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How well does Linux scale?

e EXperiment:

e Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too0)

e Select a few inherent parallel system applications
e Measure throughput on different # of cores
e Use tmpfs to avoid disk bottlenecks

e Insight 1: Short critical sections can lead to
sharp performance collapse
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Off-the-shelf 48-core server (AMD)
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e Cache-coherent and non-uniform access

e An approximation of a future 48-core chip o



Poor scaling on stock Linux kernel
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Exim on stock Linux: collapse

12000
= Throughput

10000
£

8 8000
B
@
k]
i

§ 6000
£
=
=
g

S 4000
S
L
[_

2000

0

Cores

36



Exim on stock Linux: collapse
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Exim on stock Linux: collapse
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Oprofile shows an obvious problem
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Oprofile shows an obvious problem

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

samples
2616
2329
2197
1488
1348
1182
966

samples
13515
2002
1661
1497
1026
914

896

%
7.3522
6.5456
6.1746
4.1820
3.7885
3.3220
2.7149

%

34.8657
5.1647
4.2850
3.8619
2.6469
2.3579
2.3115

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

symbol name
radix_tree lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c

unlock page

page_fault

symbol name
lookup_mnt

radix_tree lookup_slot
filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock page

40



Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:

4000 msg/sec

samples
2616
2329
2197
1488
1348
1182
966

samples

19919

2002
1661
1497
1026
914
896

% app name symbol name
7.3522 vmlinux radix_tree lookup_slot
6.5456 vmlinux unmap_vmas
6.1746 vmlinux filemap_fault
4.1820 vmlinux __do_fault
3.7885 vmlinux copy_page _c
3.3220 vmlinux unlock_page
2.7149 vmlinux page_fault
% app name symbol name
4.86 VMITNUX [OOKUp_mnt |
5.1647 vmlinux radix_tree lookup_slot
4.2850 vmlinux filemap_fault
3.8619 vmlinux unmap_vmas
2.6469 vmlinux __do_fault
2.3579 vmlinux atomic_dec
2.3115 vmlinux unlock page
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Bottleneck: reading mount table

e Delivering an email calls sys open

e sys open calls

struct vfsmount *lookup_mnt(struct path *path)

{
struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}
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Bottleneck: reading mount table

e Sys open calls:

struct vfsmount *lookup _mnt(struct path *path)

{

struct vfsmount *mnt;
spin_lock(&vismount_lock);
mnt = hash_get(mnts, path);

spin_unlock(&vismount |ocCK);

return mnt;
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Bottleneck: reading mount table

e Sys open calls:

struct vfsmount *lookup _mnt(struct path *path)

{
struct vismount *mnt;
spin_lock(&vismount_lock); Serial section is short. Why d
- : erial section is short. y does
mnt = hash_get(mnts, path); h it cause a scalability bottleneck?
spin_unlock(&vismount_lock);
return mnt;
}
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What causes the sharp
performance collapse?

e Linux uses ticket spin locks, which are non-
scalable

e S0 we should expect collapse [Anderson 90]

e But why so sudden, and so sharp, for a short
section?

e Is spin lock/unlock implemented incorrectly?
e |s hardware cache-coherence protocol at fault?
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

-

46




Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

-
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

void spin_unlock(spinlock_t *lock)

{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */
}

struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

| et e ]
}

struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

{

}

struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);

while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

i
L 500 cycle
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struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock t *lock)
{ {
t = atomic_inc(lock->next_ticket); _
while (t != lock->current_ticket) }
[* Spin */

struct spinlock_t{
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Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket) }

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

Previous lock holder notifies

next lock holder after
sending out N/2 replies

S
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Why collapse with short sections?

ao ak-1 Ak dk+1 dn-1
S0 Sk-1 Sk Sk+1 Sn-1

e Arrival rate is proportional to # non-waiting cores
e Service time is proportional to # cores waiting (k)

e As kincreases, waiting time goes up
e As waiting time goes up, k increases

e System gets stuck in states with many waiting cores
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Short sections result in collapse
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o Experiment: 2% of time spent in critical section
e Critical sections become “longer” with more cores

e Lesson: non-scalable locks fine for long sectiong



Avoiding lock collapse

e Unscalable locks are fine for long sections
e Unscalable locks collapse for short sections

e Sudden sharp collapse due to “snowball” effect
e Scalable locks avoid collapse altogether

e But requires interface change
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Scalable lock scalability
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e |t doesn't matter much which one
e But all slower in terms of latency
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Avoiding lock collapse
Is not enough to scale

e ‘Scalable” locks don't make the kernel scalable

e Main benefit is avoiding collapse: total throughput
will not be lower with more cores

e But, usually want throughput to keep increasing with
more cores
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Transactional memory to manage concurrency
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The problem — concurrency
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The solution: mutual exclusion
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Synchronisation granularity
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Course-grained mutual exclusion
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Optimistic concurrency
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Transactional Memory

* Atransaction is a sequence of machine instructions
satisfying the following properties:

» Serializability:

« Transactions appear to execute serially, meaning that the steps of one transaction
never appear to be interleaved with the steps of another.

« Committed transactions are never observed by different processors in different
orders.

« Atomicity:
« Each transaction makes a sequence of tentative changes to shared memory.
» Atransactions can commits, making its changes visible to other processors
» Or a transaction aborts, causing its changes to be discarded.



Transactions

CPU 1 a=a+1

Abort

| g=p-| —

Time ————>

CPU 2

a:

* Updates only visible locally

« Commit publishes update if conflict free



Transactions
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Conflict detection

Hardware maintains:
 Read set: The set of all memory addresses loaded from

« Write set: The set of all memory addresses stored to

 The write set is not visible to other CPUs until a successful commit

A transaction is conflict free if:

* No other processor reads a location that is part of the
transactional region’s write-set

* And, no other processor writes a location that is a part of
the read- or write-set of the transactional region.



Implementation Intuition

« (Cache coherence protocol already coordinates reads and
writes to cache lines

« Write-back caches could isolate updates until successfully

committed

— Implement transactions by augmenting cache hardware

CPU
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Main Memory




Some Papers
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Some Hardware Limitations

Aborts

« Caches are a finite size, transactions will abort if they
exceed cache capacity to manage read and write set

* High contention on transaction region can trigger repeated

aborts
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Sample Elided Lock

Elided lock:

/* Start transactional region. On abort we come back here. */
if ( xbegin() == XBEGIN STARTED) ({

/* Put lock into read-set and abort if lock is busy */

if (lock variable is not free)

_xabort (_XABORT_LOCK_BUSY) ;

} else {

/* Fallback path */

/* Come here when abort or lock not free */

lock lock;

}

/* Execute critical region either transaction or with lock */
Elided unlock:

/* Critical region ends */
/* Was this lock elided? */
if (lock is free)

_xend () ;
else

unlock lock l UNSW



Microkernel vs Linux Execution
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Experiments with seL4 and Intel TSX

Basic idea: put the kernel in a
transaction

« Coarse-grained transaction

Fallback on BKL

Microkernel small enough to fit in
a transaction

Repeated non-conflicting parallel
IPC benchmark

None: No concurrency control

Fine-grained scales well
Expected

RTM also scales well

Extremely low abort rates
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