The multicore evolution and
operating systems

Frans Kaashoek

Joint work with: Silas Boyd-Wickizer, Austin T. Clements,
Yandong Mao, Aleksey Pesterev, Robert Morris, and Nickolai
Zeldovich

MIT

31

Non-scalable locks are dangerous.
Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. In the
Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

How well does Linux scale?

e EXperiment:

e Linux 2.6.35-rc5 (relatively old, but problems are
representative of issues in recent kernels too0)

e Select a few inherent parallel system applications
e Measure throughput on different # of cores
e Use tmpfs to avoid disk bottlenecks

e Insight 1: Short critical sections can lead to
sharp performance collapse

33

Off-the-shelf 48-core server (AMD)

DRAM DRAM DRAM DRAM

HH-55-HH HE
SEEgEEINE:

DRAM DRAM DRAM DRAM

e Cache-coherent and non-uniform access

e An approximation of a future 48-core chip o

Poor scaling on stock Linux kernel

A

perfect scaling 44
40 -
36
32
28
24
20 - .
16 = SE— e
12
terrible scaling j:l l B BB B
memcached PostgreSQL Psearchy
Exim Apache gmake Metis

Y-axis: (throughput with 48 cores) / (throughput with one core)

35

Exim on stock Linux: collapse

12000
= Throughput

10000
£

8 8000
B
@
k]
i

§ 6000
£
=
=
g

S 4000
S
L
[_

2000

0

Cores

36

Exim on stock Linux: collapse

12000 -

= Throughput

10000

8000 -

6000

4000 -

Throughput (messages/second)

2000 -

Cores

37

Exim on stock Linux: collapse

Throughput (messades/second)

12000 -15

» Throughput
+Kernel time

10000 -

—

8000 -

©

6000

»

4000

w
Kernel C.Pl] timea I’millinnmndnﬁmnnnnﬂn\\)

2000

Cores

38

Oprofile shows an obvious problem

samples
2616
2329

40 cores: 2197
10000 msg/sec 1488

1348
1182
966

samples
13515
2002
1661
1497
1026
914

896

48 cores:
4000 msg/sec

%

7.3522
6.5456
6.1746
4.1820
3.7885
3.3220
2.7149

%
34.8657

5.1647
4.2850
3.8619
2.6469
2.3579
2.3115

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

symbol name
radix_tree lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c

unlock page

page_fault

symbol name
lookup_mnt

radix_tree lookup_slot
filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock page

39

Oprofile shows an obvious problem

40 cores:
10000 msg/sec

48 cores:
4000 msg/sec

samples
2616
2329
2197
1488
1348
1182
966

samples
13515
2002
1661
1497
1026
914

896

%
7.3522
6.5456
6.1746
4.1820
3.7885
3.3220
2.7149

%

34.8657
5.1647
4.2850
3.8619
2.6469
2.3579
2.3115

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

app name

vmlinux
vmlinux
vmlinux
vmlinux
vmlinux
vmlinux

vmlinux

symbol name
radix_tree lookup_slot
unmap_vmas
filemap_fault
__do_fault
copy_page_c

unlock page

page_fault

symbol name
lookup_mnt

radix_tree lookup_slot
filemap_fault

unmap_vmas

__do_fault

atomic_dec

unlock page

40

Oprofile shows an obvious problem

40 cores:

10000 msg/sec

48 cores:

4000 msg/sec

samples
2616
2329
2197
1488
1348
1182
966

samples

19919

2002
1661
1497
1026
914
896

% app name symbol name
7.3522 vmlinux radix_tree lookup_slot
6.5456 vmlinux unmap_vmas
6.1746 vmlinux filemap_fault
4.1820 vmlinux __do_fault
3.7885 vmlinux copy_page _c
3.3220 vmlinux unlock_page
2.7149 vmlinux page_fault
% app name symbol name
4.86 VMITNUX [OOKUp_mnt |
5.1647 vmlinux radix_tree lookup_slot
4.2850 vmlinux filemap_fault
3.8619 vmlinux unmap_vmas
2.6469 vmlinux __do_fault
2.3579 vmlinux atomic_dec
2.3115 vmlinux unlock page

41

Bottleneck: reading mount table

e Delivering an email calls sys open

e sys open calls

struct vfsmount *lookup_mnt(struct path *path)

{
struct vfsmount *mnt;
spin_lock(&vfsmount_lock);
mnt = hash_get(mnts, path);
spin_unlock(&vfsmount_lock);
return mnt;

}

42

Bottleneck: reading mount table

e Sys open calls:

struct vfsmount *lookup _mnt(struct path *path)

{

struct vfsmount *mnt;
spin_lock(&vismount_lock);
mnt = hash_get(mnts, path);

spin_unlock(&vismount |ocCK);

return mnt;

43

Bottleneck: reading mount table

e Sys open calls:

struct vfsmount *lookup _mnt(struct path *path)

{
struct vismount *mnt;
spin_lock(&vismount_lock); Serial section is short. Why d
- : erial section is short. y does
mnt = hash_get(mnts, path); h it cause a scalability bottleneck?
spin_unlock(&vismount_lock);
return mnt;
}

44

What causes the sharp
performance collapse?

e Linux uses ticket spin locks, which are non-
scalable

e S0 we should expect collapse [Anderson 90]

e But why so sudden, and so sharp, for a short
section?

e Is spin lock/unlock implemented incorrectly?
e |s hardware cache-coherence protocol at fault?

45

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

-

46

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

-

47

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

void spin_unlock(spinlock_t *lock)

{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */
}

struct spinlock_t{

T -l-_L!.i

.r."-.‘

—)
lr..g A

APl

r

48

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

| et e]
}

struct spinlock_t{

49

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

{

}

struct spinlock_t{

50

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);

while (t != lock->current_ticket)

[* Spin */

void spin_unlock(spinlock_t *lock)

i
L 500 cycle

\

»

struct spinlock_t{

51

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)
{
t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket)
[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

52

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock_t *lock) void spin_unlock(spinlock t *lock)
{ {
t = atomic_inc(lock->next_ticket); _
while (t != lock->current_ticket) }
[* Spin */

struct spinlock_t{

53

Scalability collapse caused by
non-scalable locks [Anderson 90]

void spin_lock(spinlock t *lock)

{

t = atomic_inc(lock->next_ticket);
while (t != lock->current_ticket) }

[* Spin */

void spin_unlock(spinlock_t *lock)

struct spinlock_t{

Previous lock holder notifies

next lock holder after
sending out N/2 replies

S

54

Why collapse with short sections?

ao ak-1 Ak dk+1 dn-1
S0 Sk-1 Sk Sk+1 Sn-1

e Arrival rate is proportional to # non-waiting cores
e Service time is proportional to # cores waiting (k)

e As kincreases, waiting time goes up
e As waiting time goes up, k increases

e System gets stuck in states with many waiting cores
55

Short sections result in collapse

= N NG (RN T SN N N N G R A
o Model, 400 serial cycles
o Model, 1600 serial cycles el
A Model, 25600 serial cycles A a0
. ' B . A
- —e— Ticket, 400 serial cycles , f_,_aﬁ
. : A
o W —a— Ticket, 1600 serial cycles oA =
- - # i- ‘
= —a— Ticket, 25600 serial cycleg =
o p 55
| =9
v A -
DED
o
o
10 = .
Gag .'_ =
5 piatel=l=lago s TR ——
0 | | i .T:T--.h-_"”""""'-*-—'----'-:.::n
0 6 12 18 24 30 36 42 48
Cores

o Experiment: 2% of time spent in critical section
e Critical sections become “longer” with more cores

e Lesson: non-scalable locks fine for long sectiong

Avoiding lock collapse

e Unscalable locks are fine for long sections
e Unscalable locks collapse for short sections

e Sudden sharp collapse due to “snowball” effect
e Scalable locks avoid collapse altogether

e But requires interface change

57

Scalable lock scalability

=3 1T = F & & &= I =~ 1T 75] I =
1500 |- & ‘ ~
= AP
E \
e
> i
= \
=
g 1000 \ , E
= UIVET L S VIVIVES L ol A = o = B oA u s 2 2k > =
2 —es— Ticket lock —+— Proportional lock
e —a— MCS lock —— K42 lock
= .
E 500 —e— CLH lock y
0 | | 1 |] | 1 |] | 1 | | |
0 2 6 12 18 24 30 36 42 48
Cores

e |t doesn't matter much which one
e But all slower in terms of latency

58

Avoiding lock collapse
Is not enough to scale

e ‘Scalable” locks don't make the kernel scalable

e Main benefit is avoiding collapse: total throughput
will not be lower with more cores

e But, usually want throughput to keep increasing with
more cores

59

Transactional memory to manage concurrency

Australia’s
Global
University

The problem — concurrency

CPU 1

CPU 2

CPU3

a=a+1

a=a+2

Time ———>

YYYYYY

The solution: mutual exclusion

U ﬁ a=a+1 _
R e a=3-1 _
cPu3 L R, 4 a=a+2 ~

Time ———>

Synchronisation granularity

‘ Fine-grained / lock-free Coarse-grained I

good
scalability

Course-grained mutual exclusion

cPU1 ﬁ a=a+1 _ Critical sections

CPU 2 I b=b+1 M

/\/_\/

serialised
unnecessarily

cPu3 e 4 c=c+1 ~

Time =

Optimistic concurrency

CPU 1

CPU 2

CPU3

a=a+1

/\/—\/

q b=b+1 _ Concurrent
execution correct if

c=c+1

Time =———p

no conflicting
accesses

YYYYYY

Transactional Memory

* Atransaction is a sequence of machine instructions
satisfying the following properties:

» Serializability:

« Transactions appear to execute serially, meaning that the steps of one transaction
never appear to be interleaved with the steps of another.

« Committed transactions are never observed by different processors in different
orders.

« Atomicity:
« Each transaction makes a sequence of tentative changes to shared memory.
» Atransactions can commits, making its changes visible to other processors
» Or a transaction aborts, causing its changes to be discarded.

Transactions

CPU 1 a=a+1

Abort

| g=p-| —

Time ————>

CPU 2

a:

* Updates only visible locally

« Commit publishes update if conflict free

Transactions

CPU 1

CPU 2

a=a+1

Time ————>

YYYYYY

Conflict detection

Hardware maintains:
 Read set: The set of all memory addresses loaded from

« Write set: The set of all memory addresses stored to

 The write set is not visible to other CPUs until a successful commit

A transaction is conflict free if:

* No other processor reads a location that is part of the
transactional region’s write-set

* And, no other processor writes a location that is a part of
the read- or write-set of the transactional region.

Implementation Intuition

« (Cache coherence protocol already coordinates reads and
writes to cache lines

« Write-back caches could isolate updates until successfully

committed

— Implement transactions by augmenting cache hardware

CPU

CPU

Cache

I_I_I

Main Memory

Some Papers

Herliny, Maurice / Moss, J. Eliot B.
Transactional Memory: Architectural Support for Lock-Free Data Structures

1993
Proceedings of the 20th annual international symposium on Computer architecture - ISCA ‘93

Yoo, Richard M. / Hughes, Christopher J. / Lai, Konrad / Rajwar, Ravi
Performance evaluation of Intel transactional synchronization extensions for high-
performance computing

2013
Proceedings of the International Conference for High Performance Computing, Networking, Storage

and Analysis on - SC 13

Some Hardware Limitations

Aborts

« Caches are a finite size, transactions will abort if they
exceed cache capacity to manage read and write set

* High contention on transaction region can trigger repeated

aborts

CPU

CPU

Cache

I_I_I

Main Memory

Sample Elided Lock

Elided lock:

/* Start transactional region. On abort we come back here. */
if (xbegin() == XBEGIN STARTED) ({

/* Put lock into read-set and abort if lock is busy */

if (lock variable is not free)

_xabort (_XABORT_LOCK_BUSY) ;

} else {

/* Fallback path */

/* Come here when abort or lock not free */

lock lock;

}

/* Execute critical region either transaction or with lock */
Elided unlock:

/* Critical region ends */
/* Was this lock elided? */
if (lock is free)

_xend () ;
else

unlock lock l UNSW

Microkernel vs Linux Execution

/
App
Linux Kernel 10s of ms
<)
- App)
Microkernel
Server 10s of ms
K Kernel {\\ /
0.3us”
UNSW

YYYYYY

Experiments with seL4 and Intel TSX

Basic idea: put the kernel in a
transaction

« Coarse-grained transaction

Fallback on BKL

Microkernel small enough to fit in
a transaction

Repeated non-conflicting parallel
IPC benchmark

None: No concurrency control

Fine-grained scales well
Expected

RTM also scales well

Extremely low abort rates

Throughput (Mops/sec)

60

50

40

30

20

10

=

none —¥— x86
BKL —8—

fine F—o— T

