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Today's Lecture

» seL.4 Mechanisms
« Capabilities
» Address spaces & memory management
* Threads

* Interrupts and Exceptions

» selL4 System Design Hints

Aim: You should then be ready to start the project

ssssss
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selL4 Mechanisms

COMP9242 2022 T2 W01 Part 2: seL4 Usage

© Gernot Heiser 2019 — CC BY 4.0

/8
™

(e

b



@:W Derived Capabilities

* Badging is an example of capability derivation

* The Mint operation creates a new, less powerful cap
« Can add a badge: Mint (Cw, V) = Cw

» Can strip access rights, eg RW—R/O R(elzanp?smabrzr:
* Granting transfers caps over an Endpoint kernel objects!

 Delivers copy of sender’s cap(s) to receiver

» Sender needs Endpoint cap with Grant permission

* Receiver needs Endpoint cap with Write permission
« else Write permission is stripped from new cap

* Retyping: fundamental memory management operation
 Details later...
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s Capability Derivation

5

. Copy, Mint, Mutate, Revoke
Mint@, dest, S, sre, rights, V) are invoked on CNodes

CNode cap

must allow 3|
modification e

Copy takes a CNode cap as destination
 Allows copying between CSpaces
 Alternative to IPC cap transfer
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Cww selL4 System Calls [1/3]

- selL4 has 11 syscalls: That’s why | earlier said

» Yield(): invokes scheduler
« doesn’t require a capability!
* Send(), Recv() and variants/combinations thereof
* Call(), ReplyRecv()
* Send(), NBSend()
* Recv(), NBRecv(), NBSendRecv()
* Wait(), NBWait(), NBSendWait()
« Call() is atomic Send() + reply-object setup + Wait()
« cannot be simulated with one-way operations!
» ReplyRecv() atomic is NBSend() + Recv()

“approximately 3” o
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Cww selL4 System Calls [2/3]

* Endpoints support all 10 Send/Receive variants

* ROs support:
« NBSend (O
* NBSendRecv()

 Notifications support:
« NBSend() — aliased as Signal()
* Wait()
« NBWait() — aliased as Poll()
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But remember,

you should just
use Call() and
ReplyRecv()
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Cww selL4 System Calls [3/3]

* Endpoints support all 10 IPC variants
* ROs support NBSend (), NBSendRecv()
* Notifications support NBSend(), Wait(), NBWait

 Other objects only support Call()
« Appear as (kernel-implemented) servers
» Each has a kernel-defined protocol

» operations encoded in message tag
* parameters passed in message words

Most of this is hidden
behind “syscall” wrappers
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seL4 Memory-Management Principles

o

« Memory (and caps referring to it) is typed:
» Untyped memory:

* unused, free to Retype into something useful

* Frames:
* (can be) mapped to address spaces, no kernel semantics

» Rest: TCBs, address spaces, CNodes, EPs, ...

 used for specific kernel data structures

« After startup, kernel never allocates memory!
 All remaining memory made Untyped, handed to initial address space

« Space for kernel objects must be explicitly provided to kernel
» Ensures strong resource isolation

« Extremely powerful gun for shooting yourself in the foot!
* We hide much of this behind the cspace and uf allocation libraries
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@% CSpace Operations
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selL4 Mechanisms

Address Spaces and Memory Management
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@!W seL4 Memory Management Approach

12

Resources fully
delegated, allows
autonomous
operation
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Addr

Strong isolation,
No shared
kernel resources

Resource Manager Resource Manager

RM
Data

init Task = Global Resource Manager
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Memory Management Mechanics: Retype

Cwo

o

Note: Retype has
page granularity!
Retype (Frame, %)
Retype (CNode, 2™, 27)

Retype (TCB, {»)

uT
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ﬁ selL4 Address Spaces (VSpaces)

* Very thin (arch-dependent) wrapper of hardware page tables

* Arm & x86 similar (32-bit 2-level, 64-bit 4-5 level)

« Arm 64-bit ISA (AArch64):

» page global directory (PGD)
» page upper directory (PUD)
» page directory (PD)

» page table (PT)

* PGD object represents VSpace:
» Creating a PGD (by Retype)
creates the VSpace
» Deleting PGD deletes VSpace
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PD

Vg —
C w9

PageTable_Map(PD)

PT,

ﬁ

\

PT, Page_Map(PTR)
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ﬁ Address Space Operations

sel.4_Word paddr = 0;
ut_t *ut =ut_alloc_4k_untyped(&p_addr);

Poor API sel.4_CPtr frame = cspace_alloc_slot(&cspace); Cap to top-level
. err = cspace_untyped_retype(&cspace, ut->cap, fram- age table
choice! seL4_ARM_SmallPageObject, seT *__ uger pag

err = map_frame(&cspace, frame, pgd, v_addr,
sel.4_AllRights, seL4_Default_VMAttributes);

Each frame mapping has:
« virtual_address, phys_address, address_space and frame cap
« address_space struct identifies the level 1 page_directory cap

* you need to keep track of (frame, PD, v_addr, p_addr)!

seL4_ARCH_Page_Unmap(frame); Poor API
cspace_delete(&cspace, frame); choice!
cspace_free_slot(&cspace, frame);

ut_free(ut, seL.4_PageBits);
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A Multiple Frame Mappings: Shared Memory

VVVVVV
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selL4 Mechanisms
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3 Threads

« Theads are represented by TCB objects

- They have a number of attributes (recorded in TCB):

PGD reference : :
*\/Space: a virtual address space, can be shared by multiple threads
-~CSpace: capability storage, can be shared Invoked by kernel

CNode reference: ° Fault endpoint and timeout endpoint upon exception

root of CSpace  + IPC buffer (backing storage for virtual message registers)

 stack pointer (SP), instruction pointer (IP), general-purpose registers

» Scheduling priority and maximum controlled priority (MCP)

« Scheduling context: right to use CPU time

These must be explicitly managed
— we provide examples!
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3 Threads

Creating a thread:
« Obtain a TCB object

 Set attributes: Configure()
 associate with VSpace, CSpace, fault EP, define IPC buffer

« Set scheduling parameters
« priority, scheduling context, timeout EP (maybe MCP)

» Set SP, IP (and optionally other registers): WriteRegisters()

Thread is now initialised

 if resume_target was set in call,
thread is runnable

* else activate with Resume()

vvvvvv
e
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3 Creating a Thread in Own AS and CSpace
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3 Threads and Stacks

« Stacks are completely user-managed, kernel doesn’t care!
» Kernel only preserves SP, IP on context switch

 Stack location, allocation, size must be managed by userland

« Beware of stack overflow!
« Easy to grow stack into other data Debugging

* Pain to debug! nightmare!!
» Take special care with automatic arrays!

fO{
int buf{ 10000];
Recommend leaving page } '
above top of stack unmapped! Stack 1 ‘ Stack 2 ‘
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3 Creating a Thread in New AS and CSpace

PageGlobalDirectoryObject

new_cpace

new_cspace.root
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3 @ selL4 Scheduling

256 hard priorities (0—255), strictly observed
» The scheduler will always pick the highest-prio runnable thread
* Round-robin within priority level
» Kernel will never change priority (but user can do with syscall)

» Thread without scheduling context or budget is not runnable
» SC contains budget: when exhausted, thread removed from run queue
« SC contains period: specifies when budget is replenished
» Budget = period: Operates as a best-effort time slice (round robin)
0 i 255 Aim is real-time perfor-
mance, not fairness!

 Can implement fair
policy at user level

S8 SYDNEY
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selL4 Mechanisms
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3 Exception Handling

Exception types:

invalid syscall

« eg for instruction emulation, virtualisation
capability fault

« cap lookup failed or found invalid cap
page fault

« address not mapped

* maybe invalid address

* maybe grow stack, heap, load library...
architecture-defined

« divide by zero, unaligned access, ...
timeout

« scheduling context out of budget
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On exception:

kernel sends message to fault EP
pretends to be from faulter
replying will restart thread

/@8-

Fault EP

Fault
handler

has its own
fault endpoint
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}{ { ' ‘ Interrupt Management

2 special objects for managing and acknowledging interrupts:

* Single IRQControl object
« single IRQControl cap provided by kernel to initial VSpace

» only purpose is to create IRQHandler caps

» Per-IRQ-source IRQHandler object
* interrupt association and dissociation
* interrupt acknowledgment

- edge-triggered flag S\'\ e
= Get(usb)
%4— / .
/ 1 IRQHandler
- ‘,
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}W? Interrupt Handling

IRQHandler cap allows driver to bind Notification to interrupt

» Notification is used to receive interrupt
* IRQHandler is used to acknowledge interrupt

IRQHandler

.%,/ ; SetNotification(notification)

-
&

Wait(notification)
Ack(handler)

sel.4_CPtr irq = cspace_alloc_slot(&cspace);
Unmasks IRQ sel.4_Error err = cspace_irq _control_get(&cspace, irq, seL.4_CapIRQControl,
irq number, true_if edge_triggered);
sel.4_TRQHandler_SetNotification(irq, notification);
selL4_TRQHandler_Ack(irq);

ssssss
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3 Device Drivers

* In seL4 (and all other L4 kernels) drivers are usermode processes

* Drivers do three things:
« Handle interrupts (already explained)
« Communicate with rest of OS (IPC + shared memory)
» Access device registers

 Device register access (Arm uses memory-mapped |O)
» Have to find frame cap from bootinfo structure

- Map the appropriate page in the driver's VSpace Magic device
register access

device_vaddr = sos_map_device(&cspace, OxA0000000, BIT(seL4_PageBits));

*((void *) device_v_addr=..,;
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selL4 System Design Hints
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PS on Reply Objects

. ep
Client o~ @‘ Cop  Server
\ C o

ro

Client Kernel
Server

ReplyRecv(ro,ep,8args
Call(ep, args) ( )

Kernel sets up reply channel in RO
* overwrites previous RO state

block client on RO

= need to have multiple ROs process
to support concurrent long- , _ ReplyRecv(ro,ep,8&args)
running client requests! deliver to client
e e o

ssssss
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Kernel has no notion of a process/task!

Informally, a “task” consists of:
* a virtual address space (Vspace)

a capability space (Cspace)

one or more threads

zero or more scheduling contexts

likely =ndpoint(s) & Notification(s)

Typically, the “task”
will not have caps
to its own Vspace
and Cspace!

A server may Related tasks may
not need an SC, share a Cspace
runs on client’s
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Q-“hl’-|-4 Shared memory is usually required...

In dynamic system may pass
buffer cap, rather than pointer

%&m
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. especially for high-performance 1/O

IP stack NW
driver
Space available Data available

head

tail In practice separate
buffers & Notifications
for tx/rx

Ring buffer
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Project: cspace and ut libraries
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ﬁ Memory Management Caveats

* The UT table handles allocation for you

» But: very simple buddy-allocator:

* Freeing an object of size n

= can allocate new objects < size n Frame 2" 2"
, , , PT/PD/PUD/PGD 212 212
* Freeing 2 objects of size n Endpoint i 0
# can allocate an object of size 2n.
Notification 25 25
Scheduling Context =28 28
Cslot 24 24
Cnode > 212 212
Values for TCB 211 211
AArchtc4
COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0



ﬁ Memory-Management Caveats

36

» Objects are allocated by Retype() of Untyped memory

But debugging
nightmare if

* The kernel will not allow you to overlap objects you try!!

« ut_alloc and ut_free() manage user-level view of allocation.

* Major pain if kernel and user view diverge
» TIP: Keep objects address and CPtr together!

Untyped Memory 21°B

8 frames
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Be careful with allocations!

Don’t try to allocate all of physical memory as
frames, you need more memory for TCBs,
endpoints etc.

Your frametable will eventually integrate with
ut_alloc to manage the 4KiB untyped size.
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Project Platform: ODROID-C2

ODROID-C2 Board
seL4_DebugPutChar()

Armlogic S905 SoC
| Serial /
Serial

ARMv8 ARMv8 connector
Cortex-A53  Cortex-A53 iEee MO: serial over LAN
Ethernet for userlevel apps
ARMVS ARMVS Ethernet — 0 o
Cortex-A53  Cortex-A53 Other M6: Network File
System (NFS)
2 GiB Memory
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In the Real World (Courtesy Boeing, DARPA)
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