
Need a more systematic analysis

Thomas Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, Vol 1, No. 1, 1990

Compares Simple Spinlocks
Test and Set

void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

Test and Test and Set

void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}

test_and_test_and_set LOCK

Avoids bus traffic contention by delaying test_and_set until it might succeed

Normal read (‘test’) spins on local cache line

Can starve in pathological cases

Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

Compute chosen from uniform random distribution
of mean 5 times critical section

Measure elapsed time on Sequent Symmetry (20
CPU 30386, coherent write-back invalidate
caches)

Results

Test and set performs poorly once there is enough CPUs to
cause contention for lock

• Expected

Test and Test and Set performs better
• Performance less than expected

• Still significant contention on lock when CPUs notice release and all
attempt acquisition

Critical section performance degenerates
• Critical section requires bus traffic to modify shared structure

• Lock holder competes with CPU that missed as they test and set
– lock holder is slower

• Slower lock holder results in more contention

Idea

Can inserting delays reduce bus traffic and improve
performance

Explore 2 dimensions
• Location of delay

– Insert a delay after observing release prior to attempting acquire
– Insert a delay after each memory reference

• Delay is static or dynamic
– Static – assign delay “slots” to processors

» Issue: delay tuned for expected contention level
– Dynamic – use a back-off scheme to estimate contention

» Similar to early ethernet
» Degrades to static case in worst case.

Examining Inserting Delays

Queue Based Locking

Each processor inserts itself into a waiting queue

• It waits for the lock to free by spinning on its own separate
cache line

• Lock holder frees the lock by “freeing” the next processors
cache line.

Results

Results

Static backoff has higher overhead when backoff is
inappropriate

Dynamic backoff has higher overheads when static
delay is appropriate

• as collisions are still required to tune the backoff time

Queue is better when contention occurs, but has
higher overhead when it does not.

• Issue: Preemption of queued CPU blocks rest of queue
(worse than simple spin locks)

John Mellor-Crummey and Michael Scott, “Algorithms for
Scalable Synchronisation on Shared-Memory
Multiprocessors”, ACM Transactions on Computer
Systems, Vol. 9, No. 1, 1991

MCS Locks
Each CPU enqueues its own private lock variable into a queue and spins

on it

• No contention

On lock release, the releaser unlocks the next lock in the queue

• Only have bus contention on actual unlock

• No livelock (order of lock acquisitions defined by the list)

MCS Lock

Requires

• compare_and_swap()

• exchange()

– Also called fetch_and_store()

Sample MCS code for ARM MPCore
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I)

{

I->next = NULL;

MEM_BARRIER;

mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR(L, (void *)I);

if (pred == NULL)

{ /* lock was free */

MEM_BARRIER;

return;

}

I->waiting = 1; // word on which to spin

MEM_BARRIER;

pred->next = I; // make pred point to me

}

Selected Benchmark

Compared

• test and test and set

• Anderson’s array based queue

• test and set with exponential back-off

• MCS

Confirmed Trade-off

Queue locks scale well but have higher overhead

Spin Locks have low overhead but don’t scale well

What do we use?

The multicore evolution and
operating systems

Frans Kaashoek

Joint work with: Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, Robert Morris, and Nickolai

Zeldovich

MIT

31

Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

How well does Linux scale?

● Experiment:

● Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too)

● Select a few inherent parallel system applications

● Measure throughput on different # of cores

● Use tmpfs to avoid disk bottlenecks

● Insight 1: Short critical sections can lead to
sharp performance collapse

33

Off-the-shelf 48-core server (AMD)
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access

● An approximation of a future 48-core chip
34

Poor scaling on stock Linux kernel

48

perfect scaling 44

40

36

32

28

24

20

16

12

8
terrible scaling

4

0
memcached PostgreSQL Psearchy

Exim Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)

35

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

36

Exim on stock Linux: collapse
12000

Throughput

10000

8000

6000

4000

2000

0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

37

Exim on stock Linux: collapse
12000 15

Throughput
Kernel time

10000
12

8000

9

6000

6

4000

3
2000

0 0
1 4 8 12 16 20 24 28 32 36 40 44 48

Cores

38

Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:

4000 msg/sec

samples % app name

2616 7.3522 vmlinux

2329 6.5456 vmlinux

2197 6.1746 vmlinux

1488 4.1820 vmlinux

1348 3.7885 vmlinux

1182 3.3220 vmlinux

966 2.7149 vmlinux

samples % app name

13515 34.8657 vmlinux

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

symbol name

radix_tree_lookup_slot

unmap_vmas

filemap_fault

__do_fault

copy_page_c

unlock_page

page_fault

symbol name

lookup_mnt

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

39

Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:

4000 msg/sec

samples % app name

2616 7.3522 vmlinux

2329 6.5456 vmlinux

2197 6.1746 vmlinux

1488 4.1820 vmlinux

1348 3.7885 vmlinux

1182 3.3220 vmlinux

966 2.7149 vmlinux

samples % app name

13515 34.8657 vmlinux

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

symbol name

radix_tree_lookup_slot

unmap_vmas

filemap_fault

__do_fault

copy_page_c

unlock_page

page_fault

symbol name

lookup_mnt

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

40

Oprofile shows an obvious problem

samples % app name symbol name

2616 7.3522 vmlinux radix_tree_lookup_slot

2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault

10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c

1182 3.3220 vmlinux unlock_page

966 2.7149 vmlinux page_fault

samples % app name symbol name

13515 34.8657 vmlinux lookup_mnt

48 cores:

4000 msg/sec

2002 5.1647 vmlinux

1661 4.2850 vmlinux

1497 3.8619 vmlinux

1026 2.6469 vmlinux

914 2.3579 vmlinux

896 2.3115 vmlinux

radix_tree_lookup_slot

filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock_page

41

Bottleneck: reading mount table

● Delivering an email calls sys_open

● sys_open calls

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

42

Bottleneck: reading mount table

● sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

43

Bottleneck: reading mount table

● sys_open calls:

struct vfsmount *lookup_mnt(struct path *path)
{

struct vfsmount *mnt;
spin_lock(&vfsmount_lock);

mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

Serial section is short. Why does
it cause a scalability bottleneck?

44

What causes the sharp
performance collapse?

● Linux uses ticket spin locks, which are non-
scalable

● So we should expect collapse [Anderson 90]

● But why so sudden, and so sharp, for a short
section?

● Is spin lock/unlock implemented incorrectly?

● Is hardware cache-coherence protocol at fault?

45

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

46

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

47

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

48

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

49

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

50

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

500 cycles

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

51

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

52

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

53

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock)
{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

; /* Spin */
}

void spin_unlock(spinlock_t *lock)
{

lock->current_ticket++;
}

struct spinlock_t {
int current_ticket;
int next_ticket;

}

Previous lock holder notifies
next lock holder after

sending out N/2 replies

54

Why collapse with short sections?

● Arrival rate is proportional to # non-waiting cores

● Service time is proportional to # cores waiting (k)

● As k increases, waiting time goes up

● As waiting time goes up, k increases

● System gets stuck in states with many waiting cores
55

Short sections result in collapse

● Experiment: 2% of time spent in critical section

● Critical sections become “longer” with more cores

● Lesson: non-scalable locks fine for long sections 56

Avoiding lock collapse

● Unscalable locks are fine for long sections

● Unscalable locks collapse for short sections

● Sudden sharp collapse due to “snowball” effect

● Scalable locks avoid collapse altogether

● But requires interface change

57

Scalable lock scalability

● It doesn't matter much which one

● But all slower in terms of latency 58

Avoiding lock collapse
is not enough to scale

● “Scalable” locks don't make the kernel scalable

● Main benefit is avoiding collapse: total throughput
will not be lower with more cores

● But, usually want throughput to keep increasing with
more cores

59

Transactional memory to manage concurrency

The problem – concurrency

a=a+1

a=a-1

a=a+2

CPU 1

CPU 2

CPU 3

Time

The solution: mutual exclusion

a=a+1

a=a-1

a=a+2

CPU 1

CPU 2

CPU 3

Time

Synchronisation granularity

low overhead

Coarse-grainedFine-grained / lock-free

low
complexity

verification
tractability

Legacy
proof/ code
base

good
scalability

Course-grained mutual exclusion

a=a+1

b=b+1

c=c+1

CPU 1

CPU 2

CPU 3

Time

Critical sections
serialised

unnecessarily

Optimistic concurrency

a=a+1

b=b+1

c=c+1

CPU 1

CPU 2

CPU 3

Time

Concurrent
execution correct if

no conflicting
accesses

Transactional Memory

• A transaction is a sequence of machine instructions
satisfying the following properties:

• Serializability:

• Transactions appear to execute serially, meaning that the steps of one transaction
never appear to be interleaved with the steps of another.

• Committed transactions are never observed by different processors in different
orders.

• Atomicity:

• Each transaction makes a sequence of tentative changes to shared memory.

• A transactions can commit, making its changes visible to other processors

• Or a transaction aborts, causing its changes to be discarded.

66 |

Transactions

• Updates only visible locally

• Commit publishes update if conflict free

a=a+1

a=a-1

CPU 1

CPU 2

Time

Abort

a=a-1

67 |

Transactions

a=a+1

b=b+1

CPU 1

CPU 2

Time

Conflict detection

Hardware maintains:

• Read set: The set of all memory addresses loaded from

• Write set: The set of all memory addresses stored to
• The write set is not visible to other CPUs until a successful commit

A transaction is conflict free if:

• No other processor reads a location that is part of the
transactional region’s write-set

• And, no other processor writes a location that is a part of
the read- or write-set of the transactional region.

69 |

Implementation Intuition

• Cache coherence protocol already coordinates reads and
writes to cache lines

• Write-back caches could isolate updates until successfully
committed

→ Implement transacƟons by augmenƟng cache hardware

Cache

CPU
Cache

CPU

Main Memory
70 |

Herlihy, Maurice / Moss, J. Eliot B.
Transactional Memory: Architectural Support for Lock-Free Data Structures
1993
Proceedings of the 20th annual international symposium on Computer architecture - ISCA ‘93

Yoo, Richard M. / Hughes, Christopher J. / Lai, Konrad / Rajwar, Ravi
Performance evaluation of Intel transactional synchronization extensions for high-
performance computing
2013
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis on - SC 13

Some Papers

71 |

Some Hardware Limitations

Aborts

• Caches are a finite size, transactions will abort if they
exceed cache capacity to manage read and write set

• High contention on transaction region can trigger repeated
aborts

Cache

CPU
Cache

CPU

Main Memory
72 |

Sample Elided Lock

Microkernel vs Linux Execution

10s of ms 10s of ms

10s of ms

App

KernelLinux

10s of ms 10s of ms

10s of ms

App

Server
Microkernel

Kernel

0.3µs
74

Experiments with seL4 and Intel TSX

Basic idea: put the kernel in a
transaction

• Coarse-grained transaction

• Fallback on BKL

Microkernel small enough to fit in
a transaction

Repeated non-conflicting parallel
IPC benchmark

None: No concurrency control

Fine-grained scales well
• Expected

RTM also scales well
• Extremely low abort rates

75 |

