School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

UNSW

SYDNEY

Australia’s
Global
University

2022 T2 Week 01 Part 2
Introduction: Using selL4

@GernotHeiser \‘v |

IRQControl

IRQHandler

Get(usb)

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
 to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

 Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:
“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW
oA

e

Today's Lecture

» seL.4 Mechanisms
« Capabilities
» Address spaces & memory management
* Threads

* Interrupts and Exceptions

» selL4 System Design Hints

Aim: You should then be ready to start the project

ssssss

COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
Garas)

e

3

selL4 Mechanisms

COMP9242 2022 T2 W01 Part 2: seL4 Usage

© Gernot Heiser 2019 — CC BY 4.0

/8
™

(e

b

@:W Derived Capabilities

* Badging is an example of capability derivation

* The Mint operation creates a new, less powerful cap
« Can add a badge: Mint (Cw, V) = Cw

» Can strip access rights, eg RW—R/O R(elzanp?smabrzr:
* Granting transfers caps over an Endpoint kernel objects!

 Delivers copy of sender’s cap(s) to receiver

» Sender needs Endpoint cap with Grant permission

* Receiver needs Endpoint cap with Write permission
« else Write permission is stripped from new cap

* Retyping: fundamental memory management operation
 Details later...

4 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

s Capability Derivation

5

. Copy, Mint, Mutate, Revoke
Mint@, dest, S, sre, rights, V) are invoked on CNodes

CNode cap

must allow 3|
modification e

Copy takes a CNode cap as destination
 Allows copying between CSpaces
 Alternative to IPC cap transfer

COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
Garas)

ssss
bz

Cww selL4 System Calls [1/3]

- selL4 has 11 syscalls: That’s why | earlier said

» Yield(): invokes scheduler
« doesn’t require a capability!
* Send(), Recv() and variants/combinations thereof
* Call(), ReplyRecv()
* Send(), NBSend()
* Recv(), NBRecv(), NBSendRecv()
* Wait(), NBWait(), NBSendWait()
« Call() is atomic Send() + reply-object setup + Wait()
« cannot be simulated with one-way operations!
» ReplyRecv() atomic is NBSend() + Recv()

“approximately 3” o

6 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gemnot Heiser 2019 - CC BY 4.0 (#s) UNSW

Cww selL4 System Calls [2/3]

* Endpoints support all 10 Send/Receive variants

* ROs support:
« NBSend (O
* NBSendRecv()

 Notifications support:
« NBSend() — aliased as Signal()
* Wait()
« NBWait() — aliased as Poll()

7 COMP9242 2022 T2 W01 Part 2: seL4 Usage

saed

(&)

But remember,

you should just
use Call() and
ReplyRecv()

ssssss

Cww selL4 System Calls [3/3]

* Endpoints support all 10 IPC variants
* ROs support NBSend (), NBSendRecv()
* Notifications support NBSend(), Wait(), NBWait

 Other objects only support Call()
« Appear as (kernel-implemented) servers
» Each has a kernel-defined protocol

» operations encoded in message tag
* parameters passed in message words

Most of this is hidden
behind “syscall” wrappers

8 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

seL4 Memory-Management Principles

o

« Memory (and caps referring to it) is typed:
» Untyped memory:

* unused, free to Retype into something useful

* Frames:
* (can be) mapped to address spaces, no kernel semantics

» Rest: TCBs, address spaces, CNodes, EPs, ...

 used for specific kernel data structures

« After startup, kernel never allocates memory!
 All remaining memory made Untyped, handed to initial address space

« Space for kernel objects must be explicitly provided to kernel
» Ensures strong resource isolation

« Extremely powerful gun for shooting yourself in the foot!
* We hide much of this behind the cspace and uf allocation libraries

9 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
oA

vvvvvv
e

@% CSpace Operations

10 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0

selL4 Mechanisms

Address Spaces and Memory Management

11 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssss

@!W seL4 Memory Management Approach

12

Resources fully
delegated, allows
autonomous
operation

COMP9242 2022 T2 W01 Part 2: seL4 Usage

Addr

Strong isolation,
No shared
kernel resources

Resource Manager Resource Manager

RM
Data

init Task = Global Resource Manager

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

Memory Management Mechanics: Retype

Cwo

o

Note: Retype has
page granularity!
Retype (Frame, %)
Retype (CNode, 2™, 27)

Retype (TCB, {»)

uT

13 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv

=2

14

ﬁ selL4 Address Spaces (VSpaces)

* Very thin (arch-dependent) wrapper of hardware page tables

* Arm & x86 similar (32-bit 2-level, 64-bit 4-5 level)

« Arm 64-bit ISA (AArch64):

» page global directory (PGD)
» page upper directory (PUD)
» page directory (PD)

» page table (PT)

* PGD object represents VSpace:
» Creating a PGD (by Retype)
creates the VSpace
» Deleting PGD deletes VSpace

COMP9242 2022 T2 W01 Part 2: seL4 Usage

PD

Vg —
C w9

PageTable_Map(PD)

PT,

ﬁ

\

PT, Page_Map(PTR)

ssssss
bz

© Gernot Heiser 2019 — CC BY 4.0 UNSW

ﬁ Address Space Operations

sel.4_Word paddr = 0;
ut_t *ut =ut_alloc_4k_untyped(&p_addr);

Poor API sel.4_CPtr frame = cspace_alloc_slot(&cspace); Cap to top-level
. err = cspace_untyped_retype(&cspace, ut->cap, fram- age table
choice! seL4_ARM_SmallPageObject, seT *__ uger pag

err = map_frame(&cspace, frame, pgd, v_addr,
sel.4_AllRights, seL4_Default_VMAttributes);

Each frame mapping has:
« virtual_address, phys_address, address_space and frame cap
« address_space struct identifies the level 1 page_directory cap

* you need to keep track of (frame, PD, v_addr, p_addr)!

seL4_ARCH_Page_Unmap(frame); Poor API
cspace_delete(&cspace, frame); choice!
cspace_free_slot(&cspace, frame);

ut_free(ut, seL.4_PageBits);

15 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

(s
el

A Multiple Frame Mappings: Shared Memory

VVVVVV

16 COMP9242 2022 T2 WO1 Part 2: seL4 Usage © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW
A

17

selL4 Mechanisms

COMP9242 2022 T2 W01 Part 2: seL4 Usage

© Gernot Heiser 2019 — CC BY 4.0

/8
™

(e

b

3 Threads

« Theads are represented by TCB objects

- They have a number of attributes (recorded in TCB):

PGD reference : :
*\/Space: a virtual address space, can be shared by multiple threads
-~CSpace: capability storage, can be shared Invoked by kernel

CNode reference: ° Fault endpoint and timeout endpoint upon exception

root of CSpace + IPC buffer (backing storage for virtual message registers)

 stack pointer (SP), instruction pointer (IP), general-purpose registers

» Scheduling priority and maximum controlled priority (MCP)

« Scheduling context: right to use CPU time

These must be explicitly managed
— we provide examples!

18 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

3 Threads

Creating a thread:
« Obtain a TCB object

 Set attributes: Configure()
 associate with VSpace, CSpace, fault EP, define IPC buffer

« Set scheduling parameters
« priority, scheduling context, timeout EP (maybe MCP)

» Set SP, IP (and optionally other registers): WriteRegisters()

Thread is now initialised

 if resume_target was set in call,
thread is runnable

* else activate with Resume()

vvvvvv
e

19 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
oA

3 Creating a Thread in Own AS and CSpace

20 COMP9242 2022 T2 WO1 Part 2: seL4 Usage © Gernot Heiser 2019 - CC BY 4.0 [#5 UNSW

e

3 Threads and Stacks

« Stacks are completely user-managed, kernel doesn’t care!
» Kernel only preserves SP, IP on context switch

 Stack location, allocation, size must be managed by userland

« Beware of stack overflow!
« Easy to grow stack into other data Debugging

* Pain to debug! nightmare!!
» Take special care with automatic arrays!

fO{
int buf{ 10000];
Recommend leaving page } '
above top of stack unmapped! Stack 1 ‘ Stack 2 ‘

21 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
(el

ssssss
b

3 Creating a Thread in New AS and CSpace

PageGlobalDirectoryObject

new_cpace

new_cspace.root

22 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0

3 @ selL4 Scheduling

256 hard priorities (0—255), strictly observed
» The scheduler will always pick the highest-prio runnable thread
* Round-robin within priority level
» Kernel will never change priority (but user can do with syscall)

» Thread without scheduling context or budget is not runnable
» SC contains budget: when exhausted, thread removed from run queue
« SC contains period: specifies when budget is replenished
» Budget = period: Operates as a best-effort time slice (round robin)
0 i 255 Aim is real-time perfor-
mance, not fairness!

 Can implement fair
policy at user level

S8 SYDNEY

23 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
al

24

selL4 Mechanisms

COMP9242 2022 T2 W01 Part 2: seL4 Usage

© Gernot Heiser 2019 — CC BY 4.0

/8
™

(e

b

25

3 Exception Handling

Exception types:

invalid syscall

« eg for instruction emulation, virtualisation
capability fault

« cap lookup failed or found invalid cap
page fault

« address not mapped

* maybe invalid address

* maybe grow stack, heap, load library...
architecture-defined

« divide by zero, unaligned access, ...
timeout

« scheduling context out of budget

COMP9242 2022 T2 W01 Part 2: seL4 Usage

On exception:

kernel sends message to fault EP
pretends to be from faulter
replying will restart thread

/@8-

Fault EP

Fault
handler

has its own
fault endpoint

© Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
e

}{ { ' ‘ Interrupt Management

2 special objects for managing and acknowledging interrupts:

* Single IRQControl object
« single IRQControl cap provided by kernel to initial VSpace

» only purpose is to create IRQHandler caps

» Per-IRQ-source IRQHandler object
* interrupt association and dissociation
* interrupt acknowledgment

- edge-triggered flag S\'\ e
= Get(usb)
%4— / .
/ 1 IRQHandler
- ‘,

26 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

‘Sf??s??

}W? Interrupt Handling

IRQHandler cap allows driver to bind Notification to interrupt

» Notification is used to receive interrupt
* IRQHandler is used to acknowledge interrupt

IRQHandler

.%,/ ; SetNotification(notification)

-
&

Wait(notification)
Ack(handler)

sel.4_CPtr irq = cspace_alloc_slot(&cspace);
Unmasks IRQ sel.4_Error err = cspace_irq _control_get(&cspace, irq, seL.4_CapIRQControl,
irq number, true_if edge_triggered);
sel.4_TRQHandler_SetNotification(irq, notification);
selL4_TRQHandler_Ack(irq);

ssssss

27 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

28

3 Device Drivers

* In seL4 (and all other L4 kernels) drivers are usermode processes

* Drivers do three things:
« Handle interrupts (already explained)
« Communicate with rest of OS (IPC + shared memory)
» Access device registers

 Device register access (Arm uses memory-mapped |O)
» Have to find frame cap from bootinfo structure

- Map the appropriate page in the driver's VSpace Magic device
register access

device_vaddr = sos_map_device(&cspace, OxA0000000, BIT(seL4_PageBits));

*((void *) device_v_addr=..,;

COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
A

ssssss

selL4 System Design Hints

29 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
)

PS on Reply Objects

. ep
Client o~ @‘ Cop Server
\ C o

ro

Client Kernel
Server

ReplyRecv(ro,ep,8args
Call(ep, args) ()

Kernel sets up reply channel in RO
* overwrites previous RO state

block client on RO

= need to have multiple ROs process
to support concurrent long- , _ ReplyRecv(ro,ep,8&args)
running client requests! deliver to client
e e o

ssssss

30 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW
Garas)

Kernel has no notion of a process/task!

Informally, a “task” consists of:
* a virtual address space (Vspace)

a capability space (Cspace)

one or more threads

zero or more scheduling contexts

likely =ndpoint(s) & Notification(s)

Typically, the “task”
will not have caps
to its own Vspace
and Cspace!

A server may Related tasks may
not need an SC, share a Cspace
runs on client’s

31 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gemnot Heiser 2019 - CC BY 4.0 5] UNSW

Q-“hl’-|-4 Shared memory is usually required...

In dynamic system may pass
buffer cap, rather than pointer

%&m

32 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0

33

. especially for high-performance 1/O

IP stack NW
driver
Space available Data available

head

tail In practice separate
buffers & Notifications
for tx/rx

Ring buffer
COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 :ﬂj} UNSW

Project: cspace and ut libraries

35

ﬁ Memory Management Caveats

* The UT table handles allocation for you

» But: very simple buddy-allocator:

* Freeing an object of size n

= can allocate new objects < size n Frame 2" 2"
, , , PT/PD/PUD/PGD 212 212
* Freeing 2 objects of size n Endpoint i 0
can allocate an object of size 2n.
Notification 25 25
Scheduling Context =28 28
Cslot 24 24
Cnode > 212 212
Values for TCB 211 211
AArchtc4
COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0

ﬁ Memory-Management Caveats

36

» Objects are allocated by Retype() of Untyped memory

But debugging
nightmare if

* The kernel will not allow you to overlap objects you try!!

« ut_alloc and ut_free() manage user-level view of allocation.

* Major pain if kernel and user view diverge
» TIP: Keep objects address and CPtr together!

Untyped Memory 21°B

8 frames

COMP9242 2022 T2 W01 Part 2: seL4 Usage

Be careful with allocations!

Don’t try to allocate all of physical memory as
frames, you need more memory for TCBs,
endpoints etc.

Your frametable will eventually integrate with
ut_alloc to manage the 4KiB untyped size.

© Gernot Heiser 2019 — CC BY 4.0 UNSW

(s
el

Project Platform: ODROID-C2

ODROID-C2 Board
seL4_DebugPutChar()

Armlogic S905 SoC
| Serial /
Serial

ARMv8 ARMv8 connector
Cortex-A53 Cortex-A53 iEee MO: serial over LAN
Ethernet for userlevel apps
ARMVS ARMVS Ethernet — 0 o
Cortex-A53 Cortex-A53 Other M6: Network File
System (NFS)
2 GiB Memory

37 COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

oy eNEr

38

In the Real World (Courtesy Boeing, DARPA)

COMP9242 2022 T2 W01 Part 2: seL4 Usage © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

