School of Computer Science & Engineering
COMP9242 Advanced Operating Systems

Australia’s
Global
SYDNEY UniVerSity

2022 T2 Week 01 Part 1

L4/MIPS

L4/Alpha

Introduction: Microkernels and selLL4
@GernotHeiser T

GMD/IBM/Karlsruhe

Dresden I

Hazelnut

Fiasco

L4-embed

Codezero

Pistachio

Fiasco.OC

Commercial Clone P4 — PikeOS

: 93' 94I 95I 96' 97I 98' 99' OOI 01I 02I 03I 04I 05I 06I O7I O8I 09I 1OI 11| 12I

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

Why Advanced Operating Systems?

« Understand OS (especially microkernels) in real depth

« Understand how to design an OS

 Learn to build a sizable system with great deal of independence
 Learn to cope with the complexity of systems code

 Tackle a real challenge

* Get a glimpse of OS research, and preparation for it

 Obtain skills highly sought-after in industry

« Have fun while working hard!

COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

3

Today’s Lecture

 Whirlwind intro to microkernels and the context of selL4
 selL4 principles and concepts

* seL4 Mechanisms
* |PC and Notifications

Aim: Get you ready for the project quickly

COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

4

Microkernels

COMP9242 2022 T2 W01 Part 1: Introduction to selL4

© Gernot Heiser 2019 — CC BY 4.0

UNSW

SYDNEY

5

Microkernels: Reducing the Trusted Computing Base

* |dea of microkernel:

IPC performance Flexible, minimal platform
Mechanisms, not policies

£ enieel « OS functionality provided by usermode servers
« Servers invoked by kernel-provided message-
passing mechanism (IPC)
Application Syscall » Goes back to Nucleus [Brinch Hansen’70]
4
VES 1 User

Mode Device

IPC, file system Application Driver

Scheduler, virtual memory I\K/lir(;;el

Device drivers, dispatcher IPC, virtual memory ANT=YS

Hardware Hardware

COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Monolithic vs Microkernel OS Evolution

Monolithic OS Microkernel OS

* New features add code kernel » Features add usermode code

* New policies add code kernel * Policies replace usermode code
« Kernel complexity grows » Kernel complexity is stable

User

Vode « Adaptable

 Dependable
Highly optimised

Syscall = Application

VFS

20.000 IPC, file system Application
, Kernel

kSLOC Scheduler, virtual memory ode

Niec 10 kSLOC

Device drivers, dispatcher IPC, virtual memory

6 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

Microkernel Principle: Minimality

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing

implementations, would prevent the implementation of
the system’s required functionality. [Lietdke SOSP’95]

(4 » Small trusted computing base
- [Easier to get right
« Small attack surface
« Challenges:
— APl design: generality despite small code base
— Kernel design and implementation for high performance

7 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

L4: 30 Years High-Performance Microkernels

First L4 kernel
with capabilities

IOS secure
enclave

API Inheritance
>

=> L4/MIPS

OKL4 Microvisor

Code Inheritance

OKL4 pKernel []

)

Qualcomm
.

modem @Qs_/

L4/Alpha

Codezero

L3 —> L4 “x” Hazelnut Pistachio

UNSW/NICTA Fiasco Fiasco.0OC

GMD/IBM/Karlsruhe

Dresden [OK Labs]

Commercial Clone P4 — PikeOS

>

| o3 1 94 | 95 | 96 1 97 | 98 | 99 | 00 [01 T 02 [03 1 04 1 05 06 | 07 1 08 1090 1 10 [114 [12 | 13

8 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

The selL4 Microkernel

COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

Principles

« Single protection mechanism: capabilities
« Now also for time: MCS configuration [Lyons et al, EuroSys’18]

 All resource-management policy at user level
 Painful to use

* Need to provide standard memory-management library

« Results in L4-like programming model

 Suitable for formal verification
 Proof of implementation correctness
 Attempted since 70s

 Finally achieved by L4.verified project
at NICTA [Klein et al, SOSP’09]

More on principles in my blog: https://bit.ly/34ul8FI

10 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

Concepts in a Slide

%/° Capabilities (Caps): reference kernel objects

* 10 kernel object types:
» Threads (thread-control blocks: TCBs) — 3

@ = Scheduling contexts (SCs)
« Address spaces (page table objects: PDs, PTs)

m * Reply objects (ROs)— —~

- Notifications s
~
v

- Capability spaces (CNodes)— Fk

|+ Frames
* Interrupt objects (architecture specific)

/- Untyped memory
« System calls:
« Call(), ReplyRecv() (and one-way variants)

* Yield()

11 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

12

Not a Concept: Hardware Abstraction

Why?
« Hardware abstraction violates minimality
« Hardware abstraction introduces policy

True microkernel:

« Minimal wrapper of hardware, just enough to safely multiplex
« “CPU driver” [Charles Gray]

« Similarities with Exokernels [Engeler '95]

COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

@seld What Are (Object) Capabilities?

Access rights

13 COMP9242 2022 T2 W01 Part 1: Introduction to selL4 © Gernot Heiser 2019 — CC BY 4.0

ssssss

C w9 selL4 Capabilities

 Stored in cap space (CSpace) O
» Kernel object made up of CNodes \\
« each an array of cap “slots”

* Inaccessible to userland
 But referred to by pointers into CSpace (slot addresses)
* These CSpace addresses are called CPTRs

« Caps convey specific privilege (access rights)
* Read, Write, Execute, GrantReply (Call), Grant (cap transfer)

« Can invoke a cap or derive cap of less or equal strength
 Details later

VVVVVV

14 COMP9242 2022 T2 W01 Part 1: Introduction to selL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

selL.4 Mechanisms

15 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

@@ Protected Procedure Calls (IPC)

Fundamental microkernel operation

» Kernel provides no services, only mechanisms
« OS services provided by (protected) user-level server processes
 Invoked by protected procedure call (called “IPC” for historical reasons)

Client Server
seL4 e |

selL4 |IPC uses a handshake through Endpoints:
 Transfer points without storage capacity

« Message must be transferred instantly .
, send receive
 Single-copy user = user by kernel

16 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

@@ selL4 IPC: Cross-Domain Invocation

Client Server
f(args) {
err = server.f(args); ;
selL4 | IPC T

seL4 IPC is not: .
. A mechanism for shipping data selL4 IPC is: A user-controlled

. A synchronisation mechanism context switch “with benefits™
. side effect, not purpose change protection context
’ e pass arguments / result

17 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
el

@) 1pc: Endpoints

* Involves 2 threads, but
always one blocked

Client Server
Running Blocked Blocked Running
while (true) {

* logically, thread moves
between address spaces e plyRe v ()

 Threads must rendez-vous Call (ep_cap, ..)—>®

* One side blocks until the
other is ready 3

* Implicit synchronisation

« Arguments copied from sender’s to receiver’'s message reqisters

« Combination of caps (by reference arguments) and data words (by value)
* Presently max 121 words (484B, incl message “tag”)
« Should never use anywhere near that much!

18 COMP9242 2022 T2 W01 Part 1: Introduction to selL.4 © Gernot Heiser 2019 — CC BY 4.0 E\: SSSSSS

@ Endpoints are Message Queues

Note: On single

Client, o core should not
@ BEEEE—_ | JEEEEEE - get queues —
Client, /@ ? server should be

highest priority!

But: Reasonable
for single-threaded
(“passive”) server
on multicore!

« EP has no sense of direction

Further callers of Shreh Frnaeslien May queue senders or receivers

same direction queues caller * never both at the same time!

queue by priority « Communication needs 2 EPs!

19 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 g UNSW

YYYYYY

@@ Server Invocation & Return

« Asymmetric relationship: Client, Server Cjient,
» Server widely accessible, clients not [— oo
« How can server reply back to | 1

client (distinguish between them)?
* Client can pass session cap in first request

o . New MCS
* server needs to maintain session state kernel
» forces stateful server design semantics!

 seL4 solution: Kernel creates channel in reply object (RO)
« server provides RO in ReplyRecv() operation
 kernel blocks client on RO when executing receive phase
« server invokes RO for send phase (only one send until refreshed)
 only works when client invokes with Call()

VVVVVV

20 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

@ C&l]. SemantiCS Priorities:

21

« Call to high
 Receive from low!

ANEP
Client (‘ Serve.
e

ro

Client Kernel
Server

ReplyRecv(ro,ep,8&args)

Call(ep, args) deliver to server
block client on RO One per client for
process blocking calls!
, , ReplyRecv(ro,ep,8&args)
deliver to client
process

COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
el

@@ Stateful Servers: Identifying Clients

« Server must respond to correct client Client, Server

* Ensured by reply cap o Client, state
« Must associate request Client, e

ient, state
Com> ‘

with correct state

» Could use separate EP per client

« endpoints are lightweight (16 B)
 but would require mechanism to wait on a set of EPs (like Unix select())

* Instead, sel4 allows to individually mark (“badge”) caps to same EP

 server provides individually badged (session) caps to clients

« separate endpoints for opening session, further invocations
 server tags client state with badge

» kernel delivers badge to receiver on invocation of badged caps

22 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss
el

@@ IPC Mechanics: Virtual Registers

* Like physical registers, virtual registers are thread state
 context-switched by kernel
* map to physical registers or thread-local memory (“IPC buffer”)

* Message registers
 contain message transferred in IPC
« architecture-dependent subset mapped to physical registers
 presently 1 on x86, 4 on x64, Arm, RISC-V
* library interface hides details
* 1st transferred word is special, contains message tag
« API: MR[O] refers to next word (not the tag!)

23 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

el

@@ IPC Operations Summary

 Call (ep_cap, ...)
« Atomic: guarantees caller is ready to receive reply
« Sets up server’s reply object

* ReplyRecv (ep_cap, ...) Not really
* Invokes RO (non-blocking), waits on EP, re-inits RO useful

* Recv (ep_cap, ...), Reply(...), Send (ep_cap, ...)
* For initialisation and exception handling Need error
* needs Read, Write, Write permission, respectively handling

- NBSend (ep_cap, ...) slteieel

 Polling send, message lost if receiver not ready
No failure notification where this reveals info on other entities!

24 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
[eal
=

FF ? Notifications — Synchronisation Objects

* Logically, a Notification is an array of binary semaphores

» Multiple signalling, select-like wait
* Not a message-passing IPC operation!

* Implemented by Thread, Thread,
data word in Notification Running Blocked Blocked Running

« Send OR-s sender’s
cap badge to data word

« Receiver can poll or wait

w = Poll (not_cap, ...)

o eAattrme and € ey w = Wait (not_cap,...)
e waiting returns and
C|earsgdata word Signal (not_cap,)—»rr t—»l
. gg![gnv%ét:g treturns Sign;l (not_cap,)_,rr t_,

25 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

=
vvvvvv
A

% Notification Queues

Pm@‘§13ﬁ |‘ ! | !
Processz3 j
o

Kernel — \ Notification

TCB; TCB; ololololol ... |0

N~ A

First invocation

Further waiters)
queues waliter

queued by priority

26 COMP9242 2022 T2 W01 Part 1: Introduction to seL4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

@@ Receiving from EP and Notification

[Server with synchronous and asynchronous interface]

Synchronous Asynchronous
RPC protocol completion signals

Client SN, ? Device
o>

| _ Separate thread =~ Concurrency
Better: single thread for both interfaces per interface? control, complexity!

* Notification “bound” to TCB
« Signal delivered as “IPC” from EP “°¢

Must partition badge
space to distinguish!

27 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 2 UNSW
A

VVVVVV

“ IPC Message Format

28

Semantics defined
by IPC protocol
(Kernel or user)

Bitmap indicating
caps which had
badges extracted

COMP9242 2022 T2 W01 Part 1: Introduction to selL4

Caps sent
or received

© Gernot Heiser 2019 — CC BY 4.0

VVVVVV

@@ Client-Server IPC Example

seL.4_Messagelnfo_t tag = seL.4_MessageInfo_new(0, 0,0, 1); Client
seLl4_SetMR(O, value);
Set message seL4_Call(server_c, tag);
register #0

Server ut_t* reply_ut = ut_alloc(seL4_ReplyBits, &cspace);
sel.4_CPtr reply = cspace_alloc_slot(&cspace); Derive cap with
err = cspace_untyped_retype(&cspace, reply_ut->cap, reply, badge Oxff
seL4_ReplyObject, seL.4_ReplyBits);
Allocate slot & selLl4_CPtr badged_ep = cspace_alloc_slot(&cspace);
retype to RO cspace_mint(&cspace, badged_ep, &cspace, ep, seL4_AllRights, Oxff);
Wait on EP, receiving
seL.4_Word badge; badge, setting RO
seLL4_MessageInfo_t msg = sel.4_Recv(ep, &badge, reply);
Reply to sender -
identified by RO selLl4_MessageInfo_t response = sel.4_Messagelnfo_new(O, O, O, 1);
selL.4_NBSend(reply, response);
Note: this is for clarity, in
reality should use ReplyRecv!

29 COMP9242 2022 T2 W01 Part 1: Introduction to sel4 © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

“ Proper Server Loop

EP to wait on

Return value Reply object

Client badge

30 COMP9242 2022 T2 W01 Part 1: Introduction to selL4 © Gernot Heiser 2019 — CC BY 4.0

