Australia’s
Global
SYDNEY University

2022 T2 Week 04 Part 1

Measuring and Analysing Performance
@GernotHeiser

Execution time [s]

240

235 |

230

225 +

220 +

215

210 t

205 |

200 |

195 .

190

School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

|
|
J v
f\l “‘ f"'“‘am‘ﬁ“ /\ \/:
I b s iv Ao
0 5 10 15 20 25 30 35 40 45 50

lteration #

400

1 350
1 300
1 250
1 200
1 150

100

50

0

Million events

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
 to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

 Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:
“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
oA

e

2

Today's Lecture

* Principles of performance evaluation: why and how

* Benchmarking: assessing performance (how and how not)
* Profiling

« Performance analysis

« Understanding performance (establishing context)

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
(el

vvvvvv
A

3

Performance Considerations

What is performance?
* |s there an absolute measure
* |s there a baseline for relative comparison?

What are we comparing? Configuration matters:

: Hot cache — easy to
» Best case? Nice, but useful? 8 @ @l Cacﬁle?

 Average case? What defines “average™ < Whatis most relevant
, : for th ?
» Expected case? What defines it? Of the PUrpose

» Worst case? Is it really “worst” or just “bad”?

ssssss

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

4

Benchmarking

DILBERT, DO YOU
HAVE THE BENCH-
MARK RESULTS?

|
3 Pl

COMP9242 2022 T2 W04 Part 1: Performance

www.dilbert.com scottadams@aol.com

DO YOU WANT THE
TEN-MINUTE EXPLANA-
TION OF WHY THE
DATA ARE USELESS, OR
A SIMPLE "HERE YOU

GO~ ?)

3-a5-04©2004 Scott Adams, Inc./Dist. by UFS, Inc.

I'™M
IN
SALES.

|
.

HERE
YOU

(
o]

© Gernot Heiser 2019 — CC BY 4.0

UNSW

SYDNEY

5

Lies, Damned Lies, Benchmarks

Considerations:

* Micro- vs macro-benchmarks

* Benchmark suites, use of subsets

« Completeness of results

« Significance of results

» Baseline for comparison

« Benchmarking ethics

* What is good? — Analysing the results

COMP9242 2022 T2 W04 Part 1: Performance

ssssss

6

Benchmarking in Research & Development

Must satisfy two criteria:
« Conservative: no significant degradation due to your work

* Progressive: actual & relevant performance improvement
» only needed if your work is actually about improving performance

Must analyse and explain results! o _
Objectivity and fairness:

 Discuss model of system . Appropriate baseline
« Present hypothesis of behaviour * Fairly evaluate alternatives
« Results must test and confirm hypothesis

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
Gz

bz

7

Micro- vs Macro-Benchmarks

Microbenchmark Macrobenchmark

« Exercise particular operation » Use realistic workload

« Aim to represent real-system perf
Micro-BMs are an analysis,

not an assessment tool!
 drill down on performance

Benchmarking crime: Using micro-benchmarks only

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 H UNSW

SSSSSS

&~

8

Standard vs Ad-Hoc Benchmarks

« Standard benchmarks are designed by experts
* Representative workloads, reproducible and comparable results

» Use them whenever possible!
 Examples: SPEC, EEMBC, YCSB,...

* Only use ad-hoc benchmarks when you have no choice
* no suitable standard
* limitations of experimental system

Ad-hoc benchmarks reduce

reproducibility and generality
— need strong justification!

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

:j UNSW

vvvvvv

Obtaining an Overall Score for a BM Suite

Normalise to Normalise to
System X System Y
make sense?
20 1.00 10 0.50 40 2.00
Geometric 2 40 1.00 80 2.00 20 0.50

. mean 1.00 1.00 1.00

mean?

Arithmetic mean is meaningless for relative numbers

Invariant under
normalisation! Rule: arithmetic mean for raw numbers,

geometric mean for normalised! [Fleming & Wallace, ‘86]

9 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

SSSSSS

Benchmark Suite Abuse

Subsetting introduces bias,
makes score meaningless!

“We evaluate performance using SPEC
CPUZ2000. Fig 5 shows typical results.”

Benchmarking crime: Using a subset of a suite

Sometimes unavoidable (incomplete
system) — treat with care, and justify well!

_

Results will have
limited validity

10 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW

Beware Partial Data

: What degrades
Frequently seen: Measurements s o
show 10% throughput degradation. roughput:

Authors conclude “10% overhead”.

CPU
limited

Consider:
1. 100 Mb/s, 100% CPU — 90 Mb/s, 100% CPU
2. 100 Mb/s, 20% CPU — 90 MB/s, 40% CPU

Proper figure of merit is processing cost per unit data Létﬁrncv
1. 10 ps/kb — 11 ps/kb: 10% overhead limited
2. 2 us/kb — 4.4 ps/kb: 120% overhead

Benchmarking crime: Throughput degradation = overhead!

11 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW

12

Profiling

COMP9242 2022 T2 W04 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

PrOﬁIing Avoid with HW

debuggers, cycle-
 Run time collection of execution statistics accurate simulators

* invasive (requires some degree of instrumentation)

* therefore affects the execution it's trying to analyse
» good profiling approaches minimise this interference

|dentify targets for performance tuning
— complementary to microbenchmarks

gprof:
« compiles tracing code into program

« uses statistical sampling with post-
execution analysis

13 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

e S D NERY
el

Example gprof output

Fach sample counts as 0.01 seconds.

self

o

=

(¢}

time

33

.34
16.
16.
16.
16.
0.
0.00
0.
0.00

67
67
67
67
00

00

o O O O o o o o

cumulative
seconds
0.
.03
.04
.05
.06
.06
.06
.06
.06

02

O O O O o o o o

seconds
0.
.01
.01
.01
.01
.00
.00
.00
.00

02

calls
7208
244

8

7

236
192
477
45

self

ms/call

0.
.04
.25
.43

0
1
1

0
0
0
0

00

.00
.00
.00
.00

Source: http://sourceware.org/binutils/docs-2.19/gprof

14 COMP9242 2022 T2 W04 Part 1: Performance

total

ms/call

0.
.12
.25
.43

0
1
1

o o o O

00

.00
.00
.00
.00

© Gernot Heiser 2019 — CC BY 4.0

name
open
offtime
memccpy
write
mcount
tzset
tolower
strlen

strchr

Rl

UNSW

Example gprof output

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>
[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
15 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Rl

UNSW

=2

Performance Monitoring Unit (PMU)

* Collects certain events at run time

« Supports many events, small number of event counters
» Events refer to hardware (micro-architectural) features
» Typically relating to instruction pipeline or memory hierarchy
* Dozens or hundreds
» Counter can be bound to a particular event
 via some configuration register, typically 2—4

« Counters can trigger exception on exceeding threshold

* OS can sample counters Linux PMU interface: oprof

Can profile kernel and userland

16 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
Gz

e

Example oprof Output

$ opreport —--exclude-dependent

CPU: PIIT,

speed 863.195 MHz

Performance counter used

(estimated)

Counted CPU CLK UNHALTED events (clocks processor 1s not halted) with a ..

450385 75.6634 cclplus
60213 10.1156 1lyx Percentage
Count | 59313 4.9245 XFreess
11633 1.9543 as
10204 1.7142 oprofiled
7289 1.2245 vmlinux Profiler
7066 1.1871 bash
6417 1.0780 oprofile
6397 1.0747 vim
3027 0.5085 wineserver Source: http://oprofile.sourceforge.net/examples/
1165 0.1957 kdeinit
17 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 Uj}g§f\vN

Example oprof Output

$ opreport
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU CLK UNHALTED events (clocks processor 1s not halted) with a ..
500605 54.0125 cclplus
450385 88.9026 cclplus® @ ®
28201 5.5667 libc-2.3.2.s0
27194 5.3679 vmlinux
677 0.1336 uhci hcd

Drilldown of top
consumers

163209 17.4008 1lyx
60213 36.8932 1lyx
23881 14.6322 1libc-2.3.2.s0
21968 13.4600 libstdc++.s0.5.0.1
13676 8.3794 libpthread-0.10.s0

Rl

18 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

PMU Event Examples: ARM11 (Armvo)

Ev # Definition Ev # Definition Ev # Definition

0x00 I-cache miss OxOb D-cache miss 0x22

0x01 Instr. buffer stall OxOc D-cache writeback 0x23 Funct. call

0x02 Data depend. stall 0x0d PCchanged by SW 0x24 Funct. return

0x03 Instr. micro-TLB miss OxOf Main TLB miss 0x25 Funct. ret. predict

0x04 Data micro-TLB miss 0x10 Ext data access 0x26 Funct. ret. mispred

O0x05 Branch executed Ox11 Load-store unit stall 0x30

Ox06 Branch mispredicted 0x12 Write-buffer drained 0x38

0x07 Instr executed 0x13 Cycles FIRQ disabled Oxff Cycle counter

0x09 D-cache acc cachable 0x14 Cycles IRQ disabled

OxOa D-cache access any 0x20 ce mIOPEZ

best friend!

19 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

:j UNSW

VVVVVV

20

Performance Analysis

COMP9242 2022 T2 W04 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

/8
™

(e

b

Significance of Measurements

All measurements

are subject to

« Standard approach: repeat & collect stats random errors

« Computer systems are high deterministic

» Typically variances are tiny,
except across WAN

Benchmarking crime: No indication of significance of data!

Always show standard deviations,
or clearly state they are tiny!

21 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 E: UNSW

YYYYYY

How to Measure and Compare Performance

Bare-minimum statistics:

* At least report the mean (u) and standard deviation (o)

» Don't believe any effect that is less than a standard deviation
* 10.2+1.5 is not significantly different from 11.5

* Be highly suspicious if it is less than two standard deviations

* 10.2£0.8 may not be different from 11.5 Standard deviation is meaning-

less for small samples!
e Okifeffect> o

For systems work, must be very t-test if in doubt!
* use t-test if in doubt!

suspicious if o is not small!

22 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
al

S8 SYDNEY

Example from SPEC CPU2000

. Cache
Observations: warmup
* First iteration is special Clock
. luti
« 20 Hz timer: accuracy 0.1s! = A
5 20 25_ 30

lteration #

Lesson: Need mental model
of system, look for hidden
parameters if model fails!

23 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
(el

ssssss
bz

How To Measure and Compare Performance

Not always
possible!

Noisy data:
e Eliminate sources of noise, re-run from same initial state

* single-user mode
» dedicated network

» Possible ways out:
* ignore highest & lowest values
* ignore above threshold in bi-modal distribution
resulting from interference

» take floor of data
* maybe minimum is what matters

* Proceed with extreme care!

* Document and justify!

24 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW

Real-World Example: selL4 Syscall Latency

Interference
from test rig

ot i [wen |+
120 0

Null 120
IPC Call 313 314 1
Signal->low 139 139 0

Signal>high 377 486

Platform: Sabre (Armv7-a Cortex-A9)

Real syscall cost:
377 cy

25 COMP9242 2022 T2 W04 Part 1: Performance

"600 -

1400 ~

1200 ~

=
o
o
o

Clock Cycles

600 1

400 1

Signalling a Notification

800 1

One way IPC microbenchmarks
Signal to high prio thread
Signal to low prio thread
Hardware null_syscall thread

20

40 60 80 100
Iteration

Courtesy Shane Kadish

© Gernot Heiser 2019 - CCBY 4.0 &5 UNSW

YYYYYY

Problem: Benchmarking Methodology

t0 = time(); Write stalls on £t0 = time();
for (i=0; i++; i<n) { = platform with for (i=0; i++; i<n) {
:i’sci}l(---()) low memory syscall(...) All data in
= time(); : = tj : :
bufferli] = t140; |~ Canawidth! o Eﬁ%o registers!
t0=tL sum_t +=t;
} sum_sq += t*t;
/* now compute mean, t0 =t1;
std deviation ... */]
/* now compute mean,
std deviation ... */
Buffer 709 1770 933 195 mean = sum_t/n:
Suminloop 695 770 730 15 stdev = sqrt((n*sum_sq — sum_8)/ (n*(n-1)));
Platform: Sabre Courtesy Nataliya Korovkina

different syscall!

ssssss

26 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

How To Measure and Compare Performance

Vary inputs, check outputs! Beware optimisations!
» Vary data and addresses! * compilers eliminating code
. . « disks pre-fetching, de-duplicating
» eg time-stamp or randomise inputs

» be careful with sequential patterns!

« Check outputs are correct
 read back after writing and compare

« Complete checking infeasible?
» do spot checks
 run with checking on/off

 True randomness may affect reproducibility

* Use speudo-random with same seed

27 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW

Real-World Example: SPEC on Linux

Benchmark:
* 300.twolf from SPEC CPU2000 suite

Platform:

* Dell Latitude D600
* Pentium M @ 1.8GHz
» 32KiB L1 cache, 8-way
« 1MiB L2 cache, 8-way
« DDR memory @ effective 266MHz

e Linux kernel version 2.6.24

Methodology:
* Multiple identical runs for statistics...

28 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
Gz

e

twolf on Linux — What's Going On?

Performance
240 - 400 counters are your
me Q
20% performance .l L2 misses _ best friends!
difference between Time - 221cy/miss] %%
“identical” runs! J_ 1 300
225 |]
> o | , 1250 4
g I|I| §
S 215 | |"|‘H"| lll""~ f| 120 2
= i | . =
o /| I + 'le Ly |"| |f =
3 200 \ ,."'I"‘ :|| Il:'""ll' |'I:ﬁ|'| iy H] 10 =
205 ||| y ‘||'| ||\| \ F'l' I'lJ'||IIJI ‘lll'ﬂ'l‘ |||| 7
r""‘._"'.l |IP“"~,J‘I ‘||| i |I ¥ | \"""-.]) .
200 | ||Ir"’ﬁulll"., ||]|| :Ill|:|] ’\‘ l'g|‘ [ﬂ |'|I\"".II'| I||“',II ||‘|f\‘|| ."II.....""--. i 100 Lesson . CheCk SyStem
Subtract 221 cycles o I :' | ".x."l.yl".h',‘||| A RN s - behaves according to
Fo 1 4 . | ‘II | [}} A *III ‘h \ ,._‘.'I ‘I‘:}'i'.ll | v .
(123ns) for each i S e nvAvan your model — large o
_ : 190 L— i - : - . - - 0 .
L2-cache miss o 5 10 15 20 25 30 35 40 45 so | Wwas the giveaway!
lteration #

29 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

A Few More Performance Evaluation Rules

» Vary one parameter at a time
« Record & date all configurations!
* Measure as directly as possible

 Avoid incorrect conclusions from pathological data

» sequential vs random access may mess with prefetching
« 2"vs 2"-1, 2"+1 sizes may mess with caching

What is pathological
depends a lot on
circumstances!

30 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
oA

vvvvvv
e

Most Important: Use a Model/Hypothesis

Model of the system that predicts system behaviour
« Benchmarking should aim to support or disprove that model

* Need to consider in selecting data, evaluating results, e.qg:
* |/O performance dependent on FS layout, caching in controller...
» Cache sizes (HW & SW caches)
 Buffer sizes vs cache size

Always check your system behaves according to the model!

© Gernot Heiser 2019 - CCBY 4.0 &5 UNSW

31 COMP9242 2022 T2 W04 Part 1: Performance . ©Gernot Heiser 2019 - CC BY 4.0 @8] UINOV

Example: Memory Copy

Pipelining,
loop overhead

Hypothesis: Execution
time vs buffer size?

60L — : 18
M ime 16
500 || throughput]
| 114 _
@ | o
2 401 1 L1 cache (32KiB) 12 &
= | 10 =
— | E 4
c 300 } ; 3
= | 18 £
3] I =
© 200 | | 16 ¢
X :
00 L2 cache (1MiB) 'S Make sure you
12 understand all
0 L : : — 0 results!
0 200 400 600 800 1000
Buffer size [KiB]
32 COMP9242 2022 T2 W04 Part 1: Performance

© Gernot Heiser 2019 - CCBY 4.0 &5 UNSW

SSSSSS

&~

Loop and Timing Overhead

 Ensure measurement overhead does not affect results!
 Eliminate by measuring in tight loop, subtract timer cost

Relative vs Absolute Data I

o

From a real paper [Armand&Gien, IEEE CCNC 09] r\ F
J 1=

* No data other than this figure o e
* No figure caption - 0
* Only explanation in text: ,K -

“The L4 overhead compared to VLX ranges —— / o

from a 2x to 20x factor depending on th
system call benchmark”

* No definition of “overhead factor”
 No native Linux data

Benchmarking crime: Relative numbers only!

34 COMP9242 2022 T2 W04 Part 1: Performance i - 2 O oNEY

35

Data Range

Example: Scaling database load
@

250000
e

200000 |

150000

100000

Throughput (Tx/s)

50000

0

5 10 15 20 25 30
Load (concurrent Tx)

Throughput (Tx/s)

250000

200000 |

150000

100000

50000 |

20 40 60 80 100 120 140 160 180 200
Load (concurrent Tx)

Benchmarking crime: Selective data set hiding deficiencies!

COMP9242 2022 T2 W04 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

YYYYYY

Benchmarking Ethics

Comparisons with prior work

» Sensible and necessary, but must be fair!

« Comparable setup/equipment

 Prior work might have different focus, must understand & acknowledge
» eg they optimised for multicore scalability, you for mobile-system energy

* Ensure you choose appropriate configuration
* Make sure you understand what’s going on!

Benchmarking crime: Unfair benchmarking of competitor!

36 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 [«: UNSW

SSSSSS

&~

Other Ways of Cheating with Benchmarks

« Benchmark-specific optimisations
Recognise particular benchmark, insert BM-specific optimised code

Popular with compiler-writers

Pioneered for smartphone performance by Samsung
http://bgr.com/2014/03/05/samsung-benchmark-cheating-ends

* Benchmarking simulated system
« ... with simulation simplifications matching model assumptions

» Uniprocessor benchmarks to “measure” multicore scalability
* ... by running multiple copies of benchmark on different cores

« CPU-intensive benchmark to “measure” networking

erformance : : :
P These are simply lies, and I've seen them all!

37 COMP9242 2022 T2 W04 Part 1: Performance © Gemnot Heiser 2019 - CC BY 4.0 (#s) UNSW

http://bgr.com/2014/03/05/samsung-benchmark-cheating-ends/

Understanding Performance

38 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
)

39

What is “Good” Performance?

« Easy if improving recognised state of the art

« E.g. improving best Linux performance (where op%

 Harder if no established best-of-class baseline:

» Evaluate best-of-breed system yourself

 Establish performance limits
» Theoretical optimal scenario
» Hardware-imposed performance limits

COMP9242 2022 T2 W04 Part 1: Performance

Remember: progressive
and conservative criteria!

Remember: BM ethics!

Most elegant,
but hardest!

ssssss

40

Real-World Example: Virtualisation Overhead

Symbian null-syscall microbenchmark: Good or

« Native: 0.24us, virtualized (on OKL4): 0.79us bad?
» 230% overhead

« ARM11 processor runs at 368 MHz:
* Native: 0.24us =93 cy
* Virtualized: 0.79us = 292 cy

» Overhead: 0.55us = 199 cy
« Cache-miss penalty = 20 cy

 Model:

* native: 2 mode switches, O context switches, 1 x save+restore state
 virt.: 4 mode switches, 2 context switches, 3 x save+restore state

Expected
overhead?

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

Performance Counters Are Your Friends!

Counter Native Virtualized Difference
Branch miss-pred 1 1 0
D-cache miss 0 0 0
I-cache miss 0 1 1
D-uTLB miss 0 0 0
|-uTLB miss 0 0 0
Maln-TL'B miss 0 0 0 Good or
Instructions 30 125 95 bad?
D-stall cycles 0 27 27
I-stall cycles 0 45 45 - ®
Total Cycles 93 292 199 °
41 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 :E:: UNSW

More of the Same

. . Benchmark Native Virtualized
First step:
improve Context switch [1/s] 615,046 444,504
representation! @e- Create/close [ps] 11 15
Suspend [10ns] 81 154

Second step:
overheads in
appropriate units!

Further Analysis shows
guest dis- & enables IRQs
22 times!

Benchmark Native Virt. Diff [cy] # sysc Cy/sysc €
Context switch [ps] 1.63 2.25 0.62 230 1 230"
Create/close [us] 11 15 4 1472 2 736
Suspend [us] 0.81 1.54 0.73 269 1 269
42 COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 :E:: UNSW

43

And Another One...

Benchmark

Native [ps]

Virt. [ps]

=
Overheéd

Good or
bad?

Per tick

TDes16_NumO 1.2900 1.2936 0.28% 2.8 us
TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 us
TDes16_RadixDecimal2 1.2338 1.2373 0.28% 2.8 us
TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 us
TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 us
TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 us
TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 us
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 us

COMP9242 2022 T2 W04 Part 1: Performance

Timer interrupt
virtualization overhead!

© Gernot Heiser 2019 — CC BY 4.0

YYYYYY

44

Lessons Learned

* Ensure stable results
» Get small variances, investigate if they are not

« Have a model of what to expect

* Investigate if behaviour is different
» Unexplained effects are likely to indications of problems — don't ignore!

* Tools are your friends

* Performance counters
« Simulators

* Traces

» Spreadsheets

Annotated list of benchmarkmg crimes:

COMP9242 2022 T2 W04 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

SSSSSS

http://www.gernot-heiser.org/benchmarking-crimes.html

