache
• Only uses physical addresses
• Address translation result needed for lookup
• Only sensible choice for L2…LLC
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VD
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Word 3
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Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

index(2) byte(4)tag(26)After L1 miss, MMU 
result is available

Page offset invariant under VA→PA:
• Index bits ⊂ offset bits 
⇒ don’t need MMU for indexing!

• VP = PP in this case
 ⇒ fast, suitable for L1

• Single-colour cache!
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Software-Visible Effects
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Cache Issues
• Caches are managed by hardware transparently to software,

so OS doesn’t have to worry about them, right?
• Software-visible cache effects:

• performance
• cache-friendly data layout

• homonyms:
• same address, different data
• can affect correctness!

(on VV caches – ignoring)
• synonyms (aliases):

• different address, same data
• can affect correctness!

(on VV and VP caches)
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Wrong!

VAS1

VAS2

PAS

A

A'

A
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B
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C
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Virtually-Indexed Cache Issues: Aliasing
Multiple names for same data:
• Several VAs map to the same PA

• frame shared between ASs
• frame multiply mapped within AS

• May access stale data!
• same data cached in multiple lines

• … if aliases differ in colour
• on write, one synonym updated
• read on other synonym returns old value
• physical tags or ASIDs don’t help!

• Are aliases a problem?
• don’t exist in single-colour cache
• no problem for R/O data or I-caches
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Aliasing Problem [1/2]
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• Page aliased in different address spaces
• AS1: VA12 = 1, AS2: VA12 = 0

• One alias gets modified
• in a write-back cache, other alias sees stale data
• lost-update problem

Colour1 – 2nd 
half of cache Colour0 – 1st 

half of cache
RAM

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000
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write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Aliasing Problem [2/2]
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• Unmap aliased page, remaining page has a dirty cache line
• Re-use (remap) frame for a different page (in same or different AS)
• Access new page

• alias may write back after remapping: “cache bomb”

dirty
unmap

RAM

Cache



© Gernot Heiser 2019 – CC BY 4.0

Avoiding Aliasing Problems
• Flush cache on context switch

• doesn’t help for aliasing within address space!

• Detect aliases and ensure:
• all read-only, or
• only one alias mapped

• Restrict VM mapping so all aliases are of the same colour
• eg ensure VA12 = PA12 – colour memory!

• Hardware alias detection
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Hardware Alias Detection (Arm A53)
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tag(26) index(2) offset(11)

VD
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Tag
Tag
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Tag
Tag
Tag
Tag

Data
Data
Data
Data
Data
Data
Data
Data

page number offset
31 12 11 0

Colour

Access both 
colours

Lookup accesses sets of both colours
• If tag matches in both set: have alias
• If the access is a store then invalidate the 

alias of the “wrong” colour
ØVP cache behaves like PP despite multiple 

colours!

index(2)
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Summary: VP Caches
• Medium speed

þlookup in parallel with address translation
ztag comparison after address translation

þNo homonym problem
zPotential synonym problem
zBigger tags (cannot leave off set-number bits)

zincreases area, latency, power consumption
• Used on most contemporary architectures for L1 cache

• but mostly single-colour (pseudo-PP) or with HW alias prevention (Arm)
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Summary: PP Caches
zSlowest

zrequires result of address translation before lookup starts
þNo synonym problem
þNo homonym problem
þEasy to manage
þCache can use bus snooping for DMA/multicore coherency
þObvious choice for L2–LLC where speed matters less
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Cache Hierarchy
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Write Buffer
• Store operations can take a long time to complete

• eg if a cache line must be read or allocated
• Can avoid stalling the CPU by buffering writes
• Write buffer is a FIFO queue of incomplete stores

• Also called store buffer or write-behind buffer
• May exist at any cache level, or between cache and memory

• Can fetch intermediate values out of buffer
• to service read of a value that is still in write buffer
• avoids unnecessary stalls of load operations

• Implies that memory contents are temporarily stale
• on a multiprocessor, CPUs see different order of writes!
• “weak memory ordering”, to be revisited in SMP context
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CPU

Memory

…
Store A
…
Store B
…
Store A
…
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Cache Hierarchy
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• Hierarchy of caches to balance memory accesses:
• small, fast, virtually-indexed L1
• large, slow, physically indexed L2–LLC

• Each level reduces and clusters traffic
• L1 split into I- and D-caches

• “Harvard architecture”
• requirement of pipelining

• Other levels unified
• Chip multiprocessors (aka multicores):

• Usually LLC shared chip-wide
• L2 private (Intel) or clustered (AMD)

Registers

I-Cache D-Cache

Write buffer

L2 Cache

Last-Level Cache (LLC)

Memory (RAM)

Write buffer

Write buffer
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ODROID-C2 (Cortex A53) System Architecture
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Device Device

RAM

L1 cache:
• 32 KiB, 64-B lines

• L1-I: 2-way, VP
• L1-D: 4-way, pseudo-PP

L2 cache:
• 512 KiB, 16-way
  64-B lines, PP

Armlogic S905 SoC

A53 core

L1
-D

 $

L1
-I 

$

L2 cache

A53 core
L1

-D
 $

L1
-I 

$

L1
-D

 $

L1
-I 

$

A53 core A53 core

L1
-D

 $

L1
-I 

$
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TLB
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Translation Lookaside Buffer (TLB)
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• TLB is a (VV) cache for page-table entries
• TLB can be

• software loaded,
maintained by OS

• hardware loaded,
transparent to OS
(standard these days)

• TLB can be:
• split: I- and D-TLBs
• unified

ASID VPN

VPNASID PFN flags

flagsPFN
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TLB Size (I-TLB+D-TLB)
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Architecture Size (I+D) Assoc Page Size Coverage
VAX-11 64–256 2 0.5 KiB 32–128 KiB

ix86 32i + 64d 4 4 KiB + 4 MiB 128 KiB

MIPS 96–128 full 4 KiB – 16 MiB 384–512 KiB

SPARC 64 full 8 KiB – 4 MiB 512 KiB

Alpha 32–128i + 128d full 8 KiB – 4 MiB 256 KiB

RS/6000 (PPC) 32i + 128d 2 4 KiB 256 KiB

Power-4 (G5) 1024 4 4 KiB 512 KiB

PA-8000 96i + 96d full 4 KiB – 64 MiB 384 KiB

Itanium 64i + 96d full 4 KiB – 4 GiB 384 KiB

ARMv7 (A9) 64–128 1–2 4 KiB – 16 MiB 256–512 KiB

x86 (Skylake) L1:128i+64d; L2:1536 4 4 KiB + 2/4 MiB 1 MiB

Not much 
growth in 40 

years!
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TLB Size
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TLB coverage
• Memory sizes are increasing
• Number of TLB entries are roughly constant
• Base page sizes are steady 

• 4 KiB (SPARC, Alpha used 8KiB)
• OS designers have trouble using superpages effectively

• Consequences:
• Total amount of RAM mapped by TLB is not changing much
• Fraction of RAM mapped by TLB is shrinking dramatically!
• Modern architectures have very low TLB coverage!

TLB can become a bottleneck!
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Multi-Level TLBs
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CPU

L1 I-TLB

Unified L2 TLB

L1 D-TLB

L I/D Pages Assoc Entr
1 I 4 KiB 4-way 64
1 D 4 KiB 4-way 64
1 I 2/4 MiB fully 7
1 D 2/4 MiB 4-way 32
2 unif 4 KiB 4-way 512

Intel Core i7

L I/D Pages Assoc #
1 I 4 KiB–1 GiB? full? 10

1 D 4 KiB–1 GiB? full? 10

2 unif 4 KiB–512 MiB 4-way 512

Arm A53

• Multi-level design (like I/D cache)
• Improve size-performance tradeoff
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Intel Core i7 (Haswell) Cache Structure
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Source: Intel 
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Intel Haswell L3 Cache
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Source: Intel 
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Peripheral Devices
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Background: The Memory Contract [1/2]
Programmer’s model of memory:

loadi r1, <addr>
loadi r0, <val>
store r0, r1  // store <val> at <addr>
…
load r2, r1  // r2 now contains <val>
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Note: with shared 
memory, the last value 

written may be from 
someone else!

Memory contract: 
A read will return the last value written
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Background: The Memory Contract [2/2]

Programmer’s model of memory:
char  *cp, c;
int32 *ip, i, j, k;
ip = <addr>;
cp = (char*)ip;
j = 0; for (k=0; k<4; k++) j = (j<<8)+*cp++ ;
i = *ip; // now i==j, assuming big-endian;

46 COMP9242 2024 T3 W02 Part 1: HW Considerations

Memory contract: 
Order or granularity of access don’t matter
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RAM

DeviceCPU
Control

Notification

Meta-
data

Cache Data

Peripheral Devices
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Memory-mapped 
device registers

(or x86 I/O instruct.)
Interrupts/polling

Direct memory 
access (DMA)

Direct memory 
access (DMA)
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Device-Access Caveats
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RAM

DeviceCPU
Control

Notification

Meta-
data

Cache Data

Device access bypasses cache!
• Device registers must be 

mapped uncached
• DMA buffers must be 

flushed/invalidated before 
initiating I/O

• Else:
• write stale data
• read data overwritten by old 

data (cache bomb!)

x86 keeps DMA 
cache-coherent
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Devices Are State Machines
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S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

State transitions triggered by:
• Device register access

• write to device register
• read from device register

• External events
• data available
• transmit complete …

State transitions:
• Change register content
• Raise IRQs

S5

IRQ
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Implication: Device Registers Aren’t Memory!
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S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

• Writing same value twice may 
have different effects

• Reading same register twice may 
return different values

• Reading after writing:
• may return different value
• may trigger error

• Result of access may depend on 
elapsed time

• Reading 4 bytes is different from 
reading one int32

• … and may result in errorS5

IRQ
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Device Protocol Examples
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S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

1. write char to R1

2. wait 10 ms
3. read int32 from R3

4. wait for IRQ or
poll R4 for ≠ 0

5. …

S5

IRQ
Specified in device data sheet
… which is usually full of errors

Device-
specified or 
bus latency


