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L4 Microkernels — Deployed by the Billions
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Today's Lecture

 Towards real microkernels: The history of L4 microkernels
* Implementation highlights

* Virtualisation: Microkernel as hypervisor

« Lessons and principles
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L4: The Quest for a
Real Microkernel
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1993 “Microkernel”: IPC Performance
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The Microkernel Minimality Principle

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting
competing implementations, would prevent the
implementation of the system’s required

A ki functionality. [Liedtke, SOSP’95]
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L4: 25 Years High Performance Microkernels

First L4 kernel
with capabilities

iOS secure
enclave

API Inheritance

>
Code Inheritance
— L4/MIPS

L4-embed. OKL4 Microvisor

OKL4 pKernel |

°® Qualcomm

L4/Alpha modem chips

Codezero

L3 > L4 “x” Hazelnut Pistachio

UNSW/NICTA Fiasco Fiasco.OC
GMD/IBM/Karlsruhe

Lokt
Commercial Clone P4 — PikeOS
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Microkernel Evolution

First generation

Mach ['87], QNX, Chorus

Memory Objects

Low-level FS,
Swapping

Devices

Kernel memory
Scheduling

180 syscalls, 100 kSLOC

Second generation

Minix 3

Kernel memory
Scheduling

~7 syscalls, ~10 kSLOC

100 ps IPC ~ 1 us IPC (L4)
Others much
slower!
8 COMP9242 2022 T2 W07 Part 1: Microkernel Design & Implementation

L4 [95], PikeOS, Integrity

Third generation
selL4 ['09]

Memory-
mangmt
library

Scheduling

~3 syscalls, ~10 kSLOC
0.1 us IPC
Capabilities

Design for isolation
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L4 1-Way |IPC Performance Over the Years

Name
Original
Original
L4/MIPS
L4/Alpha
Hazelnut
Pistachio
OKL4
NOVA
selL4
selL4
selL4
selL4

Year
1993
1997
1997
1997
2002
2005
2007
2010
2013
2018
2018
2020

Processor

1486

Pentium

MIPS R4700

Alpha 21064

Pentium 4

Itanium

Arm XScale 255

x86 i7 Bloomfield (32-bit)
ARM11

x86 i7 Haswell (64-bit)
Arm Cortex A9

RISC-V HiFive (64-bit, no ASID)
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MHz Cycles
50 250
160 121
100 86
433 45
1,400 2,000
1,500 36
400 151
2,660 288
532 188
3,400 442
1,000 303
1,500 500

MS
5.00
0.75
0.86
0.10
1.38
0.02
0.64
0.11
0.35
0.13
0.30
0.33
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Independent Comparison

Round-trip, cross-address-space IPC on x64 (Intel Skylake)

SW overheads
dominate

Mi et al, 2019, EuroSys’'20 986 2717 815
selL4.systems, Jul22 763 - - - -

Cost dominated by

mandatory HW operations SYSCALL 82 164
Switch PT 186 372
SYSRET 75 150
Total 343 686

=
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Minimality: Source Lines of Code (SLOC)

Original

L4/Alpha
L4/MIPS
Hazelnut

Pistachio

L4-embedded

OKL4 3.0
Fiasco.OC
selL4

i486
Alpha
MIPS64
X86

X86
ARMVv5
ARMv6
X86
ARMv6
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Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]

* Left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management

» Global thread name space = covert channels [Shapiro’03] |
Caps &

* Threads as IPC targets = insufficient encapsulation endpoints

* No delegation of authority = impacts flexibility, performance |

' L4
| - Single kernel memory pool = DoS attacks | s€L% memory
management
o : ] model
|- Unprincipled management of time- seL4 scheduling
contexts
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Implementation Highlights
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@:2l4 IPC Fastpath: Send Phase of Call

= SR

u Save minimal state, get args

2) ldentify destination
= Cap lookup;
get endpoint; check queue
3) Get receiver TCB
= Check receiver can still run
u Check receiver priority is > ours

4)  Mark sender blocked and enqueue
= Block caller on reply object
= Donate scheduling context

- = = = => \Nait to receive

= 150 cycles
on Arm A9

Direct process switch:
* no scheduler invocation
e SC donation

5) Switch to receiver
u Copy virtual message registers

Wait to receive 6) Epilogue (restore & return)
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Fastpath Coding Tricks

Common case: 0

slow=  cap_get_capType(en_c) !=cap_endpoint_cap | |
lcap_endpoint_cap_get_capCanSend(en_c);
if (slow) enter_slow_path();

 Reduces branch-prediction footprint Common case: 1
» Avoids mispredicts, stalls & flushes
« Uses ARM instruction predication (pre-v8)

« Slightly increases slow-path latency (slightly)
* insignificant compared to basic slow-path cost
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How About Real-Time Support?

» Kernel runs with interrupts disabled
* No concurrency control = simpler kernel

» Easier reasoning about correctness
» Better average-case performance

How about long-
running system calls?

Lots of
concurrency in
kernel!
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Q-“hl’-|-4 Incremental Consistency Paradigm

Kernel
exit

Kernel
entry

Long operation

17 COMP9242 2022 T2 W07 Part 1: Microkernel Design & Implementation



@seld Example: Destroying IPC Endpoint

Message
gueue

& UNSW

=
&) sYDNEY
A

=
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@ =214 Difficult Example: Revoking Badge

Server
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L4 Scheduler Optimisation: Lazy Scheduling

thread_t schedule() {

foreach (prio in priorities) { Problem: Unbounded
foreach (thread in runQueue[prio]) { scheduler execution time!
if (isRunnable(thread))
return thread;
else
schedDequeue(thread);
} Idea: leave blocked
} threads in ready queue,
return idleThread, scheduler cleans up

}

/

Server
Reply_Wait()

* Frequent blocking/unblocking in IPC- Client
based systems . . Call()
 Many ready-queue manipulations

BLOCKED

o=
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Scheduler: Benno Scheduling

thread_t schedule() {
foreach (prio in priorities) {
: Bt L = CpRioP)

Only current thread
needs fixing up at

if (thread=head(runQueue[prio])) preemtion time!
return thread;
—elco.
sehedDegueuadbpeada. Idea: Lazy on
} unblocking instead
) on blocking
return idleThread; O
) L
* Frequent blocking/unblocking in IPC- Client . Server
based systems call() Reply_Wait()
 Many ready-queue manipulations
BLOCKED
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Scheduler Optimisation: Direct Process Switch

Sender was running = had highest prio
If receiver prio 2 sender prio = run receiver

e Arguably, sender should donate back
if it’s a server replying to a Call()
* Hence, always donate on Reply_Wait()

Idea: Don’t invoke
scheduler if you know
who’ll be chosen

\

- O
Frequent context switches in
IPC-based systems CallO)
Many scheduler invocations Client

COMP9242 2022 T2 W07 Part 1: Microkernel Design & Implementation

Implication: Time slice
donation — receiver runs
on sender’s time slice —
how long?

Reply_Wait()

© Gernot Heiser 2019 — CC BY 4.0
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Remember: Delegation of Critical Sections

Client may frequently
invoke server without
using much of its own
time!

Running

~ Running

Client,
é \

Client, ?
-, Server may run on

clients time slice, its
No accurate own or a combination

accounting for
time
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MCS Model: Scheduling Contexts

MCS thread attributes

« Priority * Priority

« Time slice - o o Not runnable @e° Schedulingcon}pability

Scheduling context object
« T: period
« C:budget(=sT)

Capability

Classical thread attributes for 4
or time

Limits CPU
access!

Per-core SchedControl capability
conveys right to assign budgets

g G (i.e. perform admission control)
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=2l Delegation with Scheduling Contexts

Passive servers
Running support migrating
thread model!

Client is charged

for server’s time
' Passive Server

Server runs on client’s
scheduling context
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Mixed-Criticality Support

For mixed-criticality systems (MCS), OS must provide:

» Temporal isolation, to force jobs to adhere to declared WCET
Solved by scheduling }
contexts

« Mechanisms for safely sharing resources across criticalities

What if budget expires while
shared server executingon

Crit: Low -l 1? . -
| Passive Server
it: _ :
k. d hd
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Timeout Exceptions

Policy-free mechanism for dealing with budget depletion

Possible actions:

* Provide emergency budget to leave critical section

» Cancel operation & roll-back server

« Reduce priority of low-crit client (with one of the above)
 Implement priority inheritance (if you must...)

Arguable not ideal: better prevent timeout completely
Under investigation (honours thesis Mitch Johnston)
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@=2l4 Isn’t a Fixed-Prio Scheduler Policy?

Implementing scheduling policy at user level

Scheduler waits for client timeout

Client runs for Client,

: hen time-
period, then time ‘,‘ Timeout EP User-level

faults (or explicitly J

yields by calling EP) A C PN Scheduler

Client,

Scheduler runs

client by replying
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User-Level EDF Scheduler Performance

preemptive LITMUS

5
Number of threads
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Virtualisation:
Microkernel as a Hypervisor
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Microkernel as Hypervisor (NOVA, selL4)

ARM x86
One per VM,
Virtualisation- cannot break ~
isolation!

specific VM Non-Root

Root
Ring 3 VMM
Syscall Exception|IPC
Ring O N selL4
Hypercall
General-purpose
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Hypervisors vs Microkernels

» Both contain all code executing at highest privilege level

 Although hypervisor may contain user-mode code as well

* privileged part usually called “hypervisor” Difference to

 user-mode part often called “VMM” traditional

» Both need to abstract hardware resources terminology!
» Hypervisor: abstraction closely models hardware
» Microkernel: abstraction designed to support wide range of systems

To abstract:
CPU

Memory
1/O
Communication
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What IS the leferenCe7 Just page tables

in disguise
Resowce  HWyewisor  Miokemel
Memory Virtual MMU (vMMU) Address space Just kernel-scheduled
CPU Virtual CPU (vCPU) Thread or activities

scheduler activation

* Simplified virtual device ¢ IPC interface to Real
* Driver in hypervisor user-mode driver Difference?
irtual IRQ (vIRQ) * Interrupt IPC

irtual NIC, with driver " High-performance
and network stack message-passing IPC Minimal
overhead,

Custom API

Communication

 Similar abstractions
Modelled on HW,

Re-uses SW

 Optimised for different
use cases
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Closer Look at I/0 and Communication

VM, Driver Huge
VM TCB!

ot Virtual OS
Driver

Device
Driver
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@=2l4 Integration: VMs and Native

Legacy SW

Virtual
Driver

Driver
M
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Lessons & Principles

UNSW

SYDNEY
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Reflecting on Lessons of 2"d Generation

Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control

Poor/non-existent control over kernel memory use

Inflexible & costly process hierarchies (policy!)

Arbitrary limits on number of address spaces and threads (policy!)
Poor information hiding (IPC addressed to threads)

Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:

« Communication

* Synchronisation

 Memory management — sending mappings
* Scheduling — time-slice donation

37 COMP9242 2022 T2 WQ7 Part 1: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 USYNF,%W
el

e



Design Principles

 Fully delegatable access control

* All resource management is subject to user-defined policies
» Applies to kernel resources too!

« Performance on par with best-performing L4 kernels
* Prerequisite for real-world deployment!

« Suitability for real-time use
* Important for safety-critical systems Largely in line with

 Suitable for formal verification traditional L4 approach!
* Requires small size, avoid complex constructs
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A Thirty-Year Dream!

R. Stockton Gaines
Editor

Operating
Systems

Specification and
Verification of the
UCLA Unixt Security
Kernel

Bruce J. Walker, Richard A. Kemmerer, and

Gerald J. Popek
University of California, Los Angeles

Data Secure Unix, a kernel structured operating sys-
tem, was constructed as part of an ongoing effort at
UCLA 1o develop procedures by which operating systems
can be produced and shown secure. Program verification
methods were extensively applied as a constructive
means of demonstrating security enforcement.

Here we report the specification and verification ex-
perience in producing a secure operating system. The
work represents a significant attempt to verify a large-
scale, production level software system, including all as-
pects from initial specification to verification of imple-
mented code.

Key Words and Phrases: verification, security,
operating systems, protection, programming methodolo-
gy, ALPHARD, formal specifications, Unix, security
kernel

CR Categories: 4.29, 4.35, 6.35

1. Introduction

Early attempts 1o make operating systems secure mere-
ly found and fixed flaws in existing systems. As these
efforts failed. it became clear that piecemeal alterations
were unlikely ever 1o succeed (200, A more systematic
method was required, presumabdly one that controlled the
system's design and implementation, Then secure opera-
tion could be demonstrated in a stronger sense than an in-
genuous claim that the last bug had been eliminated, par-
ticularly since production systems are rarely static, and er-
rors easily introduced.

Our research secks 10 develop meuns by which an
operating sysiem can be shown data secure, meaning that
direct access to data must be possible only if the recorded
protection policy permits it The two major components
of this task arc: (1) developing system architectures that
minimize the amount and complexity of software involved
in both protection decisions and enforcement, by isolating
them into kermel modules; and (2) applying extensive
verification methods 1o that kernel software in order to
prove that our of data security criterion is met. This paper
reports on the later part, the verification experience.
Those interested in architectural issues should see (23]
Related work includes the PSOS operating system project
at SRI [25) which uses the hicrarchical design methodolo-
gy described by Robinson and Levitt in [26), and efforts
to prove communications software at the University of
Texas [31).

Every verification step, from the development of top-
level specifications to machine-aided proof of the Pascal
code, was carricd out. Although these steps were not
completed for all portions of the kernel, most of the job
was done for much of the kernel. The remainder is clear-
ly more of the same. We therefore consider the project
essentially complete. In this paper, as cach verification
step is discussed, an estimate of the completed portion of
that step is given, together with an indication of the
amount of work required for completion. One should
realize that it is csscntial 1o carry the verification process
through the steps of actual code-level proofs because most
sccurity flaws in rcal systems arc found at this level [20).
Security flaws were found in our system during
verification, despite the fact that the implementation was
wrilten carcfully and tested extensively. An example of

Our research seeks to develop means by which an
operating system can be shown data secure, meaning that
direct access to data musi be possible only if the recorded

protection policy permits it.

The two major components

L —— R
Communications February 1980
of Volume 23
the ACM Number 2
| — S
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