
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2024 T3 Week 02 Part 1
Hardware Considerations:
What Every OS Designer Must Know
@GernotHeiser

Registers

I-Cache D-Cache

Write buffer

Last-Level Cache (LLC)

Memory (RAM)

Write buffer

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture
• Caches

• What are caches, why do we have them?
• How do they work (in detail)?
• Why you need to understand them? – Software effects
• Cache hierarchy
• Translation caches: TLB

• Devices

Later: Concurrency effects and memory models

2 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Basics

3 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

0.05

0.5

5

50

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

GHz
CPU & Memory clock rates

CPU Memory

The Memory Wall

4 COMP9242 2024 T3 W02 Part 1: HW Considerations

Speed gap still
widens by approx
18% per year!

0.05

0.5

5

50

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
16

20
17

20
18

20
19

20
20

GHz
CPU & Memory clock rates

CPU CPU × Cores Trend Memory

Clock rates of
Intel processors

© Gernot Heiser 2019 – CC BY 4.0

Use temporal & spatial
locality to improve
average memory latency

Caches

5 COMP9242 2024 T3 W02 Part 1: HW Considerations

Registers CPU Cache Main Memory DiskDisk Cache

Software

Slow: 10s–100s cycles
Large: GiB

Core
Chip

Hardware

Fast: 1–3 cycles
Small: 32 KiB – 16 MiB

• Holds recently used data/instructions
• Load/fetch hits in cache ⇒ fast access
• Miss not much worse than no cache
• Key is high hit rate (>90%)

© Gernot Heiser 2019 – CC BY 4.0

Cache Organisation: Unit of Data Transfer

6 COMP9242 2024 T3 W02 Part 1: HW Considerations

Registers CPU Cache Main Memory
byte…word

1–16 B
line

32–64 B

Reduce memory transactions:
• Reads – locality
• Writes – clustering

Line is also unit of allocation, holds data and
• valid bit
• modified (dirty) bit
• tag
• access stats (for replacement)

© Gernot Heiser 2019 – CC BY 4.0

Cache Access

7 COMP9242 2024 T3 W02 Part 1: HW Considerations

CPU

MMU

Main
Memory

Virtual
Address

Virtually
indexed
Cache

Physically
indexed
Cache

Data Data Data

Physical
Address

Physical
Address

• Looked up by virtual address
• Operates concurrently with

address translation

• Looked up by physical address
• Requires result of address

translation

Usually a hierarchy: L1, L2, …, LLC
• L1 closest to CPU
• LLC: last-level cache
• Only L1 may be virtually addressed

© Gernot Heiser 2019 – CC BY 4.0

Indexing

8 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing

9 COMP9242 2024 T3 W02 Part 1: HW Considerations

tag1

Address

tag0

tag2

Byte #

datatag

Tag

Set #

tag set byte

• Within set associate lookup: match tag
• Tag = high-order addresses not used for indexing

Set

• Address hashed to
produce set index

• Hashing must be
simple (HW) – usually
just the low-order bits

© Gernot Heiser 2019 – CC BY 4.0

• n lines per set: n-way set-associative cache
• n = 1: direct mapped
• 2 ≤ n < # lines: set associative
• n = # lines: fully associative

Many conflicts
⇒ low hit rate

Cache Indexing

10 COMP9242 2024 T3 W02 Part 1: HW Considerations

CPU
Registers

Main
Memory

Line 1

Line 2
Line 3
Line 4

Set 0

Set 1

Slow & power-hungry

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing: Direct Mapped

11 COMP9242 2024 T3 W02 Part 1: HW Considerations

tag(25) index(3) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique line

Tag used to check
whether line contains
requested address

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing: Fully Associative

12 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(28) offset(4)

Tag compared with
all lines for a match

Offset bits used to select
appropriate bytes from line

Lookup hardware for many tags is
large and slow ⇒ does not scale

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing: 2-Way Associative

13 COMP9242 2024 T3 W02 Part 1: HW Considerations

tag(26) index(2) offset(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique set to
match within

Tag checked against
both lines for match

© Gernot Heiser 2019 – CC BY 4.0

index(2)tag(19) offset(11)

Cache Associativity vs Paging

14 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

page number offset
31 12 11 0

Colour
Subset

When index overlaps page number,
a particular page can only reside in a
specific subset (colour) of the cache!index(2)

C
ol

ou
r 0

C
ol

ou
r 1

Se
t 0

Se
t 1

© Gernot Heiser 2019 – CC BY 4.0

Cache Mapping Implications

15 COMP9242 2024 T3 W02 Part 1: HW Considerations

Cache

RAM

Multiple memory
locations map to
same cache line

A page can only reside
in the part of the cache
defined by its colour

If c index bits overlap page #, a page
can only reside in 2-c of the cache

Cache is said to have 2c colours
2c = cache_size/(page_size × assoc)

11 10 01 00 Colour

© Gernot Heiser 2019 – CC BY 4.0

Misses & Replacement Policy

16 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Misses

17 COMP9242 2024 T3 W02 Part 1: HW Considerations

• n-way associative cache can hold n lines with the same index value
• More than n lines are competing for same index forces a miss!
• There are four different types of cache misses (“the four Cs”):

• Compulsory miss: data cannot be in the cache (of infinite size)
• First access (after loading data into memory or cache flush) – unavoidable

• Capacity miss: all cache entries are in use by other data
• Would not miss on infinite-size cache

• Conflict miss: all lines with the same index value are in use by other data
• Would not miss on fully-associative cache

• Coherence miss: miss forced by hardware coherence protocol
• Covered later (multiprocessing lecture)

© Gernot Heiser 2019 – CC BY 4.0

Cache Replacement Policy
• Indexing (using address) points to specific line set
• On miss (no match and all lines valid): replace existing line

• Dirty-bit determines whether write-back needed

• Replacement strategy must be simple (hardware!)

18 COMP9242 2024 T3 W02 Part 1: HW Considerations

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)
Typical policies:
• LRU
• pseudo-LRU
• FIFO
• “random”
• toss clean

© Gernot Heiser 2019 – CC BY 4.0

Cache Write Policy
• Treatment of store operations

• write back: Stores only update cache;
memory is updated once dirty line is replaced
or explicitly flushed
þclusters writes
zmemory inconsistent with cache
zmulti-processor cache-coherency challenge

• write through: stores update cache and memory immediately
þmemory is always consistent with cache
zincreased memory/bus traffic

• On store to a line not presently in cache (write miss):
• write allocate: allocate a cache line and store there

• typically requires reading line into cache first!
• no allocate: store directly to memory, bypassing the cache

19 COMP9242 2024 T3 W02 Part 1: HW Considerations

Typical combinations:
• write-through &

no-allocate
• write-back &

write allocate

Most common
these days

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing Schemes

20 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Indexing Schemes
• So far pretended cache only sees one type of address: virtual or physical
• However, indexing and tagging can use different addresses!
• Four possible addressing schemes:

• virtually-indexed, virtually-tagged (VV) cache
• virtually-indexed, physically-tagged (VP) cache
• physically-indexed, virtually-tagged (PV) cache
• physically-indexed, physically-tagged (PP) cache

21 COMP9242 2024 T3 W02 Part 1: HW Considerations

Nonsensical except with
weird MMU designs

Rare these days,
will ignore

© Gernot Heiser 2019 – CC BY 4.0

Virtually-Indexed, Physically-Tagged Cache
• Virtual address for accessing line (lookup)
• Physical address for tagging
• Needs complete address translation

for looking up retrieving data
• Indexing concurrent with MMU access
• Used for on-core L1

22 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

index(2) byte(4) tag(26)

Use MMU for
tag check &
permissions

© Gernot Heiser 2019 – CC BY 4.0

Physically-Indexed, Physically-Tagged Cache
• Only uses physical addresses
• Address translation result needed for lookup
• Only sensible choice for L2…LLC

23 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

index(2) byte(4)tag(26)After L1 miss, MMU
result is available

Page offset invariant under VA→PA:
• Index bits ⊂ offset bits
⇒ don’t need MMU for indexing!

• VP = PP in this case
 ⇒ fast, suitable for L1

• Single-colour cache!

© Gernot Heiser 2019 – CC BY 4.0

Software-Visible Effects

24 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Issues
• Caches are managed by hardware transparently to software,

so OS doesn’t have to worry about them, right?
• Software-visible cache effects:

• performance
• cache-friendly data layout

• homonyms:
• same address, different data
• can affect correctness!

(on VV caches – ignoring)
• synonyms (aliases):

• different address, same data
• can affect correctness!

(on VV and VP caches)

25 COMP9242 2024 T3 W02 Part 1: HW Considerations

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

© Gernot Heiser 2019 – CC BY 4.0

Virtually-Indexed Cache Issues: Aliasing
Multiple names for same data:
• Several VAs map to the same PA

• frame shared between ASs
• frame multiply mapped within AS

• May access stale data!
• same data cached in multiple lines

• … if aliases differ in colour
• on write, one synonym updated
• read on other synonym returns old value
• physical tags or ASIDs don’t help!

• Are aliases a problem?
• don’t exist in single-colour cache
• no problem for R/O data or I-caches

26 COMP9242 2024 T3 W02 Part 1: HW Considerations

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

MMU

Physical Memory

CPU

tag(26) index(2) byte(4)

© Gernot Heiser 2019 – CC BY 4.0

Aliasing Problem [1/2]

27 COMP9242 2024 T3 W02 Part 1: HW Considerations

• Page aliased in different address spaces
• AS1: VA12 = 1, AS2: VA12 = 0

• One alias gets modified
• in a write-back cache, other alias sees stale data
• lost-update problem

Colour1 – 2nd
half of cache Colour0 – 1st

half of cache
RAM

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

© Gernot Heiser 2019 – CC BY 4.0

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Aliasing Problem [2/2]

28 COMP9242 2024 T3 W02 Part 1: HW Considerations

• Unmap aliased page, remaining page has a dirty cache line
• Re-use (remap) frame for a different page (in same or different AS)
• Access new page

• alias may write back after remapping: “cache bomb”

dirty
unmap

RAM

Cache

© Gernot Heiser 2019 – CC BY 4.0

Avoiding Aliasing Problems
• Flush cache on context switch

• doesn’t help for aliasing within address space!

• Detect aliases and ensure:
• all read-only, or
• only one alias mapped

• Restrict VM mapping so all aliases are of the same colour
• eg ensure VA12 = PA12 – colour memory!

• Hardware alias detection

29 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Hardware Alias Detection (Arm A53)

30 COMP9242 2024 T3 W02 Part 1: HW Considerations

tag(26) index(2) offset(11)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Data
Data
Data
Data
Data
Data
Data
Data

page number offset
31 12 11 0

Colour

Access both
colours

Lookup accesses sets of both colours
• If tag matches in both set: have alias
• If the access is a store then invalidate the

alias of the “wrong” colour
ØVP cache behaves like PP despite multiple

colours!

index(2)

© Gernot Heiser 2019 – CC BY 4.0

Summary: VP Caches
• Medium speed

þlookup in parallel with address translation
ztag comparison after address translation

þNo homonym problem
zPotential synonym problem
zBigger tags (cannot leave off set-number bits)

zincreases area, latency, power consumption
• Used on most contemporary architectures for L1 cache

• but mostly single-colour (pseudo-PP) or with HW alias prevention (Arm)

31 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Summary: PP Caches
zSlowest

zrequires result of address translation before lookup starts
þNo synonym problem
þNo homonym problem
þEasy to manage
þCache can use bus snooping for DMA/multicore coherency
þObvious choice for L2–LLC where speed matters less

32 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Cache Hierarchy

33 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Write Buffer
• Store operations can take a long time to complete

• eg if a cache line must be read or allocated
• Can avoid stalling the CPU by buffering writes
• Write buffer is a FIFO queue of incomplete stores

• Also called store buffer or write-behind buffer
• May exist at any cache level, or between cache and memory

• Can fetch intermediate values out of buffer
• to service read of a value that is still in write buffer
• avoids unnecessary stalls of load operations

• Implies that memory contents are temporarily stale
• on a multiprocessor, CPUs see different order of writes!
• “weak memory ordering”, to be revisited in SMP context

34 COMP9242 2024 T3 W02 Part 1: HW Considerations

CPU

Memory

…
Store A
…
Store B
…
Store A
…

© Gernot Heiser 2019 – CC BY 4.0

Cache Hierarchy

35 COMP9242 2024 T3 W02 Part 1: HW Considerations

• Hierarchy of caches to balance memory accesses:
• small, fast, virtually-indexed L1
• large, slow, physically indexed L2–LLC

• Each level reduces and clusters traffic
• L1 split into I- and D-caches

• “Harvard architecture”
• requirement of pipelining

• Other levels unified
• Chip multiprocessors (aka multicores):

• Usually LLC shared chip-wide
• L2 private (Intel) or clustered (AMD)

Registers

I-Cache D-Cache

Write buffer

L2 Cache

Last-Level Cache (LLC)

Memory (RAM)

Write buffer

Write buffer

© Gernot Heiser 2019 – CC BY 4.0

ODROID-C2 (Cortex A53) System Architecture

36 COMP9242 2024 T3 W02 Part 1: HW Considerations

Device Device

RAM

L1 cache:
• 32 KiB, 64-B lines

• L1-I: 2-way, VP
• L1-D: 4-way, pseudo-PP

L2 cache:
• 512 KiB, 16-way
 64-B lines, PP

Armlogic S905 SoC

A53 core

L1
-D

 $

L1
-I

$

L2 cache

A53 core
L1

-D
 $

L1
-I

$

L1
-D

 $

L1
-I

$

A53 core A53 core

L1
-D

 $

L1
-I

$

© Gernot Heiser 2019 – CC BY 4.0

TLB

37 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Translation Lookaside Buffer (TLB)

38 COMP9242 2024 T3 W02 Part 1: HW Considerations

• TLB is a (VV) cache for page-table entries
• TLB can be

• software loaded,
maintained by OS

• hardware loaded,
transparent to OS
(standard these days)

• TLB can be:
• split: I- and D-TLBs
• unified

ASID VPN

VPNASID PFN flags

flagsPFN

© Gernot Heiser 2019 – CC BY 4.0

TLB Size (I-TLB+D-TLB)

39 COMP9242 2024 T3 W02 Part 1: HW Considerations

Architecture Size (I+D) Assoc Page Size Coverage
VAX-11 64–256 2 0.5 KiB 32–128 KiB

ix86 32i + 64d 4 4 KiB + 4 MiB 128 KiB

MIPS 96–128 full 4 KiB – 16 MiB 384–512 KiB

SPARC 64 full 8 KiB – 4 MiB 512 KiB

Alpha 32–128i + 128d full 8 KiB – 4 MiB 256 KiB

RS/6000 (PPC) 32i + 128d 2 4 KiB 256 KiB

Power-4 (G5) 1024 4 4 KiB 512 KiB

PA-8000 96i + 96d full 4 KiB – 64 MiB 384 KiB

Itanium 64i + 96d full 4 KiB – 4 GiB 384 KiB

ARMv7 (A9) 64–128 1–2 4 KiB – 16 MiB 256–512 KiB

x86 (Skylake) L1:128i+64d; L2:1536 4 4 KiB + 2/4 MiB 1 MiB

Not much
growth in 40

years!

© Gernot Heiser 2019 – CC BY 4.0

TLB Size

40 COMP9242 2024 T3 W02 Part 1: HW Considerations

TLB coverage
• Memory sizes are increasing
• Number of TLB entries are roughly constant
• Base page sizes are steady

• 4 KiB (SPARC, Alpha used 8KiB)
• OS designers have trouble using superpages effectively

• Consequences:
• Total amount of RAM mapped by TLB is not changing much
• Fraction of RAM mapped by TLB is shrinking dramatically!
• Modern architectures have very low TLB coverage!

TLB can become a bottleneck!

© Gernot Heiser 2019 – CC BY 4.0

Multi-Level TLBs

41 COMP9242 2024 T3 W02 Part 1: HW Considerations

CPU

L1 I-TLB

Unified L2 TLB

L1 D-TLB

L I/D Pages Assoc Entr
1 I 4 KiB 4-way 64
1 D 4 KiB 4-way 64
1 I 2/4 MiB fully 7
1 D 2/4 MiB 4-way 32
2 unif 4 KiB 4-way 512

Intel Core i7

L I/D Pages Assoc #
1 I 4 KiB–1 GiB? full? 10

1 D 4 KiB–1 GiB? full? 10

2 unif 4 KiB–512 MiB 4-way 512

Arm A53

• Multi-level design (like I/D cache)
• Improve size-performance tradeoff

© Gernot Heiser 2019 – CC BY 4.0

Intel Core i7 (Haswell) Cache Structure

42 COMP9242 2024 T3 W02 Part 1: HW Considerations

Source: Intel

© Gernot Heiser 2019 – CC BY 4.0

Intel Haswell L3 Cache

43 COMP9242 2024 T3 W02 Part 1: HW Considerations

Source: Intel

© Gernot Heiser 2019 – CC BY 4.0

Peripheral Devices

44 COMP9242 2024 T3 W02 Part 1: HW Considerations

© Gernot Heiser 2019 – CC BY 4.0

Background: The Memory Contract [1/2]
Programmer’s model of memory:

loadi r1, <addr>
loadi r0, <val>
store r0, r1 // store <val> at <addr>
…
load r2, r1 // r2 now contains <val>

45 COMP9242 2024 T3 W02 Part 1: HW Considerations

Note: with shared
memory, the last value

written may be from
someone else!

Memory contract:
A read will return the last value written

© Gernot Heiser 2019 – CC BY 4.0

Background: The Memory Contract [2/2]

Programmer’s model of memory:
char *cp, c;
int32 *ip, i, j, k;
ip = <addr>;
cp = (char*)ip;
j = 0; for (k=0; k<4; k++) j = (j<<8)+*cp++ ;
i = *ip; // now i==j, assuming big-endian;

46 COMP9242 2024 T3 W02 Part 1: HW Considerations

Memory contract:
Order or granularity of access don’t matter

© Gernot Heiser 2019 – CC BY 4.0

RAM

DeviceCPU
Control

Notification

Meta-
data

Cache Data

Peripheral Devices

47 COMP9242 2024 T3 W02 Part 1: HW Considerations

Memory-mapped
device registers

(or x86 I/O instruct.)
Interrupts/polling

Direct memory
access (DMA)

Direct memory
access (DMA)

© Gernot Heiser 2019 – CC BY 4.0

Device-Access Caveats

48 COMP9242 2024 T3 W02 Part 1: HW Considerations

RAM

DeviceCPU
Control

Notification

Meta-
data

Cache Data

Device access bypasses cache!
• Device registers must be

mapped uncached
• DMA buffers must be

flushed/invalidated before
initiating I/O

• Else:
• write stale data
• read data overwritten by old

data (cache bomb!)

x86 keeps DMA
cache-coherent

© Gernot Heiser 2019 – CC BY 4.0

Devices Are State Machines

49 COMP9242 2024 T3 W02 Part 1: HW Considerations

S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

State transitions triggered by:
• Device register access

• write to device register
• read from device register

• External events
• data available
• transmit complete …

State transitions:
• Change register content
• Raise IRQs

S5

IRQ

© Gernot Heiser 2019 – CC BY 4.0

Implication: Device Registers Aren’t Memory!

50 COMP9242 2024 T3 W02 Part 1: HW Considerations

S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

• Writing same value twice may
have different effects

• Reading same register twice may
return different values

• Reading after writing:
• may return different value
• may trigger error

• Result of access may depend on
elapsed time

• Reading 4 bytes is different from
reading one int32

• … and may result in errorS5

IRQ

© Gernot Heiser 2019 – CC BY 4.0

Device Protocol Examples

51 COMP9242 2024 T3 W02 Part 1: HW Considerations

S1

S2

S3

S4

R1

R2

R3

R4

R1=x

y=R3

External
event

1. write char to R1

2. wait 10 ms
3. read int32 from R3

4. wait for IRQ or
poll R4 for ≠ 0

5. …

S5

IRQ
Specified in device data sheet
… which is usually full of errors

Device-
specified or
bus latency

