School of Computer Science & Engineering

Gloval - COMP9242 Advanced Operating Systems

i
>

. . blocked reempted
Real-Time Systems Basics ocked [l preemp n

@GernotHeiser ! |] |] | | | -

2023 T3 Week 07 Part 1

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
 to share—to copy, distribute and transmit the work
 to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Today’s Lecture

« Real-time systems (RTS) basics

* Types or RTS
» Basic concepts & facts

« Resource sharing in RTS
« Scheduling overloaded RTS
« Mixed-criticality systems (MCS)

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

Presented by Dr Anna Lyons

Work

» 2022-23, secure kernel team @ Apple

» 2019-22, platform team @ Ghost

» 2010-18 Research Engineer @ Trustworthy Systems
« 2007-2018 Tutor - OS, AOS, COMP19**

« 2010 summer intern @ Microsoft - Bing

« 2008-10 Part-time @ Atlassian

« 2007 summer ToR @ NICTA 2007-08

Education
« 2012-2018 PhD w/ Gernot
« 2006-11 B Sci (Computer Science) / BA (Philosophy)

© Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
=2

Presented by Dr Anna Lyons

Work at Trustworthy Systems

« Initial port of AOS to selL4 w/
Adrian Danis, then aarch64 +
pico tcp + nfsv3

« Shepherd AOS from nslu2 to
Imx6 then odroid c2

« PhD: MCS kernel extensions

| did AOS on the slug —> w/
OKL4

© Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

vvvvvv

G

Real-Time Basics

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

containment
structure

steam line

control
rods

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019~ CC BY 4.0 &

What's a Real-Time System? Aka. events

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals dictated by
the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the
system is dependent not only on the results of computations, but on the time

at which those results arrive. [Stankovic, IEEE Computer, 1988]
Issues:
 Correctness: What are the temporal requirements?
e Criticality: What are the consequences of failure?

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
el

Real Time — time isn’'t fungible

Fungible: replaceable by another identical item

Fungible Not fungible

Chocolate chip cookies [Human Beings

Memory (e.g RAM) The seconds after you
hit the brake

© Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

https://www.google.com/search?client=safari&sca_esv=575682614&rls=en&sxsrf=AM9HkKkm68K9oR3C_xqg6KTo5yPpzCYclQ:1698031567277&q=replaceable&si=ALGXSlYpmWhtmlIZKYHTCPXiYmMErKWJ3NFoN4QAM8b9KWiL2CEjW40pjPAEhA4SLyhcPPvkydf0Q2mzcRoColS3Yihprwgq_5xb1ILcQtQu5qSJULJx7d4%3D&expnd=1

10

Real-time = Real confusion

X Real-time Applications

Real-time apps are those that react to changes anywhere in a conne
X Real-time Processing

They actually mean “not batch processed”

Strictness of Temporal Requirements

* Hard real-time systems

» Weakly-hard real-time systems
* Firm real-time systems

» Soft real-time systems
 Best-effort systems

Strictness of temporal
requirements

11 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

ReaI'Ti me TaS kS Real-time tasks have deadlines

O e Usually stated relative to release time
* Frequently implicit: next release time

Period
]

f I

-
-
@)
o
1))
n
28
S

Q

Time

N
Deadline

void main(void) {

init(); // initialise system

Completion —

while (1) {
T ywait(); // timer, device interrupt, signal
12 ,dodob();

}
)

12 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Real Time # Real Fast

Combustion engine ignition 2.5 ms Catastrophic Engine damage
Industrial robot 5 ms Recoverable? Machinery damage
Air bag 20 ms Catastrophic Injury or death
Aircraft control 50 ms Recoverable Crash
Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality

13 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Example: Industrial Control
High speed PLC

Standard PLC Standard motion

control

Simple PLC High end motion
Simple drives control

Traffic lights Interrupt
Home automation reaction time

10s i1s 100ms 10ms 1ms 100pus 10us ius 100ns

14 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 Elﬂ UNSW

ssssss

Hard Real-Time Systems

e Safety-critical: Failure = death, serious injury
* Mission-critical: Failure = massive financial damage

e Deadline miss is catastrophic
e Steep and real cost function

Cost Deadline

Triggering
Event

Time

15 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Challenge: Execution-Time Variance

I
WCET/BCET

may be orders
of magnitude!

Longest observed time

|
* Data-dependent execution paths

* Microarchitecture (caches)

g Safe lower bound Safe upper bound
=
-
- BCET WCET
y
| Y
0 20 40 60 80 100

Execution time

16 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Weakly-Hard Real-Time Systems

Tolerate small fraction
of deadline misses

Most feedback control systems (incl life-support!)

Typically integrated with fault tolerance for HW issues

Control compensates for occasional miss
Becomes unstable if too many misses

Cost

Triggering
Event

17 COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Deadline

In practice, certifiers treat
critical avionics as hard RT

Time

© Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

vvvvvv

Firm Real-Time Systems

* Forecast systems
* Trading systems

Result obsolete if deadline
missed (loss of revenue)

Gain Deadline

Triggering
Event

Time

18 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

=]

VVVVVV

. Google realtime systems
Soft Real-Time Systems

Q Al [Images Q Shopping [2] Vi

About 2,340,000,000 results (0.69 seconds)

* Media players | 1
. . c . In computer science, real-time computirf §
Dead I Ine Miss u nde5| ra ble ® WEb services reactive computing describes hardware g
svstems subiect to a "rgal-time constraf
but tolerable, affects QoS

Cost Deadline

Cost

Triggering Time — T
Event Tardiness ''M€

19 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

VVVVVV

Best-Effort Systems

In practice, duration is

_ rarely totally irrelevant
No deadline

Cost

Triggering
Event

Time

20 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

el

Real-Time Operating System (RTOS)

: : : Requires analysis of
» Designed to support real-time operation .
) . . worst-case execution
 Fast context switches, fast interrupt handling time (WCET)
* More importantly, predictable response time

* Main duty is scheduling tasks to meet their deadline

Traditional RTOS is very primitive
* single-mode execution

* no memory protection RT vs OS terminology:
* inherently cooperative * “task” =thread
e allcode is trusted “job” =execution of thread

resulting from
event

21 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
el
=

22

Real-Time Scheduling

* Ensuring all deadlines are met is harder than bin-packing
« Reason: time is not fungible

Deadline
missed!

A: needs 1

slot every 3

B: needs 3

slots every 9

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Time

YYYYYY

Real-Time Scheduling

* Ensuring all deadlines are met is harder than bin-packing
« Time is not fungible

Terminology:

e Aset of tasks is feasible if there is a known algorithm that
will schedule them (i.e. all deadlines will be met).

e A scheduling algorithm is optimal if it can schedule all
feasible task sets.

23 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

P CYBNEX
o

Cyclic Executives

* Very simple, completely static, scheduler is just table
« Deadline analysis done off-line
* Fully deterministic

Drawback: Latency of event handling is hyper-period

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_&Q0);
wait_tick();
job_10Q);
wait_tick();
job_30);
wait_tick();

t t,

t

{

&

t

job_4(Q);

<

1

>

Hyper-period (inverse base rate)

24 COMP9242 2023 T3 W07 Part 1: Real-Time Systems

1

© Gernot Heiser 2019 — CC BY 4.0

UNSW

=7

Are Cyclic Executives Optimal?

» Theoretically yes if can slice (interleave) tasks
 Practically there are limitations:

« Might require very fine-grained slicing

« May introduce significant overhead

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_&Q0);
wait_tick();
job_10Q);
wait_tick();
job_30);
wait_tick();

t t, t] g |t

1 1 1 1

job_4(Q);

< >
Hyper-period (inverse base rate)

25 COMP9242 2023 T3 W07 Part 1: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0

UNSW

Gz

On-Line RT Scheduling

» Scheduler is part of the OS, performs scheduling decision on-demand
» Execution order not pre-determined
» Can be preemptive or non-preemptive

* Priorities can be
* fixed: assigned at admission time

» scheduler doesn’t change prios
« system may support dynamic adjustment of prios

« dynamic: prios potentially different at each scheduler run

26 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Fixed-Priority Scheduling (FPS)

* Classic L4 scheduling is a typical example:

« always picks highest-prio runnable thread
 round-robin within prio level
 will preempt if higher-prio thread is unblocked or time slice depleted

FPS is not optimal, i.e. cannot schedule some feasible sets

In general may or may not:
e preempt running threads

0 prio 255 . . .
L :\I\ : — i :\I\ —t * require unique prios

27 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
el

Rate Monotonic Priority Assignment (RMPA)

« Higher rate = higher priority: T: period
* T<T, = P>P, 1/T: rate
P: priority
U: utilisation

» Schedulability test: Can schedule task set with periods {T4... T} if

Assumes “implicit” — 1/
deadlines: release % U=2 C/Ti=n(2'"-1) RMPA is optimal for FPS

time of next job

U[%] 100 82.8 78.0 75.7 743 718 log(2)=69.3

28 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Rate-Monotonic Scheduling Example

RMPA schedulability bound is
sufficient but not necessary

WCET o
Task T P C UM
t, 20 3 10 50
t, 40 2 10 25
t, 80 1 20 25

100

29 COMP9242 2023 T3 W07 Part 1: Real-Time Systems

N " [

v v

blocked preempted q

© Gernot Heiser 2019 — CC BY 4.0

Deadline
-----/--
t, 3 5 20 20 25 5

t, 2 8 o@ 27 @

t, 1 15 50 9 30 0

Another RMPA Example

t Release
3 I

t

- iifiaiii
Pl AN

1 I 1 | 1 | 1 | | 1 | 1 ’

30 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CCBY 4.0 ##s) UNSW

YYYYYY

1

Dynamic Prio: Earliest Deadline First (EDF)

» Job with closest deadline executes
» priority assigned at job level, not task (i.e. thread) level

» deadline-sorted release queue

« Schedulability test: Can schedule task set with periods {T,... T} if

U=> C/T, =1
Preemptive EDF is optimal

31 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

FPS vs EDF
Ve R ([| .

b § i | i = | mm
tl‘: ' -

_fl|f§1+I11|l|.'|fl|f.'|fi|:l,

EDF 4, l

|| |
.|.|11f,1f.1.,

32 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

FPS vs EDF

RMPA £, | e = |

tz§§|=§§‘ |‘=’:\é

.J.f be o ot

Misses
deadline!

t, 2 8 30 20 27 12
t, 1 15 40 40 37.5 0
89.5
33 COMP9242 2023 T3 W07 Part 1: Real-Time Systems

YYYYYY

34

FPS vs EDF

RMPA t, | ; I

Misses
deadline!

EDF 4, l

t,

'
'
' .
' .
‘' .
' Ll
1]
' '
‘' .
‘' .
‘] ‘
" '
: - :
¢ ' :
' H : M
' N H .
H .

tllfl 1f1|,11

¥

I

R
f.ll|ll,

EDF
schedules

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

YYYYYY

Resource Sharing

35 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

Challenge: Sharing

Vehicle Shared Data
Control (waypoints etc)

Navigation

37

Critical Sections: Locking vs Delegation

Client, 3

Lock()
Unlock()

Shared
Buffer

Lock()
Unlock()

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Receive(
or Poll()

Send()

Receive()
or Poll()

RT terminology:
Resource

© Gernot Heiser 2019 - CCBY 4.0 #%

YYYYYY

(sl Implementing Delegation

Client,

O

Cllent2 ? L

serv_local() { client() { serv_remote() {
while (1) {
Wait(ep); while (1) {

while (1) { Call(ep); Wait(not_rq);
/* critical sectiori/ / /* critical section */
ReplyWait(ep); / Signal(not_ry); Signal(not_ry);
} / }
} Wait(not_rq);
S S —"
}

38 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 s UNSW

YYYYYY

39

Problem: Priority Inversion

* High-priority job is blocked by low-prio for a long time
* Long wait chain: t,2>t,>t;>t,
* Worst-case blocking time of t, bounded by total WCET: C,+C,+C;

i Blocked!

Critical
t. Section
4

« I, o

: Preempted

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

40

Solution 1: Priority Inheritance ("Helping”)
t,

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

Solution 1: Priority Inheritance ("Helping”)
If t; blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P,

t

t3 3 3

t, l

t

41 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P,

Long blocking

Transitive chains!
Inheritance

t5

t,

t3

t, p

b

42 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

43

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P, Priority Inheritance:

_ when t, releases the resource, its priority © Easy to use
» Potential deadlocks
« Complex to implement

« Bad worst-case blocking times

Deadlock!

ts
t 4
N N

s 3 AN

\
t

A

h -

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Solution 2: Priority Ceiling Protocol (PCP)

 Aim: Block at most once, avoid deadlocks

 |[dea: Associate ceiling priority with each resource
 Ceiling = Highest prio of jobs that may access the resource
» On access, bump prio of job to celllng]

Immediate prio ceiling
protocol (IPCP)

EmE
IPCP

2

VVVVVV

44 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

IPCP vs PIP

V. IPCP

S T T T T N N N Y Y

45 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

ICPC Implementation With Delegation

Client, ?
3 _@@ i Immediate Priority Ceiling:
Client, 3 » Requires correct prio config

P.C Sy « Deadlock-free
Ps = max (Pq, Pp) + 1 : » Easy to implement
« (Good worst-case blocking
EDF: Floor times

of deadlines

Each task must declare all resources at admission time
« System must maintain list of tasks using resource
« Defines ceiling priority

Easy to enforce
with caps

46 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 U“N§EW

@ =14 Comparison of Locking Protocols

47

Original Priority-
Ceiling Protocol

Implementation Complexity

Immediate Priority-
Ceiling Protocol

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

Priority-Inheritance

Protocol

Non-Preemptible
Critical Sections

Priority Inversion Bound

© Gernot Heiser 2019 — CC BY 4.0

YYYYYY

Scheduling Overloaded
RT Systems

023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Gz

49

Naive Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:
« All WCETs known
* All jobs complete within WCET

» Everything is trusted Which job
will miss its
More realistic: Overloaded system: deadline?

» Total utilisation exceeds schedulability bound
« Cannot trust everything to obey declared WCET

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
R

Overload: FPS

Task P C T D Ul
t, 3 5 20 20 25

t, 2 12 20 20 60 New
t, 1 15 50 50 30
115

50 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CCBY 4.0 ##s) UNSW

YYYYYY

Overload: FPS

t1l‘. ﬁ|f|||1|7||,_

51 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 s UNSW

vvvvvv

52

Overload: FPS vs EDF
t; | i I I

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

vvvvvv

53

Overload: EDF

. »
. d 4 '
. - ' C . ' '
’ ’ ' N ’ ' '
L ’ . L . M
. . ' . . . '
. '
.] . . '
. . L . M
. . '
. . '
. . M
. . M

| ik I “EDF béh.aves

t, e L e b i L ¢ J i 1 g I% badly under
overload”

‘ | ' | |

T — B §

l { l L l ' l L l L l L l 1 l 1 l 1 l L -

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

VVVVVV

Mixed-Criticality Systems

54 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

Mixed Criticality Systems
g ' , N . |
|

: - . 2

55 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Mixed Criticality

Need temporal

isolation!

NW driver must preempt control loop

* ... to avoid packet loss
 Driver must run at high prio (i.e. RMPA)
* Driver must not monopolise CPU

Runs frequently but for

=] 1
uns every 100 ms short time (order of us)

for a few millisecods

NW
interrupts

Sensor Control
readings loop

NW

driver ? D

56 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW
e

YYYYYY

57

Mixed Criticality

NW driver must preempt control loop
* ... to avoid packet loss

 Driver must run at high prio (i.e. RMPA)
* Driver must not monopolise CPU

Certification requirement:
More critical components must

not depend on any less critical
ones! [ARINC-653]

COMP9242 2023 T3 W07 Part 1: Real-Time Systems

€

Critical system certification:

expensive
conservative assumptions

« eg highly pessimistic WCET .

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:
« Temporal isolation, to force jobs to adhere to declared WCET

» Mechanisms for safely sharing resources across criticalities

58 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Remember: Delegation of Critical Sections

Client may frequently
invoke server without
using much of its own
time!

Running

N\

Client, ?

N\
oo
Client, ?

-l Server may run on

clients time slice, its
No accurate own or a combination

Running

accounting
for time

59 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0) UNSW

(seld MCS Model: Scheduling Contexts

Classical thread attributes MCS thread attributes :
o y for time

* Priority

¢ Scheduling context capability

@’ /

Scheduling context object
« T: period
e C:budget(=T)

Capabilit

* Priority
* Time slice - ¢ ¢

Limits CPU
access!

Per-core SchedControl capability
conveys right to assign budgets

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CCBY 4.0 ##s) UNSW

(seld Delegation with Scheduling Contexts

Passive servers
Running support migrating
thread model!

Client is charged

for server’s time
Y Passive Server

Server runs on client’s
scheduling context

61 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 ::

ssssss

Mixed-Criticality Support

For mixed-criticality systems (MCS), OS must provide:
« Temporal isolation, to force jobs to adhere to declared WCET

Solved by scheduling 1
contexts

» Mechanisms for safely sharing resources across criticalities

What if budget expires while
~ shared server executingon
? ~ Low’s scheduling context?

:)
@ Passive Server
o -
Y ,/

Lo Clienty =2 G
: High - -
Crit: Hig ? L

62 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

VVVVVV

Crit: L Client,
re. LOW -a

Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

* Provide emergency budget to leave critical section

« Cancel operation & roll-back server

« Reduce priority of low-crit client (with one of the above)
 Implement priority inheritance (if you must...)

Arguable not ideal: better prevent timeout
completely

RFC-14: Adding budget limit thresholds to endpoints
for SC Donation

63 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

=)
VVVVVV
e

(seld Isn’'t a Fixed-Prio Scheduler Policy?

Implementing scheduling policy at user level

Scheduler waits for client timeout

Client runs for Client,
period, then time-

faults (or explicitly Q Timeout EP User-level
yields by calling EP) C AN\ Scheduler

Client,
Q Scheduler runs
client by replying

64 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 - CCBY 4.0 #%

65

User-Level EDF Scheduler Performance

preemptive LITMUS

5
Number of threads

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

ssssss

66

WCET Analysis

Control
Flow
Graph

Program
binary

Micro-
architectu

re model F

Loop
bounds

A\

Pessimism!

Integer
linear
equations

Infeasible
path info

Scalability!

© Gernot Heiser 2019 — CC BY 4.0

VVVVVV

@seld WCET Analysis on ARM11

to under-
specified

s

0. 99.8 199.5 299.3 g99.

i Observed
2 Computed

67 COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

68

Presented by Dr Anna Lyons

Internship!

https://jobs.apple.com/en-sg/details/200509672/secure-kernel-
engineering-intern?team=SFTWR

search “secure kernel engineering intern apple”

Contact
linked in: https://www.linkedin.com/in/annamlyons/

email: anna.lyons@apple.com

© Gernot Heiser 2019 — CC BY 4.0 UNSW

[:::é] VVVVVV
B

https://jobs.apple.com/en-sg/details/200509672/secure-kernel-engineering-intern?team=SFTWR
https://jobs.apple.com/en-sg/details/200509672/secure-kernel-engineering-intern?team=SFTWR
https://www.linkedin.com/in/annamlyons/
mailto:anna.lyons@apple.com

69

Fun links

For the dark nights of AOS debugging: “The Night Watch”
https://www.usenix.org/system/files/1311_05-08_mickens.pdf
Real world priority inversion: NASA

https://www.rapitasystems.com/blog/what-really-happened-
software-mars-pathfinder-spacecratft

Real world mess: (When real time is wrong) Toyota breaking

https://www.transportation.gov/briefing-room/us-department-
transportation-releases-results-nhtsa-nasa-study-unintended-
acceleration

COMP9242 2023 T3 W07 Part 1: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

UNSW

https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration
https://www.transportation.gov/briefing-room/us-department-transportation-releases-results-nhtsa-nasa-study-unintended-acceleration

