COMP9242 Advanced Operating Systems

Australia’s
Global
University

. School of Computer Science & Engineering
S

2023 T3 Week 05 Part 1

L4-embed.

Microkernel Design & Implementation
The 25-year quest for the right API X

@GernotHeiser

ﬂﬂﬂﬂﬂ

P4 — PikeOS

['o3 04 1 o5 [ 96 [ 97 98 [ 99 [ 00 o1 o2 03 Toa Tos Toe [ 07 Tos8 oo T10 T414 T12 T3 =



Copyright Notice
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L4 Microkernels — Deployed by the Billions
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Today’s Lecture

 Towards real microkernels: The history of L4 microkernels
* Implementation highlights

* Virtualisation: Microkernel as hypervisor

* Lessons and principles
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L4: The Quest for a
Real Microkernel
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1993 “Microkernel”: IPC Performance

[us]
Culprit: 400 Mach
Cache footprint i486 @
[Liedtke’95] 300 50 MHz
115 ps 200
L4
SYVE
raw copy
0 2000 4000 6000
Message Length [B]
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The Microkernel Minimality Principle

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting
competing implementations, would prevent the
implementation of the system’s required
functionality. [Liedtke, SOSP’95]

COMP9242 2023 T3 W05 Part 1: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

vvvvvv



7

L4: 25 Years High Performance Microkernels

First L4 kernel
with capabilities

iOS secure

enclave

API Inheritance
‘>

Code Inheritance

L4/MIPS

Qualcomm

modem cﬂp\si/\

L4/Alpha

Codezero

L3 > L4 “x” Hazelnut Pistachio

UNSWI/NICTA
GMD/IBM/Karlsruhe

o |

Commercial Clone P4 — PikeOS

Fiasco Fiasco.0OC
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Microkernel Evolution

First generation
Mach ['87], Chorus

Memory Objects
Low-level FS,
Swapping
Devices

Kernel memory
Scheduling

180 syscalls, 100 kSLOC
100 us IPC

Second generation

L4 ['95], PikeOS,
INTEGRITY, Minix 3,
QNX

Kernel memory
Scheduling

~ 7 syscalls, ~ 10 kSLOC
~1 us IPC (L4)
~ 10 ys IPC (others)
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Third generation
selL4 [09]

Memory-
mangmt
library

Scheduling

~3 syscalls, ~10 kSLOC
0.1-0.3 ps IPC (faster HW)
Capabilities

Design for isolation
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L4 1-Way IPC Performance Over the Years

Name
Original
Original
L4/MIPS
L4/Alpha
Hazelnut
Pistachio
OKL4
NOVA
selL4
selL4
selL4
selL4

Year
1993
1997
1997
1997
2002
2005
2007
2010
2013
2018
2018
2020

Processor

1486

Pentium

MIPS R4700

Alpha 21064

Pentium 4

Itanium

Arm XScale 255

x86 i7 Bloomfield (32-bit)
ARM11

x86 i7 Haswell (64-bit)
Arm Cortex A9

RISC-V HiFive (64-bit, no ASID)
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MHz
50
160
100
433
1,400
1,500
400
2,660
532
3,400
1,000
1,500

Cycles
250
121

86

45
2,000
36
151
288
188
442
303
500

MS
5.00
0.75
0.86
0.10
1.38
0.02
0.64
0.11
0.35
0.13
0.30
0.33
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Independent Comparison [Mi et al., 2019]

IPC RT latency (cycles) 986 2717 8157
Mand. HW cost (cycles) 790 790 790
Abs. overhead (cycles) 196 1972 7367
Rel. overhead (%) 25 240 930

Hardwgre SW overheads
cost dominates dominate

Source: Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast
and Secure Inter-Process Communication for Microkernels”, EuroSys, April 2019
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Operation 1-way
SYSCALL 82
SWAPGS 2x26
Switch PT 186
SYSRET 75
Total 395

RT

164
104
372
150
790
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Minimality: Source Lines of Code (SLOC)

Original i486

L4/Alpha Alpha 0k 0k
L4/MIPS MIPS64 6.0 k 0k
Hazelnut x86 10.0 k 0 k
Pistachio x86 Ok 224k
L4-embedded ARMv5 7.6 k 0k
OKL4 3.0 ARMv6 15.0 k 0k
Fiasco.OC x86 Ok 36.2k

sel4 ARMv6 9.7 k 0k
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Issues With 2G Microkernels

L4 solved microkernel performance [Hartig et al, SOSP’97]

* Left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management

» Global thread name space = covert channels [Shapiro’03] |
Caps &

* Threads as IPC targets = insufficient encapsulation endpoints

* No delegation of authority = impacts flexibility, performance |

, seL4 memory
Sindgle kernel memory pool = DoS attacks TR

model

. . . |
|- Unprincipled management of time- selL4 scheduling
contexts
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Implementation Highlights
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@14 IPC Fastpath: Send Phase of Call
BRI -5 veene - = o - > Waittoreceie

u Save minimal state, get args

= 150 cycles

2) Identify destination on Arm A9

= Cap lookup;
get endpoint; check queue
3) Getreceiver TCB
= Check receiver can still run
u Check receiver priority is 2 ours

Direct process switch:
* no scheduler invocation
e SC donation

4)  Mark sender blocked and enqueue
= Block caller on reply object
= Donate scheduling context

5) Switch to receiver
u Copy virtual message registers

Wait to receive

6) Epilogue (restore & return)
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L4 Scheduler Optimisation: Lazy Scheduling

thread_t schedule() {
foreach (prio in priorities) { Problem: Unbounded
foreach (thread in runQueue[prio]) { scheduler execution time!
if (isRunnable(thread))
return thread;
else
schedDequeue(thread);

Idea: leave blocked
threads in ready

}
}

return idleThread; queue, scheduler
} ® cleans up
O
*  Frequent blocking/unblocking in IPC- Client Server
based systems Call() ReplyWait()

e Many ready-queue manipulations

BLOCKED
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Scheduler: Benno Schedu

thread_t schedule() {
foreach (prio in priorities) {
, - CoRio+
if (thread=head(run@ueue[prio]))

return thread;
=alge
e A L L At R e AR S
}
}
return idleThread; O
) o ©
*  Frequent blocking/unblocking in IPC- Client
based systems | | Call()
e Many ready-queue manipulations
BLOCKED
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ing

Only current thread
needs fixing up at
preemtion time!

Idea: Lazy on
unblocking instead

on blocking




Scheduler Optimisation: Direct Process Switch

* Sender was running = had highest prio

* If receiver prio > sender prio = run receiver Note:

*  Only works if server can run
on client’s time slice
*  MCS passive server with

scheduling-context donation
e Donate on Call()

Idea: Don’t invoke
scheduler if you know
who’ll be chosen

\

S Unprincipled time- * Return on ReplyWait()
O slice donation in
® earlier L4/selL4
. OFrequent context switches in .
IPC-based systems CallO ReplyWait()
e Many scheduler invocations Client
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Fastpath Coding Tricks

Common case: 0

slow =  cap_get_capType(en_c) !=cap_endpoint_cap | |
lcap_endpoint_cap_get_capCanSend(en_c);
if (slow) enter_slow_path();

 Reduces branch-prediction footprint Common case: 1
» Avoids mispredicts, stalls & flushes
« Uses ARM instruction predication (pre-v8)

« Slightly increases slow-path latency (very slightly)
* insignificant compared to basic slow-path cost
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How About Real-Time Support?

» Kernel runs with interrupts disabled

* No concurrency control = simpler kernel

« Easier reasoning about correctness
» Better average-case performance

How about long-
running system calls?

Lots of
concurrency in
kernel!
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Incremental Consistency Paradigm

Kernel 3 O(1) Kernel

entry operation exit

Check pending b g W
interrupts ort interrupts

restart later
0(1) 0(1) O(1)
operation ° . operation operation
9 Long operation

Disable
interrupts

Good fit for
event kernel!

Consistency,
Restartability,
Progress

L No concurrency in (single-core) kernel! J
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@ seld Example: Destroying IPC Endpoint

Endpoint
Server

Message
gueue
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¢ sela Difficult Example: Revoking Badge

Server
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Virtualisation:
Microkernel as a Hypervisor
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Microkernel as Hypervisor (NOVA, selL4)

ARM x86

One per VM,
cannot break

isolation!
VM Non-Root

Root
Ring 3 VMM
Syscall Exception|IPC
Ring O - selL4
Hypercall
purpose
COMP9242 2023 T3 W05 Part 1: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW
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Hypervisors vs Microkernels

» Both contain all code executing at highest privilege level
 Although hypervisor may contain user-mode code as well

* privileged part usually called “hypervisor” Difference to
» user-mode part often called “VMM” traditional
» Both need to abstract hardware resources terminology!

» Hypervisor: abstraction closely models hardware
« Microkernel: abstraction designed to support wide range of systems

To abstract:
CPU

Memory
1/O
Communication

COMP9242 2023 T3 W05 Part 1: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0
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What IS the leferenCe'P Just page tables

in disguise

Memory Virtual MMU (vMMU) Address space Just kernel-scheduled
CPU irtual CPU (vCPU) __ Thread or activities
scheduler activatio
/O * Simplified virtual device  *IPC interface to Real
* Driver in hypervisor user-mode driver Difference?
irtual IRQ (vIRQ) * Interrupt IPC
Communication irtual NIC, with driver ’ High-performance

\

Minimal
overhead,

and network stack message-passing IPC

Custom API

e Similar abstractions

Modelled on HW,
 Optimised for different Re-uses SW

use cases

UNSW

SYDNEY
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Closer Look at I/0 and Communication

VM, Driver Huge
VM TCB!
S8 Virtual
Driver -

Device
Driver
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@:el4 Integration: VMs and Native

Legacy SW

Virtual
Driver

Driver
M
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Lessons & Principles
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Reflecting on Lessons of 24 Generation

Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control
» Poor/non-existent control over kernel memory use
Inflexible & costly process hierarchies (policy!)
Arbitrary limits on number of address spaces and threads (policy!)
Poor information hiding (IPC addressed to threads)
Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:
« Communication, incl bulk data copy
* Synchronisation
* Timed wait
 Memory management — sending mappings
» Scheduling — time-slice donation
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Synchronous |IPC issues

* Sync IPC forces multi-threaded code or select()!
* Also poor choice for multi-core

Thread,
Running Blocked
Worker_Th I0_Th
? Running Blocked Blocked  Running
Unblock (IO_Th)  ...... Call (10,msg)
Not 3 ‘
? generally ? Sync(Worker_Th)
possible
Sync(lO_Th) ... |

vvvvvv
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L4 “Long” IPC

Sender address space

Kernel copy

, Page fault!
Receiver address space

=]
.
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Traditional L4: Recursive Address Spaces

Issues:

e Complex mapping DB

* Exhaustion of kernel memory
e Complex IPC semantics

Mappings are
page > page,
~ sent by IPC

Magic initial AS to
anchor recursion
(map of PM)
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L4 Timeouts

Limit IPC
blocking time

Thread,
Running Blocked
Timed

? wait

Rev(NIL_THRD, delay)

v~ ‘
oD S
/)

Thread, Thread,
Running Blocked Blocked  Running
Send (dest, msg) ?
7S
1 D ¢ Wait (src, msg)
) N Kernel copy
? ? R
u@);
¢

* No theory/heuristics for determining timeouts
* Typically server reply with zero T.O., else oo
 Added complexity

 (Can do timed wait with timer syscall
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Design Principles

 Fully delegable access control

* All resource management is subject to user-defined policies
» Applies to kernel resources too!

* Performance on par with best-performing L4 kernels
 Prerequisite for real-world deployment!

« Suitability for real-time use
* Important for safety-critical systems Largely in line with

« Suitable for formal verification traditional L4 approach!
* Requires small size, avoid complex constructs
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A Thirty-Year Dream!

Opcrating R. Stockton Gaines
Systems Editor

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Angeles

Data Secure Unix, a kernel structured operating sys-
tem, was constructed as part of an ongoing effort at
UCLA 1o develop procedures by which operating systems
can be produced and shown secure. Program verification
methods were extensively applied as a constructive
means of de ing security enfi

Here we report the specification and verification ex-
perience in producing a secure operating system. The
work represents a significant attempt to verify a large-
scale, production level software system, including all as-
pects from initial specification to verification of imple-
mented code.

Key Words and Phrases: verification, security,
operating systems, protection, programming methodolo-
gy, ALPHARD, formal specifications, Unix, security
kernel

CR Categories: 4.29, 4.35, 6.35

COMP9242 2023 T3 WO05 Part 1: Microkernel Design & Implementation

1. Introduction

Early attempts 1o make operating systems secure mere-
ly found and fixed flaws in existing systems. As these
efforts failed, it became clear that piecemeal alierations
were unlikely ever 10 succeed (200, A more systematic
method was required, presumadly one that controlled the
system’s design and implementation. Then secure opera-
tion could be demonstrated in a stronger sense than an in-
genuous claim that the last bug had been eliminated, par-
ticularly since production systems are rarely static, and er-
rors casily introduced.

Our research seeks 10 develop means by which an
operating sysiem can be shown data secure, meaning that
direct access to data must be possible only if the recorded
protection policy permits it. The two major components
of this task arc: (1) developing system architectures that
minimize the amount and complexity of software involved
in both protection decisions and enforcement, by isolating
them into kermel modules; and (2) applying cxtensive
verification methods to that kernel software in order to
prove that our of data security criterion is met. This paper
reports on the lauer part, the verification experience.
Those interested in architectural issues should see (23]
Related work includes the PSOS operating system project
at SRI [25) which uses the hicrarchical design methodolo-
gy described by Robinson and Levitt in [26], and efforts
to prove communications software at the University of
Texas [31].

Every verification step, from the development of top-
level specifications to machine-aided proof of the Pascal
code, was carricd out. Although these steps were not
completed for all portions of the kernel, most of the job
was done for much of the kernel. The remainder is clear-
ly more of the same. We therefore consider the project
essentially complete. In this paper, as cach verification
step is discussed, an estimate of the completed portion of
that step is given, together with an indication of the
amount of work required for completion. One should
realize that it is csscntial to carry the verification process
through the steps of actual code-level proofs because most
sccurity flaws in rcal systems arc found at this level [20).
Security flaws were found in our system during
verification, despite the fact that the implementation was
wrilten carcfully and tested extensively. An example of

Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data musi be possible only if the recorded
protection policy permits it. The two major components

e — L ————
Communications February 1980
of Volume 23
the ACM Number 2
— T
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Slashdot is powered by your subm

FLAWS in the code, or “kernel”, that just mathematics, and you can
sits at the heart of modern computers  reason about them mathematically,”

leave them prone to occasional says Klein.
researchers used an executable malfunction and vulnerable to attack His team formulated a model with
the Isabelle theorem prover to ge by worms and viruses. So the more than 200,000 logical steps
matches the executable and the development of a secure general- which allowed them to prove that the
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