
Need a more systematic analysis
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Compares Simple Spinlocks
Test and Set

void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

Test and Test and Set

void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}



test_and_test_and_set LOCK

Avoids bus traffic contention by delaying test_and_set until it might succeed 

Normal read (‘test’) spins on local cache line

Can starve in pathological cases



Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

Compute chosen from uniform random distribution 
of mean 5 times critical section

Measure elapsed time on Sequent Symmetry (20 
CPU 30386, coherent write-back invalidate 
caches)





Results

Test and set performs poorly once there is enough CPUs to 
cause contention for lock

• Expected

Test and Test and Set performs better
• Performance less than expected

• Still significant contention on lock when CPUs notice release and all 
attempt acquisition

Critical section performance degenerates
• Critical section requires bus traffic to modify shared structure

• Lock holder competes with CPU that missed as they test and set
– lock holder is slower

• Slower lock holder results in more contention



Idea

Can inserting delays reduce bus traffic and improve 
performance

Explore 2 dimensions
• Location of delay

– Insert a delay after observing release prior to attempting acquire
– Insert a delay after each memory reference

• Delay is static or dynamic
– Static – assign delay “slots” to processors

» Issue: delay tuned for expected contention level
– Dynamic – use a back-off scheme to estimate contention

» Similar to early ethernet 
» Degrades to static case in worst case.



Examining Inserting Delays



Queue Based Locking

Each processor inserts itself into a waiting queue

• It waits for the lock to free by spinning on its own separate 
cache line

• Lock holder frees the lock by “freeing” the next processors 
cache line.



Results



Results

Static backoff has higher overhead when backoff is 
inappropriate

Dynamic backoff has higher overheads when static 
delay is appropriate

• as collisions are still required to tune the backoff time

Queue is better when contention occurs, but has 
higher overhead when it does not.

• Issue: Preemption of queued CPU blocks rest of queue 
(worse than simple spin locks)



John Mellor-Crummey and Michael Scott, “Algorithms for 
Scalable Synchronisation on Shared-Memory 
Multiprocessors”, ACM Transactions on Computer 
Systems, Vol. 9, No. 1, 1991



MCS Locks
Each CPU enqueues its own private lock variable into a queue and spins 

on it

• No contention

On lock release, the releaser unlocks the next lock in the queue

• Only have bus contention on actual unlock

• No livelock (order of lock acquisitions defined by the list)



MCS Lock

Requires 

• compare_and_swap() 

• exchange() 

– Also called fetch_and_store()







Sample MCS code for ARM MPCore
void mcs_acquire(mcs_lock *L, mcs_qnode_ptr I) 

{

I->next = NULL;

MEM_BARRIER;

mcs_qnode_ptr pred = (mcs_qnode*) SWAP_PTR( L, (void *)I);

if (pred == NULL) 

{ /* lock was free */

MEM_BARRIER;

return;

}

I->waiting = 1; // word on which to spin

MEM_BARRIER;

pred->next = I; // make pred point to me

}



Selected Benchmark

Compared

• test and test and set

• Anderson’s array based queue

• test and set with exponential back-off

• MCS





Confirmed Trade-off

Queue locks scale well but have higher overhead 

Spin Locks have low overhead but don’t scale well

What do we use?



The multicore evolution and 
operating systems 

Frans Kaashoek 

Joint work with: Silas Boyd-Wickizer, Austin T. Clements, 
Yandong Mao, Aleksey Pesterev,  Robert Morris, and Nickolai 

Zeldovich 

MIT 
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Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the 
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.



How well does Linux scale? 

● Experiment: 

● Linux 2.6.35-rc5 (relatively old, but problems are 
representative of issues in recent kernels too) 

● Select a few inherent parallel system applications 

● Measure throughput on different # of cores 

● Use tmpfs to avoid disk bottlenecks 

● Insight 1: Short critical sections can lead to 
sharp performance collapse 
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Off-the-shelf 48-core server (AMD) 
DRAM DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

● Cache-coherent and non-uniform access 

● An approximation of a future 48-core chip 
34



Poor scaling on stock Linux kernel 
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Exim on stock Linux: collapse 
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Exim on stock Linux: collapse 
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Oprofile shows an obvious problem 

40 cores: 

10000 msg/sec 

48 cores: 

4000 msg/sec 

samples % app name 

2616 7.3522  vmlinux 

2329 6.5456  vmlinux 

2197 6.1746  vmlinux 

1488 4.1820  vmlinux 

1348 3.7885  vmlinux 

1182 3.3220  vmlinux 

966 2.7149  vmlinux 

samples % app name 

13515 34.8657  vmlinux 

2002 5.1647  vmlinux 

1661 4.2850  vmlinux 

1497 3.8619  vmlinux 

1026 2.6469  vmlinux 

914 2.3579  vmlinux 

896 2.3115  vmlinux 

symbol name 

radix_tree_lookup_slot 

unmap_vmas 

filemap_fault 

__do_fault 

copy_page_c 

unlock_page 

page_fault 

symbol name 

lookup_mnt 

radix_tree_lookup_slot 

filemap_fault 

unmap_vmas 

__do_fault 

atomic_dec 

unlock_page 
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Oprofile shows an obvious problem 

40 cores: 

10000 msg/sec 

48 cores: 

4000 msg/sec 

samples % app name 
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Oprofile shows an obvious problem 

samples % app name symbol name

2616 7.3522 vmlinux radix_tree_lookup_slot

2329 6.5456 vmlinux unmap_vmas

40 cores: 2197 6.1746 vmlinux filemap_fault

10000 msg/sec 1488 4.1820 vmlinux __do_fault

1348 3.7885 vmlinux copy_page_c

1182 3.3220 vmlinux unlock_page

966 2.7149 vmlinux page_fault

samples % app name symbol name

13515 34.8657 vmlinux lookup_mnt

48 cores: 

4000 msg/sec 

2002 5.1647 vmlinux 

1661 4.2850 vmlinux 

1497 3.8619 vmlinux 

1026 2.6469 vmlinux 

914 2.3579 vmlinux 

896 2.3115 vmlinux 

radix_tree_lookup_slot 

filemap_fault 

unmap_vmas 

__do_fault 

atomic_dec 

unlock_page 
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Bottleneck: reading mount table 

● Delivering an email calls sys_open 

● sys_open calls 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 
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Bottleneck: reading mount table 

● sys_open calls: 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 
mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 
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Bottleneck: reading mount table 

● sys_open calls: 

struct vfsmount *lookup_mnt(struct path *path) 
{ 

struct vfsmount *mnt; 
spin_lock(&vfsmount_lock); 

mnt = hash_get(mnts, path); 
spin_unlock(&vfsmount_lock); 
return mnt; 

} 

Serial section is short.  Why does 
it cause a scalability bottleneck? 
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What causes the sharp 
performance collapse? 

● Linux uses ticket spin locks, which are non-
scalable 

● So we should expect collapse [Anderson 90] 

● But why so sudden, and so sharp, for a short 
section? 

● Is spin lock/unlock implemented incorrectly? 

● Is hardware cache-coherence protocol at fault? 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 
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Scalability collapse caused by 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

500 cycles 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 
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Scalability collapse caused by 
non-scalable locks [Anderson 90] 

void spin_lock(spinlock_t *lock) 
{ 

t = atomic_inc(lock->next_ticket); 
while (t != lock->current_ticket) 

; /* Spin */ 
} 

void spin_unlock(spinlock_t *lock) 
{ 

lock->current_ticket++; 
} 

struct spinlock_t { 
int current_ticket; 
int next_ticket; 

} 

Previous lock holder notifies 
next lock holder after 

sending out N/2 replies 
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Why collapse with short sections? 

● Arrival rate is proportional to # non-waiting cores 

● Service time is proportional to # cores waiting (k) 

● As k increases, waiting time goes up 

● As waiting time goes up, k increases 

● System gets stuck in states with many waiting cores 
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Short sections result in collapse 

● Experiment: 2% of time spent in critical section 

● Critical sections become “longer” with more cores 

● Lesson: non-scalable locks fine for long sections 56



Avoiding lock collapse 

● Unscalable locks are fine for long sections 

● Unscalable locks collapse for short sections 

● Sudden sharp collapse due to “snowball” effect 

● Scalable locks avoid collapse altogether 

● But requires interface change 
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Scalable lock scalability 

● It doesn't matter much which one 

● But all slower in terms of latency 58



Avoiding lock collapse 
is not enough to scale 

● “Scalable” locks don't make the kernel scalable 

● Main benefit is avoiding collapse: total throughput 
will not be lower with more cores 

● But, usually want throughput to keep increasing with 
more cores 
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Transactional memory to manage concurrency



The problem – concurrency

a=a+1

a=a-1

a=a+2

CPU 1

CPU 2

CPU 3

Time



The solution: mutual exclusion

a=a+1

a=a-1

a=a+2

CPU 1

CPU 2

CPU 3

Time



Synchronisation granularity

low overhead

Coarse-grainedFine-grained / lock-free

low 
complexity

verification 
tractability

Legacy 
proof/ code 
base

good 
scalability



Course-grained mutual exclusion

a=a+1

b=b+1

c=c+1

CPU 1

CPU 2

CPU 3

Time

Critical sections 
serialised 

unnecessarily



Optimistic concurrency

a=a+1

b=b+1

c=c+1

CPU 1

CPU 2

CPU 3

Time

Concurrent 
execution correct if 

no conflicting 
accesses



Transactional Memory

• A transaction is a sequence of machine instructions 
satisfying the following properties:

• Serializability: 

• Transactions appear to execute serially, meaning that the steps of one transaction 
never appear to be interleaved with the steps of another. 

• Committed transactions are never observed by different processors in different 
orders.

• Atomicity: 

• Each transaction makes a sequence of tentative changes to shared memory.

• A transactions can commit, making its changes visible to other processors

• Or a transaction aborts, causing its changes to be discarded.
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Transactions

• Updates only visible locally

• Commit publishes update if conflict free

a=a+1

a=a-1

CPU 1

CPU 2

Time

Abort

a=a-1
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Transactions

a=a+1

b=b+1

CPU 1

CPU 2

Time



Conflict detection

Hardware maintains:

• Read set: The set of all memory addresses loaded from

• Write set: The set of all memory addresses stored to
• The write set is not visible to other CPUs until a successful commit

A transaction is conflict free if:

• No other processor reads a location that is part of the 
transactional region’s write-set

• And, no other processor writes a location that is a part of 
the read- or write-set of the transactional region. 
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Implementation Intuition

• Cache coherence protocol already coordinates reads and 
writes to cache lines

• Write-back caches could isolate updates until successfully 
committed

→ Implement transacƟons by augmenƟng cache hardware

Cache

CPU
Cache

CPU

Main Memory
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Herlihy, Maurice / Moss, J. Eliot B.
Transactional Memory: Architectural Support for Lock-Free Data Structures
1993
Proceedings of the 20th annual international symposium on Computer architecture - ISCA ‘93

Yoo, Richard M. / Hughes, Christopher J. / Lai, Konrad / Rajwar, Ravi
Performance evaluation of Intel transactional synchronization extensions for high-
performance computing
2013
Proceedings of the International Conference for High Performance Computing, Networking, Storage 
and Analysis on - SC 13

Some Papers
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Some Hardware Limitations

Aborts

• Caches are a finite size, transactions will abort if they 
exceed cache capacity to manage read and write set

• High contention on transaction region can trigger repeated 
aborts

Cache

CPU
Cache

CPU

Main Memory
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Sample Elided Lock



Microkernel vs Linux Execution

10s of ms 10s of ms

10s of ms

App

KernelLinux

10s of ms 10s of ms

10s of ms

App

Server
Microkernel

Kernel

0.3µs
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Experiments with seL4 and Intel TSX 

Basic idea: put the kernel in a 
transaction

• Coarse-grained transaction

• Fallback on BKL

Microkernel small enough to fit in 
a transaction

Repeated non-conflicting parallel 
IPC benchmark

None: No concurrency control

Fine-grained scales well
• Expected

RTM also scales well
• Extremely low abort rates
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