School of Computer Science & Engineering

UNSW

SYDNEY

COMP9242 Advanced Operating Systems

Australia’s
Global
University

2023 T3 Week 01 Part 2
Introduction: Using selL4

@GernotHeiser -\‘v |

IRQControl

IRQHandler

Get(usb)

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
 to share—to copy, distribute and transmit the work
 to remix—to adapt the work

* under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
3]

Today’s Lecture

» seL4 Mechanisms
« Capabilities
« Address spaces & memory management
* Threads
* Interrupts and Exceptions

» selL4 System Design Hints

Aim: You should then be ready to start the project

vvvvvv

COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
]

3

selL4 Mechanisms

COMP9242 2023 T3 W01-2: Using selL 4

© Gernot Heiser 2019 — CC BY 4.0

@:W Derived Capabilities

* Badging is an example of capability derivation

» The Mint operation creates a new, less powerful cap
« Can add a badge: Mint (€=, V) = =

« Can strip access rights, eg RW—R/O RCGJ;npesmabrzr:
 Granting transfers caps over an Endpoint kernel objects!

 Delivers copy of sender’s cap(s) to receiver

« Sender needs Endpoint cap with Grant permission

* Receiver needs Endpoint cap with Write permission
» else Write permission is stripped from new cap

* Retyping: fundamental memory management operation
 Details later...

4 COMP9242 2023 T3 W01-2: Using selL 4 © Gernot Heiser 2019 — CC BY 4.0

vvvvvv

s Capability Derivation

5

. Copy, Mint, Mutate, Revoke
Mint@=, dest, Gz, src, rights, V) are invoked on CNodes

CNode cap

must allow &=l
modification ey

Copy takes a CNode cap as destination
 Allows copying between CSpaces
 Alternative to IPC cap transfer

COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
]

S sYDNEY
(e

Cw» selL4 System Calls [1/3]

- selL4 has 11 syscalls: That’s why | earlier said

» Yield(): invokes scheduler
« doesn’t require a capability!
« Send(), Recv() and variants/combinations thereof
* Call(), ReplyRecv()
* Send(), NBSend()
* Recv(), NBRecv(), NBSendRecv()
* Wait(), NBWait(), NBSendWait()
* Call() is atomic Send() + reply-object setup + Wait()
» cannot be simulated with one-way operations!
* ReplyRecv() atomic is NBSend() + Recv()

“approximately 3" @

6 COMP9242 2023 T3 W01-2: Using selL4 © Gernot Heiser 2019 — CC BY 4.0

Cw» selL4 System Calls [2/3]

7

» Endpoints support all 10 Send/Receive variants

* ROs support:
« NBSend ()
« NBSendRecv()

* Notifications support:
« NBSend() — aliased as Signal()
« Wait()
« NBWait() — aliased as Poll()

COMP9242 2023 T3 W01-2: Using selL 4

sasd

(&)

But remember,

you should just
use Call() and
ReplyRecv()

© Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

Cw» selL4 System Calls [3/3]

» Endpoints support all 10 IPC variants

* ROs support NBSend (), NBSendRecv()
* Notifications support NBSend(), Wait(), NBWait

» Other objects only support Call()
« Appear as (kernel-implemented) servers
« Each has a kernel-defined protocol

» operations encoded in message tag
» parameters passed in message words

Most of this is hidden
behind “syscall” wrappers

8 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
2

seL4 Memory-Management Principles

(@)
A

o

 Memory (and caps referring to it) is fyped:
* Untyped memory:

* unused, free to Retype into something useful

* Frames:
* (can be) mapped to address spaces, no kernel semantics

* Rest: TCBs, address spaces, CNodes, EPs, ...

 used for specific kernel data structures

« After startup, kernel never allocates memory!
 All remaining memory made Untyped, handed to initial address space

« Space for kernel objects must be explicitly provided to kernel
* Ensures strong resource isolation

« Extremely powerful gun for shooting yourself in the foot!
* We hide much of this behind the cspace and uf allocation libraries

9 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
]

~ SYDNEY

@!W CSpace Operations

10 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0

11

selL4 Mechanisms

Address Spaces and Memory Management

COMP9242 2023 T3 W01-2: Using selL 4

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

@!W seL4 Memory Management Approach

12

Resources fully
delegated, allows
autonomous
operation

COMP9242 2023 T3 W01-2: Using selL 4

Addr

Strong isolation,
No shared
kernel resources

Resource Manager

RM
Data

init Task = Global Resource Manager

Resource Manager

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

0

Memory Management Mechanics: Retype

Cwo

(@)
A

§
3

Note: Retype has
page granularity!
Retype (Frame, 2°)
Retype (CNode, 2™, 21)
Retype (TCB, 2»)

W r,w

Mins (r) Revoke() ¢
== EEE I o

13 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

vvvvvv

14

ﬁ selL4 Address Spaces (VSpaces)

* Very thin (arch-dependent) wrapper of hardware page tables

« Arm & x86 similar (32-bit 2-level, 64-bit 4-5 level)

« Arm 64-bit ISA (AArch64):

 page global directory (PGD)
« page upper directory (PUD)
« page directory (PD)

« page table (PT)

* PGD object represents VSpace:
» Creating a PGD (by Retype)
creates the VSpace
» Deleting PGD deletes VSpace

COMP9242 2023 T3 W01-2: Using selL 4

PD

]
w9

PageTable_Map(PD)

PT,

\

PT, Page_Map(PTR)

vvvvvv

© Gernot Heiser 2019 — CC BY 4.0 UNSW

ﬁ Address Space Operations

sel.4_Word paddr = O;
ut_t *ut =ut_alloc_4k_untyped(&p_addr);

Poor API sel.4_CPtr frame = cspace_alloc_slot(&cspace); Cap to top-level
- err = cspace_untyped_retype(&cspace, ut->cap, fram- aqge table
choice! seL4_ARM_SmallPageObject, seT *__ ugee pag

err = map_frame(&cspace, frame, pgd, v_addr,
seL4_AllRights, seL.4_Default_VMAttributes);

Each frame mapping has:
 virtual_address, phys_address, address_space and frame cap
« address_space struct identifies the level 1 page_directory cap

* you need to keep track of (frame, PD, v_addr, p_addr)!

sel4_ARCH_Page_Unmap(frame); Poor API
cspace_delete(&cspace, frame); choice!
cspace_free_slot(&cspace, frame);

ut_free(ut, seL.4_PageBits);

15 COMP9242 2023 T3 W01-2: Using selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

A Multiple Frame Mappings: Shared Memory

16 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 - CCBY 4.0 [#s) UNSW
B

VVVVVV

17

selL4 Mechanisms

COMP9242 2023 T3 W01-2: Using selL 4

© Gernot Heiser 2019 — CC BY 4.0

3 Threads

* Theads are represented by TCB objects

- They have a number of attributes (recorded in TCB):

PGD reference , :
*\/Space: a virtual address space, can be shared by multiple threads
-~ CSpace: capability storage, can be shared Invoked by kernel

CNode reference: ° Fault endpoint and timeout endpoint upon exception

root of CSpace IPC buffer (backing storage for virtual message registers)

stack pointer (SP), instruction pointer (IP), general-purpose registers

Scheduling priority and maximum controlled priority (MCP)

« Scheduling context: right to use CPU time

These must be explicitly managed
* we provide examples
« you probably don’t need to deal with scheduling parameters

18 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

G

3 Threads

Creating a thread:
« Obtain a TCB object

 Set attributes: Configure()
 associate with VSpace, CSpace, fault EP, define IPC buffer

« Set scheduling parameters
« priority, scheduling context, timeout EP (maybe MCP)

« Set SP, IP (and optionally other registers): WriteRegisters()

Thread is now initialised

* if resume_target was set in call,
thread is runnable

* else activate with Resume()

19 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

|/ SYDNEY
)

3 Creating a Thread in Own AS and CSpace

20 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 - CCBY 4.0 [#s) UNSW
B

SSSSSS

3 Threads and Stacks

« Stacks are completely user-managed, kernel doesn’t care!
« Kernel only preserves SP, IP on context switch

 Stack location, allocation, size must be managed by userland

» Beware of stack overflow!
« Easy to grow stack into other data Debugging

» Pain to debug! nightmare!!
» Take special care with automatic arrays!

FOA
int buf[10000];
Recommend leaving page -
above top of stack unmapped! —— I Stackz‘

21 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
G

22

3 Creating a Thread in New AS and CSpace

PageGlobalDirectoryObject

new_cpace

new_cspace.root

COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0

SSSSSS

; (™ sel4 Scheduling (MCS kernel)

23

« 256 hard priorities (0—255), strictly observed

* The scheduler will always pick the highest-prio runnable thread

* Round-robin within priority level

« Kernel will never change priority (but user can do with syscall)

» Thread without scheduling context or budget is not runnable
« SC contains budget. when exhausted, thread removed from run queue
« SC contains period: specifies when budget is replenished
« Budget = period: Operates as a best-effort time slice (round robin)

0

prio

COMP9242 2023 T3 W01-2: Using selL 4

255

Aim is real-time perfor-

mance, not fairness!

 Can implement fair
policy at user level

© Gernot Heiser 2019 — CC BY 4.0 UNSW

|/ SYDNEY
)

24

selL4 Mechanisms

COMP9242 2023 T3 W01-2: Using selL 4

© Gernot Heiser 2019 — CC BY 4.0

25

Exception types:

3 Exception Handling

invalid syscall .
« eg for instruction emulation, virtualisation e

capability fault .
« cap lookup failed or found invalid cap

page fault

» address not mapped

* maybe invalid address

* maybe grow stack, heap, load library...
architecture-defined

« divide by zero, unaligned access, ...
timeout

« scheduling context out of budget

COMP9242 2023 T3 W01-2: Using selL 4

On exception:

kernel sends message to fault EP
pretends to be from faulter
replying will restart thread

; Fault
3 handler

Fault EP

has its own
fault endpoint

© Gernot Heiser 2019 — CC BY 4.0 UNSW
2

) SYDNEY
(e

}{ { ' ‘ Interrupt Management

2 special objects for managing and acknowledging interrupts:

 Single TRQControl object
« single IRQControl cap provided by kernel to initial VSpace
 only purpose is to create IRQHandler caps

» Per-IRQ-source IRQHandler object
* interrupt association and dissociation
* interrupt acknowledgment

- edge-triggered flag e \ Y S cush)
- et(us
- /
/ i IRQHandler
o~ _,

26 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
ol

S0

vvvvvv
[

}W? Interrupt Handling

IRQHandler cap allows driver to bind Notification to interrupt

 Notification is used to receive interrupt
« IRQHandler is used to acknowledge interrupt

IRQHandler

® Q / ; SetNotification(notification)

l"
-
Ve

Wait(notification)
Ack(handler)

sel.4_CPtr irq = cspace_alloc_slot(&cspace);
Unmasks IRQ sel.4_Error err = cspace_irqg_control_get(&cspace, irq, sel.4_CapIRQControl,
irq number, true_if edge_triggered);
sel.4_TRQHandler_ SetNotification(irq, notification);
selL4_TRQHandler_Ack(irq);

27 COMP9242 2023 T3 W01-2: Using selL 4 © Gernot Heiser 2019 — CC BY 4.0

vvvvvv

28

3 Device Drivers

* In seL4 (and all other L4 kernels) drivers are usermode processes

* Drivers do three things:
« Handle interrupts (already explained)
« Communicate with rest of OS (IPC + shared memory)
» Access device registers

 Device register access (Arm uses memory-mapped 10)
« Have to find frame cap from bootinfo structure

- Map the appropriate page in the driver’s VSpace Magic device
register access

device_vaddr = sos_map_device(&cspace, OxA0000000, BIT(seL4_PageBits));

*((void *) device_v_addr=..,;

COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

|/ SYDNEY
)

selL4 System Design Hints

o

29 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

~ SYDNEY
)

PS on Reply Objects

. ep
Client o~ @‘ Cop Server
\ Cwp

Client

Call(ep, args)

Kernel sets up reply channel in RO

* overwrites previous RO state

* = need to have multiple ROs
to support concurrent long-
running client requests!

30 COMP9242 2023 T3 W01-2: Using seL4

ro

Kernel

Server
ReplyRecv(ro,ep,8args)

block client on RO
Drocess

ReplyRecv(ro,ep,8args)

deliver to client

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

Kernel has no notion of a process/task!

Informally, a “task™ consists of:

a virtual address space (Vspace)

a capability space (Cspace)

one or more threads

zero or more scheduling contexts

likely =ndpoint(s) & Notification(s)

A server may Related tasks may
not need an SC, share a Cspace
runs on client’s

31 COMP9242 2023 T3 W01-2: Using selL4

Typically, the “task”
will not have caps
to its own Vspace
and Cspace!

© Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

Qﬂ‘-|-4 Shared memory is usually required...

In dynamic system may pass
buffer cap, rather than pointer

Service

32 COMP9242 2023 T3 W01-2: Using seL4 © Gernot Heiser 2019 — CC BY 4.0

SSSSSS

33

... especially for high-performance 1/O

IP stack NW
driver
Space available Data available

In practice separate
buffers & Notifications
for Tx/Rx

Ring buffer

COMP9242 2023 T3 W01-2: Using selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

Project: cspace and ut libraries

ﬁ Memory Management Caveats

* The UT table handles allocation for you

 But: very simple buddy-allocator:

* Freeing an object of size n

= can allocate new objects < size n Frame 2" 2"
, , , PT/PD/PUD/PGD 22 212
* Freeing 2 objects of sizen Endpoint o4 ot
can allocate an object of size 2n.
Notification 25 25
Scheduling Context =28 28
Cslot 24 24
Cnode > 212 2z
Values for TCB 211 211
AArch64
35 COMP9242 2023 T3 WO01-2: Using selL4 © Gernot Heiser 2019 — CC BY 4.0

UNSW

ﬁ Memory-Management Caveats

36

* Objects are allocated by Retype() of Untyped memory

But debugging
nightmare if

* The kernel will not allow you to overlap objects you try!!

« ut_alloc and ut_free() manage user-level view of allocation.

» Major pain if kernel and user view diverge
» TIP: Keep objects address and CPtr together!

Untyped Memory 2'°B

8 frames

COMP9242 2023 T3 W01-2: Using selL 4

Be careful with allocations!

Don’t try to allocate all of physical memory as
frames, you need more memory for TCBs,
endpoints etc.

Your frametable will eventually integrate with
ut_alloc to manage the 4KiB untyped size.

© Gernot Heiser 2019 — CC BY 4.0 UNSW

2

Project Platform: ODROID-C2

ODROID-C2 Board

Armlogic S905 SoC

ARMvS8 ARMvS8
Cortex-A53 Cortex-A53

ARMv8 ARMvS8
Cortex-A53 Cortex-A53

2 GiB Memory

37 COMP9242 2023 T3 W01-2: Using selL 4

Serial

Timer

Ethernet +—-

Other...

seL4_DebugPutChar()

Serial (

connector printf()

M6: Network File

Ethernet System (NFS)
connector

MO: serial over LAN
for userlevel apps,
using “odroid netcon”

© Gernot Heiser 2019 — CC BY 4.0 UNSW

) SYDNEY
=2

