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Overview
Multiprocessor OS (Background and Review)

• How does it work? (Background)
• Scalability (Review)

Multiprocessor Hardware
• Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
• Experimental (Intel, MS, Polaris)

OS Design for Multiprocessors
• Guidelines
• Design approaches

• Divide and Conquer (Disco, Tesselation)
• Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
• No Sharing (Barrelfish, fos)
• Deal with Heterogeneity (de facto OS)
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Summary
Scalability

• 100+ cores
• Amdahl’s law really kicks in

Heterogeneity
• Heterogeneous cores, memory, etc.
• Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between different 

AMD platforms)
NUMA

• Also variable latencies due to topology and cache coherence
Cache coherence may not be possible

• Can’t use it for locking
• Shared data structures require explicit work

Computer is a distributed system
• Message passing
• Consistency and Synchronisation
• Fault tolerance
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OS DESIGN for 
Multiprocessors
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Optimisation for Scalability
Reduce amount of code in critical sections

• Increases concurrency
• Fine grained locking

• Lock data not code (big kernel lock vs fine-grained locking)
• Tradeoff: more concurrency but more locking (and locking causes serialisation)

• Lock free data structures

Avoid expensive memory access
• Avoid uncached memory
• Access cheap (close) memory
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Optimisation for Scalability
Reduce false sharing

• Pad data structures to cache lines

Reduce cache line bouncing
• Reduce sharing
• E.g: MCS locks use local data

Reduce cache misses
• Affinity scheduling: run process on the core where it last ran.
• Avoid cache pollution

• Don’t evict all application cache when OS runs
• Don’t evict all OS cache when app runs
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OS Design Guidelines for Modern (and 
future) Multiprocessors
Avoid shared data

• Performance issues arise less from lock contention than from data locality
Explicit communication

• Regain control over communication costs (and predictability)
• Cache coherence is expensive, and opaque

• Sometimes it’s the only option
Tradeoff: parallelism vs synchronisation

• Synchronisation introduces serialisation
• Make concurrent threads independent: reduce critical sections & cache misses
• Aim for: embarrassingly parallel 

Allocate for locality
• E.g. provide memory local to a core

Schedule for locality
• With cached data
• With local memory

Tradeoff: uniprocessor performance vs scalability
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Design approaches
Divide and conquer

• Divide multiprocessor into smaller bits, use them as normal
• Using virtualisation
• Using exokernel

Reduced sharing
• Brute force & Heroic Effort

• Find problems in existing OS and fix them
• E.g Linux rearchitecting: BKL -> fine grained locking

• By design
• Avoid shared data as much as possible

No sharing
• Computer is a distributed system

• Do extra work to share!

Dealing with heterogeneity
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Divide and Conquer
Disco

• Scalability is too hard!
Context: 

• ca. 1995, large ccNUMA multiprocessors appearing
• Scaling OSes requires extensive modifications

Idea:
• Implement a scalable VMM
• Run multiple OS instances

VMM has most of the features of a scalable OS:
• NUMA aware allocator
• Page replication, remapping, etc. 

VMM substantially simpler/cheaper to implement
Modern incarnations of this

• Virtual servers (Amazon, etc.)
• Research (Cerberus)
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http://www-flash.stanford.edu/Disco/ 



Disco Architecture
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Disco Performance
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Space-Time Partitioning
Tessellation

• Space-Time partitioning
• 2-level scheduling

Context: 
• 2009-… highly 
  parallel multicore 
  systems
• Berkeley Par Lab
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http://tessellation.cs.berkeley.edu/



Tessellation
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Reduce Sharing
K42
Context:

• 1997-2006: OS for ccNUMA systems
• IBM, U Toronto (Tornado, Hurricane)

Goals: 
• High locality
• Scalability

Object Oriented
• Fine grained objects

Clustered (Distributed) Objects
• Data locality

Deferred deletion (RCU)
• Avoid locking 

NUMA aware memory allocator
• Memory locality
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http://www.research.ibm.com/K42/



K42: Fine-grained objects
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K42: Clustered objects
Globally valid object reference
Resolves to 

• Processor local representative

Sharing, locking  strategy local to each object
Transparency

• Eases complexity
• Controlled introduction of locality

Shared counter:
• inc, dec: local access
• val: communication

Fast path:
• Access mostly local structures
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K42 Performance
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Corey
Context

• 2008, high-end multicore servers, MIT

Goals:
• Application control of OS sharing

OS
• Exokernel-like, higher-level services as libraries
• By default only single core access to OS data structures
• Calls to control how data structures are shared

Address Ranges
• Control private per core and shared address spaces

Kernel Cores
• Dedicate cores to run specific kernel functions

Shares
• Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.
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http://pdos.csail.mit.edu/corey



Linux Brute Force Scalability
Context

• 2010, high-end multicore servers, MIT

Goals:
• Scaling commodity OS

Linux scalability 
• 2010 – scale Linux to 48 cores)
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Linux Brute Force Scalability
Apply lessons from parallel computing and past research

• sloppy counters, 
• per-core data structs, 
• fine-grained lock, lock free, 
• cache lines 
• 3002 lines of code changed

Conclusion: 
• no scalability reason to give up on traditional operating system organizations just yet.
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Scalability of the API
Context

• 2013, previous multicore projects at MIT

Goals
• How to know if a system is really scalable?

Workload-based evaluation
• Run workload, plot scalability, fix problems
• Did we miss any non-scalable workload?
• Did we find all bottlenecks?

Is there something fundamental that makes a system non-
scalable?

• The interface might be a fundamental bottleneck
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[Clements et al., 2013]



Scalable Commutativity Rule
The Rule

• Whenever interface operations commute, they can be implemented in a way that scales.
Commutative operations: 

• Cannot distinguish order of operations from results
• Example:

• Creat:
• Requires that lowest available FD be returned
• Not commutative: can tell which one was run first

Why are commutative operations scalable?
• results independent of order ⇒ communication is unnecessary
• without communication, no conflicts

Informs software design process
• Design: design guideline for scalable interfaces
• Implementation: clear target
• Test: workload-independent testing
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(sv6)

Commuter: An Automated Scalability 
Testing Tool
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FlexSC
Context:

• 2010, commodity multicores
• U Toronto

Goal:
• Reduce context switch overhead of system calls

Syscall context switch:
• Usual mode switch overhead
• But: cache and TLB pollution!

COMP9242 T3/2023 W10 | Multiprocessor OS 24 |FlexSC: Flexible System Call Scheduling with Exception-Less System Calls 
[Soares and Stumm., 2010]



FlexSC
Asynchronous system calls

• Batch system calls
• Run them on dedicated cores

FlexSC-Threads 
• M on N
• M >> N
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FlexSC Results
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Apache
FlexSC: batching, 
sys call core redirect



No sharing
Multikernel

• Barrelfish
• fos: factored operating system

COMP9242 T3/2023 W10 | Multiprocessor OS 27 |The Multikernel: A new OS architecture for scalable multicore systems [Baumann et al., 2009]
http://www.barrelfish.org/



Barrelfish
Context: 

• 2007 large multicore machines appearing
• 100s of cores on the horizon
• NUMA (cc and non-cc)
• ETH Zurich and Microsoft

Goals:
• Scale to many cores
• Support and manage heterogeneous hardware

Approach:
• Structure OS as distributed system

Design principles:
• Interprocessor communication is explicit
• OS structure hardware neutral
• State is replicated

Microkernel
• Similar to seL4: capabilities

COMP9242 T3/2023 W10 | Multiprocessor OS 28 |The Multikernel: A new OS architecture for scalable multicore systems 
[Baumann et al., 2009]   http://www.barrelfish.org/



Barrelfish
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Barrelfish: Replication
Kernel + Monitor:

• Only memory shared for message channels
Monitor:

• Collectively coordinate system-wide state
System-wide state:

• Memory allocation tables
• Address space mappings
• Capability lists

What state is replicated in Barrelfish
• Capability lists

Consistency and Coordination
• Retype: two-phase commit to globally execute operation in order
• Page (re/un)mapping: one-phase commit to synchronise TLBs

COMP9242 T3/2023 W10 | Multiprocessor OS 30 |



Barrelfish: Communication
Different mechanisms:

• Intra-core
• Kernel endpoints

• Inter-core
• URPC

URPC
• Uses cache coherence + polling
• Shared bufffer

• Sender writes a cache line
• Receiver polls on cache line
• (last word so no part message)

• Polling?
• Cache only changes when sender writes, so poll is cheap
• Switch to block and IPI if wait is too long.
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Barrelfish: Results
Message passing vs caching
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Barrelfish: Results
Broadcast vs Multicast
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Barrelfish: Results
TLB shootdown
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seL4
Context:

• 2013, 2022  UNSW/TS (+ Kry10, Proofcraft)
• Embedded/ARM multicore systems

Goals:
• Verified multicore kernel

Approach
• Biglock SMP vs multikernel

Design Principles
• Divide and Conquer
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Multiprocessing on seL4 with verified kernels [McLeod, 2023]
https://sel4.systems/Foundation/Summit/2022/slides/d1_07_Multiprocessing_on_seL4_with_verified_kernels_Kent_Mcleod.pdf



Usable CPU count by kernel configuration
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seL4 SMP Kernel (Big Lock)

SMP kernel has shared state
Concurrency in the kernel
Big kernel lock:
• Simplifies verification, but not by a lot initially
• Adds locking overhead to all kernel operations
Non-negligible code changes for 
implementing SMP design
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Unicore SMPMultikernel
(AMP)

(Re)Introducing: Partitioned multikernel
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What are the trade-offs?

40

Multikernel SMP

Kernel State Partitioned Shared

Concurrency in 
Kernel

No - better 
verification

Yes - hard to 
verify

Cross-core 
communications

Implemented at 
userlevel

Implemented by 
kernel



Dealing with Heterogeneity
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De Facto OS
Context

• 2020+: highly heterogeneous SoC
• ETH Zurich

Goals
• Define a de facto OS
• All the memory accesses and privileges on a SoC

Approach
• Model the hardware and software
• Analyse it to determine trust requirements and properties

COMP9242 T3/2023 W10 | Multiprocessor OS 42
Putting out the Hardware Dumpster Fire [Fiedler et al, 2023]
https://sigops.org/s/conferences/hotos/2023/papers/fiedler.pdf 



Heterogeneous SoCs – the problem
Example: QualPWN

• over-the-air compromise of DSP
• DSP asks Linux driver to map all of 

physical memory for it through SMMU
How it normally works:

• Linux driver -> DSP: use this address for 
DMA

• DSP -> Linux driver: give me SMMU 
mappings for DMA

Exploit
• DSP -> Linux driver: asks for malicious 

SMMU mappings
Problem

• Trust driver(s) to filter out bad mappings…
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HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Achermann, et al.

worse by the need to enforce a changing partial correspon-
dence between the virtual address space seen by the device,
and that seen by a process, since the OS needs to share datas-
tructures with devices as much as protect itself from them.
The result is that buggy, compromised, or just plain malicious
devices or drivers can do an end-run around the OS protection
model by exploiting holes in the IOMMU-based protection
domain [14, 22].

Surprisingly, modern OSes provide no good abstractions
for uniformly handling this problem, leaving low-level con-
figuration of protection up to individual device drivers. This
is in contrast to, e.g. access control in file systems or au-
thority over process address space, where well-established
subsystems enforce OS policy.

We propose a new primitive, mmapx, for clients to request
general memory mappings. Unlike existing interfaces, mmapx
is explicit about which address space it is mapping a region
from, and which address space it is mapping a region into.
This allows clients to be precise in specifying what memory
is exposed to devices or coprocessors via IOMMUs. Like
mmap(), mmapx refers to memory regions using file descrip-
tors, which provide capability-like protection. However, re-
gions for mmapx are acquired using a file system (/dev/as),
which captures the memory topology of the machine in detail,
and allows basic authorization to leverage the full Unix file
system protection model via two di↵erent rights on an address
space: map and grant.

We describe mmapx here from the point of view of user-
space Linux programs but the basic model works in a micro-
kernel architecture, or within a monolithic kernel. In the latter
case, protection within the kernel is only advisory, unless
a mechanism like Nooks [28] is available. Crucially, how-
ever, even in this case mmapx provides a policy framework
for protecting the kernel itself from malicious or buggy dri-
vers, device firmware, or other cores not running the kernel
itself by ensuring that IOMMUs and other translation units
are correctly programmed.

Moreover, while mmapx resembles a high-level primitive
like mmap(), this belies its true power. mmapx builds on our
existing work on formalizing address translation and decod-
ing, and its concept of an “address space” region is flexible
and powerful enough to capture the functionality of the full
range of TLBs, and even individual levels of a multi-level
page table. This allows mmapx to express “delegation” of
MMU page table structures to virtual machines, for example,
as in Arrakis [24] and Ix [6].

2 MOTIVATION
The “QualPwn” exploit [14] is emblematic of the problem
we address in this paper. It makes brutally clear the mismatch

A57
Linux

DSP

MMU

SMMUMMU

DSP
Registers

QuRT

System Address SpaceDRAM

Figure 1: Relevant actors (A57 and DSP), translation
units (MMU, SMMU) and memory regions (gray) of the
Qualcomm SoC. Note that the DSP MMU is not con-
trolled by the host Linux, but the SMMU is.

between the model of hardware behavior baked into the OS
kernel, and the reality of modern SoC platforms.

QualPwn a↵ects mobile SoCs running Android and starts
with a bug in the WLAN process running not on the CPU but
a DSP core on the chip, which runs the proprietary QuRT OS.
A series of exploits allows compromise of another process on
the DSP, which itself communicates with its corresponding
device driver in the Linux kernel on the application cores
using DMA. Since the driver trusts the device, it can be tricked
into granting the device full access to application memory by
reprogramming the system MMU.

Our focus in this paper is preventing incorrect granting of
memory access rights to devices and drivers. A simplified
view of the hardware is shown in Figure 1: two processors,
running a di↵erent OS, with di↵erent MMUs, but sharing
the same memory. The Linux kernel driver is tasked with
configuring the SMMU to only allow legitimate access to
bu↵ers shared between the two cores, and it fails to do this.

Linux o↵ers little functionality to help with this task. In-
stead, it relies on a naive model where a set of process vir-
tual address spaces are mapped to a single physical address
space, and protection against DMA-capable devices using
an IOMMU or SMMU is delegated to drivers. Indeed, the
SMMU is often programmed to give a device the same view
of memory as that of the corresponding software process,
whether in user space or the kernel.

For example, the recent Linux Heterogeneous Memory
Manager [29] attempts to unify device memory management
using a specialized page structure to replicate translation
across device and CPU address spaces, in order to simplify
programming with GPU and FPGA accelerators.

We argue this is inappropriate for devices: access by the
device should be restricted as much as possible, rather than
giving the device free rein over application memory [22].
However, Linux provides no help in maintaining partially
replicated mappings between heterogeneous devices or cores:
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Cross-SoC Attacks
• Untrustworthy devices/peripherals
• Trusted by OS and other devices

Exploiting Qualcomm WLAN and Modem Over the Air [Gong et al, 2019]
https://i.blackhat.com/USA-19/Thursday/us-19-Pi-Exploiting-Qualcomm-WLAN-And-Modem-Over-The-Air-wp.pdf
mmapx: uniform memory protection in a heterogeneous world [Achermann et al, 2021] 
https://people.inf.ethz.ch/troscoe/pubs/achermann-hotos-2021.pdf

https://people.inf.ethz.ch/troscoe/pubs/achermann-hotos-2021.pdf


Modelling the whole system
OS, isolation, and protection

• OS: provide protection and isolation between application programs
• Kernel (e.g. Linux, seL4) not the most privileged software on machine

De facto OS
• Consider HW (and firmware) that reads/writes to address spaces

• DMA access: e.g. NICs, WiFi chips, video co-processors
• Other (non-main memory) address spaces

• Formal specification (Sockeye3): 
• directed graph: nodes = address spaces, edges = translation between address spaces
• Context: can generate memory operations (CPU, GPU, DMA engine, etc.)
• Translation regions: contains metadata that configures translation operations
• Component: complex behaviour = Rust code
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Analysis
De facto OS characteristics

• No design
• Many parts cannot be changed

Goals
• Make security and correctness claims about de facto OS
• Understand how to Improve a real-world de facto OS

Analysis
• Compute overlaps between “victim” context and other contexts (critical regions)

• (i.e. which agents can read and write which RAM regions and control registers)
• -> integrity, confidentiality violations

• What trust assumptions need to change (and how) to remove violations?
Status

• i.MX8 8X model
• Stay tuned…
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Summary
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Summary
Trends in multicore

• Scale (100+ cores)
• NUMA
• No cache coherence 
• Distributed system
• Heterogeneity

OS design guidelines
• Avoid shared data
• Explicit communication
• Locality

Approaches to multicore OS
• Partition the machine (Disco, Tessellation)
• Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
• No sharing (Barrelfish, fos)
• Dealing with heterogeneity (de facto OS)
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