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Overview
Multiprocessor OS (Background and Review)

• How does it work? (Background)
• Scalability (Review)

Multiprocessor Hardware
• Contemporary and past systems (Intel, AMD, ARM, Oracle/Sun)
• Experimental (Intel, MS, Polaris)

OS Design for Multiprocessors
• Guidelines
• Design approaches

• Divide and Conquer (Disco, Tesselation)
• Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
• No Sharing (Barrelfish, fos)
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Uniprocessor OS
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Key design challenges:
• Correctness of (shared) data structures
• Scalability (performance doesn’t suffer)



Correctness of Shared Data
Concurrency control

• Locks
• Semaphores
• Transactions
• Lock-free data structures

We know how to do this:
• In the application
• In the OS
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Scalability
Speedup as more processors added
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Scalability
Speedup as more processors added
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Serialisation
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Scalability and Serialisation
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Scalability and Serialisation
Remember Amdahl’s law

• Serial (non-parallel) portion: when application not running on all cores
• Serialisation prevents scalability
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Serialisation
Where does serialisation show up?

• Application (e.g. access shared app data)
• OS (e.g. performing syscall for app) How much time is spent in OS?

Sources of Serialisation
Locking (explicit serialisation)

• Waiting for a lock è stalls self
• Lock implementation: 

• Atomic operations lock bus è stalls everyone waiting for memory 
• Cache coherence traffic loads bus è stalls others waiting for memory 

Memory access (implicit)
• Relatively high latency to memory  è stalls self 

Cache (implicit)
• Processor stalled while cache line is fetched or invalidated
• Affected by latency of interconnect
• Performance depends on data size (cache lines) and contention (number of cores)
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More Cache-related Serialisation
False sharing

• Unrelated data structs share the same cache line
• Accessed from different processors 
è Cache coherence traffic and delay

Cache line bouncing
• Shared R/W on many processors
• E.g: bouncing due to locks: each processor spinning on a lock brings it into its own cache
è Cache coherence traffic and delay

Cache misses
• Potentially direct memory access è stalls self
• When does cache miss occur?

• Application accesses data for the first time,  Application runs on new core 
• Cached memory has been evicted

• Cache footprint too big, another app ran, OS ran
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Multiprocessor 
Hardware
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Multi-What?
Terminology: 

• core, die (chip), package (module, processor, CPU)

Multiprocessor, SMP (Symmetric Multiprocessing)
• >1 separate processors, connected by off-processor interconnect

Multicore, CMP (Chip Multiprocessor)
• >1 processing cores in a single die, connected by on-die interconnect

Multithread, SMT (Simultaneous Multithreading)
• >1 hardware threads in a single processing core

Multicore + Multiprocessor
• >1 multicore dies in a package (multi-chip module), on-processor 

interconnect 
• >1 multicore processors, off-processor interconnect

Manycore
• Lots (>100) of cores
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Contemporary Multiprocessor Hardware
Intel: 

• Nehalem, Westmere:  10 core, QPI
• Sandy Bridge, Ivy Bridge: 5 core, ring bus, integrated GPU, L3, IO
• Haswell (Broadwell): 18+ core, ring bus, transactional memory, slices (EP)
• Skylake (SP): mesh architecture

AMD:
• K10 (Opteron: Barcelona, Magny Cours): 12 core, Hypertransport
• Bulldozer, Piledriver, Steamroller (Opteron, FX)

• 16 core, Clustered Multithread: module with 2 integer cores
• Zen: on die NUMA: CPU Complex (CCX) (4 core, private L3)
• Zen 2: chiplets (2xCCX) chiplets, IO die (incl mem controller)

Oracle (Sun) UltraSparc T1,T2,T3,T4,T5 (Niagara), M5,M7
• T5: 16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets, 
• M8: 32 core, 8 threads, on chip network, 8 sockets, 5GHz

ARM Cortex A9, A15 MPCore, big.LITTLE, DynamIQ
• 4 -8 cores, big.LITTLE: A7 + A15, dynamIQ: A75 + A55
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Experimental/Non-mainstream 
Multiprocessor Hardware
Microsoft Beehive

• Ring bus, no cache coherence

Tilera (now Mellanox) Tile64, Tile-Gx
• 100 cores, mesh network

Intel Polaris
• 80 cores, mesh network

Intel SCC
• 48 cores, mesh network, no cache coherency

Intel MIC (Multi Integrated Core) 
• Knight’s Corner/Landing - Xeon Phi
• 60+ cores, ring bus/mesh
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Interesting Properties of Multiprocessors
Scale and Structure

• How many cores and processors are there
• What kinds of cores and processors are there (homogeneous vs heterogeneous)

Memory Locality
• Where is the memory

Caches
• What is the cache architecture

Interconnect
• How are the cores and processors connected
• Access to IO, etc.

Communication
• How do cores and processors send messages to each other
• Interrupts
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Scale and Structure
ARM Cortex A9 
MPCore
• basic structure
• single die
• homogeneous 

cores
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From http://www.arm.com/images/Cortex-A9-MP-core_Big.gif



Scale and Structure
Intel Nehalem – multiprocessor & multicore, homogeneous
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Scale and Structure
Tilera Tile64, Intel Polaris: manycore – simple, homogeneous
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Scale and Structure
ARM big.LITTLE – multicore, semi-heterogeneous

COMP9242 T3/2023 W09 | Multiprocessor OS 23 |
From http://www.arm.com/images/Fig_1_Cortex-A15_CCI_Cortex-A7_System.jpg



Scale and Structure
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Scale and Structure 
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I.MX 6SoloX – multicore: Cortex-A + Cortex-M

From: https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-
6-processors/i-mx-6solox-processors-heterogeneous-processing-with-arm-cortex-a9-and-cortex-m4-cores:i.MX6SX



Scale and Structure
NVIDIA Parker 
(Tegra X2) SOC
• Heterogeneity
• Application CPUs
• GPUs
• Management 

CPUs
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https://www.usenix.org/conference/osdi21/presentation/fri-keynote 



Memory Locality
Cortex A9
Uniform Memory 
Access: 
• same access to
     all memory
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Memory Locality
NUMA (Non-Uniform Memory Access)
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Cache
Hierarchy
• L1, L2, L3, …
Sharing
• Private – per core
• Shared – all/some cores
• Partitioned – distributed and shared
Coherence
• No inconsistent values in caches
• At same level, at different levels
• Snooping, directory-based
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Cache
ARM Cortex A9 
MPCore
• L1 – private, split, 

coherent, 
optimised MESI

• Optional L2 – 
shared

• DMA cache 
coherent with L1 
(ACP)
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From http://www.arm.com/images/Cortex-A9-MP-core_Big.gif



Cache
Core: L1, L2. Socket: L3.  Cache coherent between sockets
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Cache
Oracle Sparc T2 
(Niagara 2)
- private L1
- partitioned L2
- all cores equal 
access to L2s

COMP9242 T3/2023 W09 | Multiprocessor OS 32 |

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2 
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

From Sun/Oracle



Cache
Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon 
Phi)

COMP9242 T3/2023 W09 | Multiprocessor OS 33 |From http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/

• Private L2
• Tag Directory – 

info about 
addresses in 
other L2s

• Send messages 
to other cores to 
access their L2



Cache
Intel SCC – no hardware cache coherence
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Interconnect
Oracle Sparc T2
• Crossbar switch 

between cores and 
L2

• Cores have 
independent access 
to L2

• What does that mean 
for Software?

COMP9242 T3/2023 W09 | Multiprocessor OS 35 |

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2 
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

From Sun/Oracle



Interconnect
AMD Barcelona: network
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Interconnect (Latency)
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Interconnect (Bandwidth)
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Interconnect
Tilera Tile64, Intel Polaris: Mesh network(s)
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Interconnect
Beehive
• Ring
• No hardware 

cache 
coherence

COMP9242 T3/2023 W09 | Multiprocessor OS 40 |From projects.csail.mit.edu/beehive/BeehiveV5.pdf



Interconnect
Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon 
Phi)

COMP9242 T3/2023 W09 | Multiprocessor OS 41 |From http://semiaccurate.com/2012/08/28/intel-details-knights-corner-architecture-at-long-last/

• Multiple rings
• Directional
• Data rings
• Address rings
• Coherence rings



Interconnect
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Interconnect/Structure/Memory
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Interconnect
Skylake SP
• Server
• Mesh

• Array of half-rings

• Sub-NUMA 
clustering 
(replacing CoD)
• separate memory 

domains

• Per core LLC slice
• Directory based 

coherency
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Communication
Inter-processor interrupts

• Intel: through APIC
• ARM: SGI (software generated interrupts) through GIC – interrupt routing. 
• Slower than cache coherency (10-100x)

Shared memory
• Rely on cache coherency
• Polling and atomic operations
• (ab)use cache lines for communication
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Communication
Intel SCC – explicit message passing buffer
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Communication

Device interrupts
• Interrupt affinity
• Route interrupts to 

specific cores
• ARM: GIC

• Generic Interrupt 
Controller

• X86: APIC 
• Advanced 

Programmable Interrupt 
Controller
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From: 
- https://developer.arm.com/documentation/198123/0302/What-is-a-Generic-Interrupt-Controller- 
- Towards Correct-by-Construction Interrupt Routing on Real Hardware, PLOS 2017

PLOS 2017, October 28, 2017, Shanghai, China Lukas Humbel, Reto Achermann, David Cock, Timothy Roscoe

in the Barrel�sh OS. We show how it can be used online to
derive valid con�gurations for interrupt hardware.

In the next section, we further motivate the problem and
delve into the complexity of modern interrupt systems.

2 Background
Modern interrupt hardware is complex. Whereas in the dis-
tant past, an interrupt was a dedicated electrical signal to
the processor, today a computer has a network of interrupt
controllers which can be con�gured to deliver many distinct
interrupts generated by a given device to di�erent vectors
on di�erent cores.
Table 1 shows 15 di�erent interrupt controllers used by

machines in our server room. New interrupt controllers are
introduced all the time, whether evolutions of existing de-
signs or new, specialized functions for particular SoCs. Each
has di�erent capabilities and constraints on the number of
interrupt signals they can source and sink, and how they
can map between them. For instance, the venerable Intel
8259A PIC [9] has a �xed mapping of 8 input ports to a sin-
gle output port and 8 bit vector. The Local APIC [11] maps
interrupt messages on a bus to a corresponding local core
vector. Intel IOAPIC controllers [10, 12] convert events di-
rectly from PCI functions or through PCI Link Devices [17]
to APIC messages in a particular delivery mode, but behave
di�erently when combined with an IOMMU [14], which can
translate memory writes from devices to message-signaled
interrupts [17]. The ARM GICv2 [3] supports 1024 di�er-
ent interrupts but not all can be delivered to all cores, and
vectors cannot be changed. The compatible CoreLink GIC-
400 [2] adds additional constraints on its recon�gurability,
the GICv3 exists in two variants [4] with implementation-
de�ned limits on vector size and GICv4 adds virtualization
support [4]. Additionally, the ARM GIC are programmed
using a memory mapped register and/or CPU interface.

These controllers are connected in a non-trivial platform-
speci�c network. Figure 1 shows a simpli�ed PC-based illus-
tration. Interrupts may be delivered to a single core, a set
(1-N) or broadcast. Virtualization allows interrupt delivery
directly to a virtual machine [13, 14].
The OS must discover and correctly con�gure this net-

work dynamically. Some topology data can be obtained from
PCI discovery [17] and ACPI [23], but it is incomplete or may
not exist at all. DeviceTree [8] �les are used by many OSes
to work around this, but the �le format has no clear seman-
tics, is error-prone [19], and despite containing controller
information [18] fails to capture con�guration constraints or
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Figure 1. Simpli�ed x86 interrupt network

cover inter-processor interrupts. Even so, the proliferation
of DeviceTrees shows that con�guration is a problem.
After discovery, correct con�guration of a modern com-

puter is essentially a network routing problem with highly
constrained switches, but current OS designs re�ect a legacy
of much simpler hardware.
Linux, for example, de�nes a single namespace of “IRQ

numbers” for all interrupts, and then attempts tomap this to a
strict hierarchy of interrupt controllers. “IRQ Domains” [15]
map Linux IRQ numbers to hardware sources and implicitly
hard-codes the topology. Device drivers are responsible for
identifying the controllers they need to program (via a driver
interface) to deliver interrupts correctly. The common case
is to deliver an interrupt to all cores, and vector numbers
are assumed to be the same across all cores. Constraints in
interrupt routing are not well handled and generally special-
cased in the code.
Chen etal. [7] verify an interruptible operating system

kernel including a simple veri�ed interrupt controller driver.
The focus of our work is on the topology of the interrupt sys-
tem, we are interested in properties of the con�guration and
ensure, for instance, that the correct controller is con�gured.
Stepping back, a better approach is to de�ne a formal

model which captures the complexity of modern interrupt
subsystems and provides both a basis for verifying imple-
mentations and a template for engineering a correct solution
which works across a wide variety of platforms. This paper
describes early work in this direction: both a preliminary
model and an implementation.

3 Model
We base our model on prior work [1] about formally specify-
ing memory accesses and interrupts and extend it to enable
interrupt controller con�guration. Currently, the model is
implemented informally in Prolog, described in section 4. We
present the extensions necessary to provide a formal basis
for that implementation.
We express the topology of a system as a decoding net, a

directed graph consisting of nodes with two properties: i)
a set of accepted addresses ii) a set of translated addresses
that map onto another node, where addresses here repre-
sent interrupt ports. Address resolution starts at a particular
node and address and terminates if a node accepts the input
address or it is not in the set of translated addresses.

3.1 Model re�nement
The nodes are a set of interrupt sources (e.g. devices), a set
of destinations (e.g. an interrupt vector on a core) and a
set of interrupt controllers. We refer to addresses on nodes
in the decoding net as ports. We assign a globally unique
identi�er to all ports. We further extend the model in [1]
with the re�nements below and summarize the extensions
in Figure 2.



Summary
Scalability

• 100+ cores
• Amdahl’s law really kicks in

Heterogeneity
• Heterogeneous cores, memory, etc.
• Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between different 

AMD platforms)
NUMA

• Also variable latencies due to topology and cache coherence
Cache coherence may not be possible

• Can’t use it for locking
• Shared data structures require explicit work

Computer is a distributed system
• Message passing
• Consistency and Synchronisation
• Fault tolerance
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