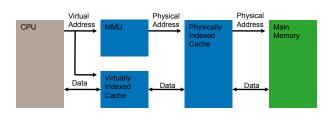


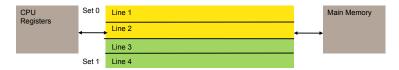
Cache Organization


- Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B)
- Cache *line* is transfer unit between cache and RAM (or lower cache)
 typically 16–32 bytes, sometimes 128 bytes and more
- Line is also unit of storage allocation in cache
- Each line has associated control info:
 - valid bit
 - modified bit
 - tag
- Cache improves memory access by:
 - absorbing most reads (increases bandwidth, reduces latency)
 - making writes asynchronous (hides latency)
 - clustering reads and writes (hides latency)

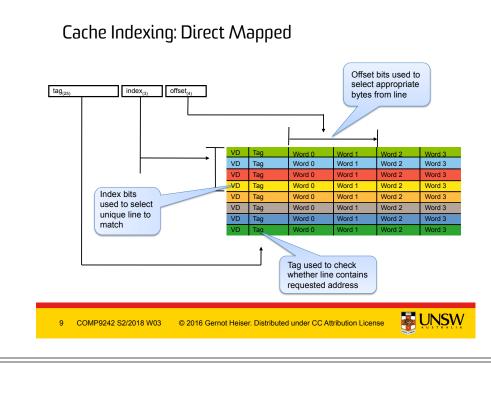

5 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License 💀 UNSA

Cache Indexing

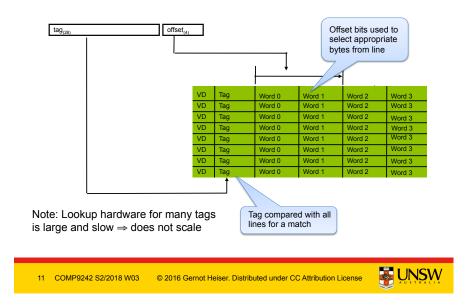
- The *tag* is used to distinguish lines of a set...
- Consists of high-order bits not used for indexing



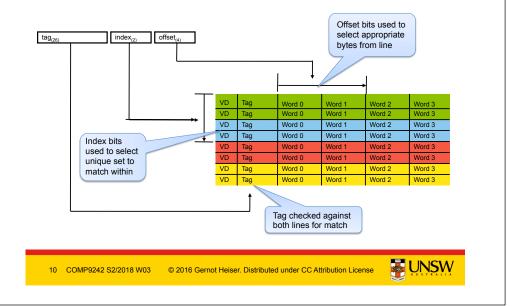
- Virtually indexed: looked up by virtual address
 - operates concurrently with address translation
- Physically indexed: looked up by physical address
 - requires result of address translation
- Usually a hierarchy: L1 (on core), L2, ..., LLC (last-level cache, next to RAM)
 - L1 may use virtual address, all others use physical only


6 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

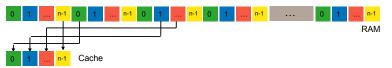
Cache Indexing



- · Address hashed to produce index of line set
- · Associative lookup of line within set
- *n* lines per set: *n*-way set-associative cache
 - typically n = 1 ... 5, some embedded processors use 32-64
 - n = 1 is called *direct mapped*
 - 2 ≤ n ≤ ∞ is called set associative
 - $n = \infty$ is called *fully associative* (unusual for I/D caches)
- Hashing must be simple (complex hardware is slow)
 - generally use least-significant bits of address (except L3 on recent x86)
- 8 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License



Cache Indexing: Fully Associative

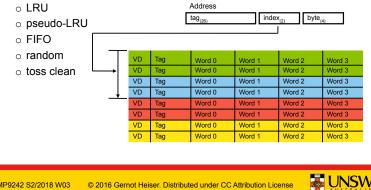


Cache Indexing: 2-Way Associative

Cache Mapping Implications

Multiple memory locations map to the same cache line

- Locations mapping to cache set *i* are said to be of colour *i*
- n-way associative cache can hold n lines of the same colour
- Types of cache misses ("the four Cs"):
 - Compulsory miss: data cannot be in the cache (if infinite size)
 o first access (after flush)
 - Capacity miss: all cache entries are in use by other data $_{\odot}$ would not miss on infinite-size cache
 - Conflict miss: all lines of the correct colour are in use by other data
 would not miss on fully-associative cache
 - Coherence miss: miss forced by hardware coherence protocol


12 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Replacement Policy

- Indexing (using address) points to specific line set
- On miss (all lines of set are valid): replace existing line
- Replacement strategy must be simple (hardware!)
 - dirty bit determines whether line must be written back
 - typical policies:

13 COMP9242 S2/2018 W03

© 2016 Gernot Heiser. Distributed under CC Attribution License

Cache Addressing Schemes

- · For simplicity assumed so far that cache only sees one type of address: virtual or physical
- However, indexing and tagging can use different addresses!
- Four possible addressing schemes:
 - virtually-indexed, virtually-tagged (VV) cache
 - virtually-indexed, physically-tagged (VP) cache
 - physically-indexed, virtually-tagged (PV) cache
 - physically-indexed, physically-tagged (PP) cache
- PV caches can make sense only with unusual MMU designs
 - not considered any further

Cache Write Policy

- Treatment of store operations
 - write back: Stores only update cache; memory is updated once dirty line is replaced (flushed) ✓ clusters writes
 - # memory inconsistent with cache
 - # multi-processor cache-coherency challenge
 - write through: stores update cache and memory immediately memory is always consistent with cache ₭ increased memory/bus traffic
- On store to a line not presently in cache (write miss):
 - write allocate: allocate a cache line and store there typically requires reading line into cache first!
 - **no allocate:** store directly to memory, bypassing the cache
- Typical combinations: ٠
 - write-back & write-allocate
 - write-through & no allocate

14 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

UNSV

Virtually-Indexed, Virtually-Tagged Cache

- Also called virtually-addressed cache
- Various incorrect names in use:
 - virtual cache
 - virtual address cache
- Uses virtual addresses only ٠
- Can operate concurrently ٠ with MMU
- Still needs MMU lookup VD Tag for access rights VD Tag
- Writeback needs PA - TLB lookup?
- Used for on-core L1

Taq

CPU

tag₍₂₆

Word 0

Word 0

Word 0

Word (

index,2

Word 1

Word 1

Word 1

Word

MMU

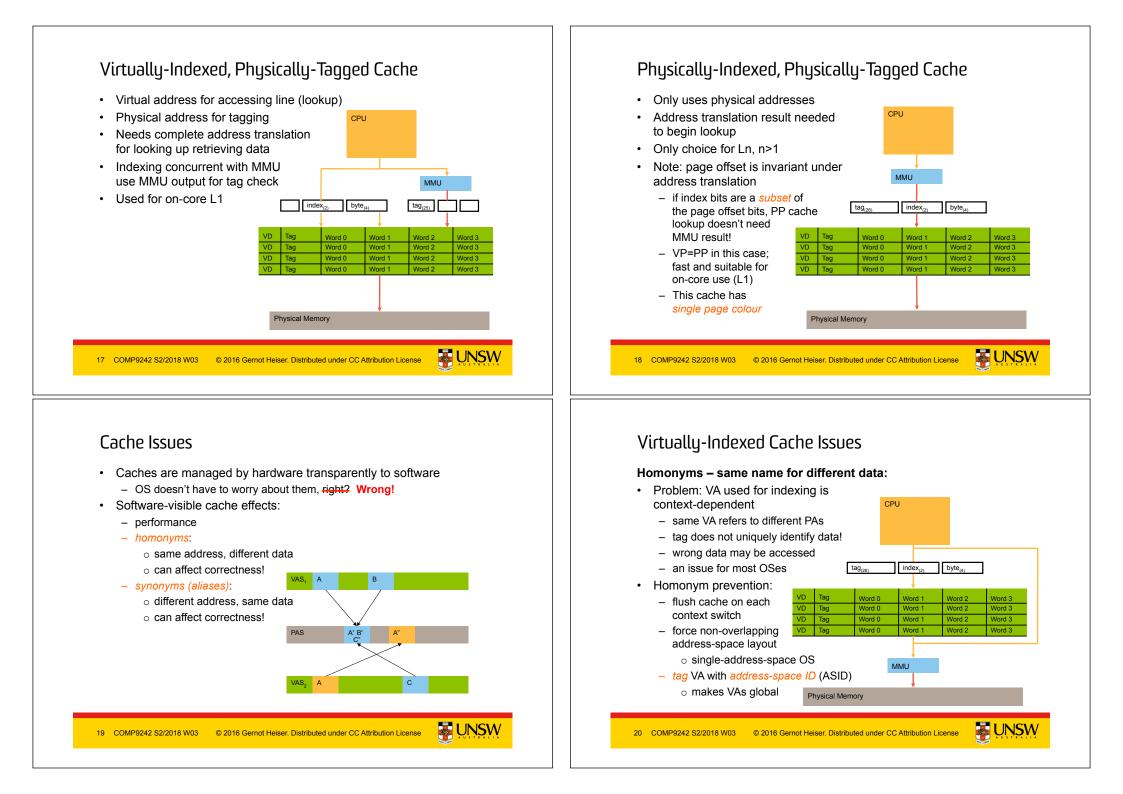
byte₍₄₎

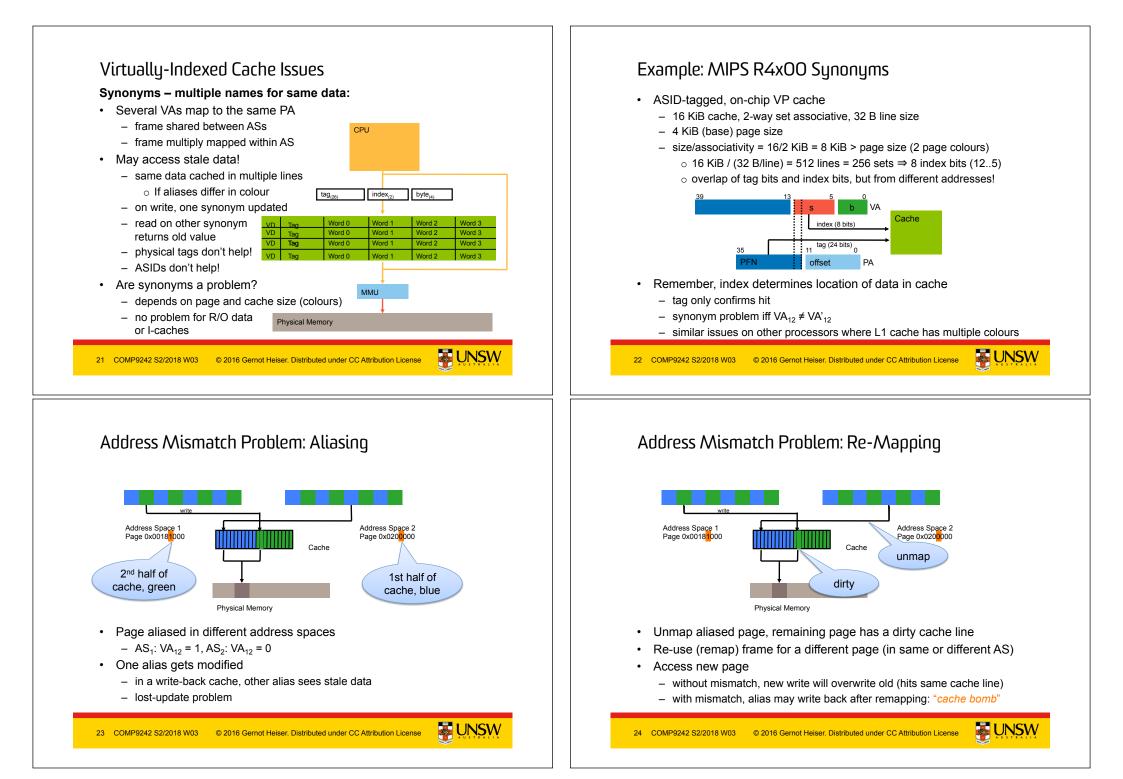
Word 2

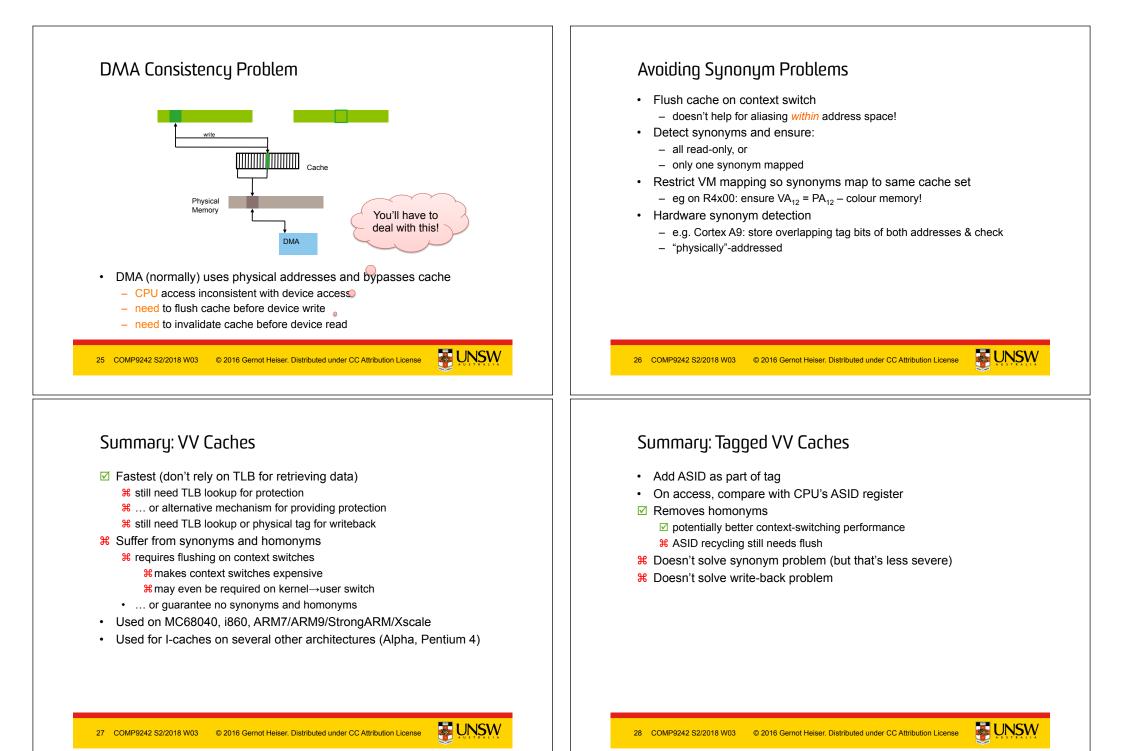
Word 2

Word 2

Word 3


Word 3


Word 3


Word 3

Word 3

Summary: VP Caches

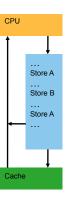
- Medium speed
 - ☑ lookup in parallel with address translation
 - $\ensuremath{^{\ensuremath{\ensuremath{\mathbb{H}}}}}$ tag comparison after address translation
- ☑ No homonym problem
- **#** Potential synonym problem
- Bigger tags (cannot leave off set-number bits)
 increases area, latency, power consumption
- Used on most contemporary architectures for L1 cache

© 2016 Gernot Heiser. Distributed under CC Attribution License

Summary: PP Caches

₭ Slowest

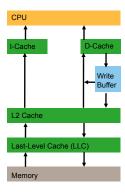
- # requires result of address translation before lookup starts
- No synonym problem
- ☑ No homonym problem
- Easy to manage
- ☑ If small or highly associative index can be in parallel with translation
 - all index bits come from page offset
 - combines advantages of VV and PP cache
 - useful for on-core L1 cache (Itanium, recent x86)
- ☑ Cache can use *bus snooping* to receive/supply DMA data
- ☑ Usable as post-MMU cache with any architecture


For an in-depths coverage see [Wiggins 03]

30 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

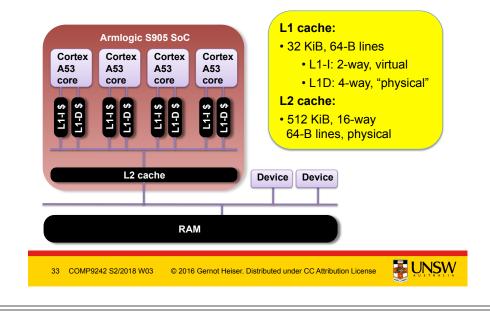
Write Buffer

29 COMP9242 S2/2018 W03


- · Store operations can take a long time to complete
 - eg if a cache line must be read or allocated
- Can avoid stalling the CPU by buffering writes
- Write buffer is a FIFO queue of incomplete stores
 - Also called store buffer or write-behind buffer
 - Typically between cache levels, cache and memory
- Can also read intermediate values out of buffer
 - to service lead of a value that is still in write buffer
 - avoids unnecessary stalls of load operations
- · Implies that memory contents are temporarily stale
 - on a multiprocessor, CPUs see different order of writes!
 - "weak store order", to be revisited in SMP context

UNS\

Cache Hierarchy


- Hierarchy of caches to balance memory accesses:
 - small, fast, virtually-indexed L1
 - large, slow, physically indexed L2–L5
- Each level reduces and clusters traffic
- L1 typically split into I- and D-caches
 - "Harvard architecture"
 - requirement of pipelining
- Other levels generally unified
- Chip multiprocessors:
 - Usually L3 shared chip-wide
 - L2 private, clustered or shared chip-wide

ODROID-C2 (Cortex A53) System Architecture

TLB Size (I-TLB + D-TLB)

Architecture	TLB Size inst + data	TLB Assoc	Page Size	Coverage (base page)
VAX-11	64–256	2	0.5 KiB	32–128 KiB
ix86	32i + 64d	4	4 KiB + 4 MiB	128 KiB
MIPS	96–128	full	4 KiB – 16 MiB	384–512 KiB
SPARC	64	full	8 KiB – 4 MiB	512 KiB
Alpha	32–128i + 128d	full	8 KiB – 4 MiB	256 KiB
RS/6000	32i + 128d	2	4 KiB	256 KiB
Power-4 (G5)	1024	4	4 KiB	512 KiB
PA-8000	96i + 96d	full	4 KiB – 64 MiB	384 KiB
Itanium	64i + 96d	full	4 KiB – 4 GiB	384 KiB
ARMv7 (A9)	64–128	1–2	4 KiB – 16 MiB	256–512 KiB
x86 (Skylake)	L1:128i+64d; L2:1536	4	4 KiB + 2/4 MiB	1 MiB

Not much growth in 40 years!

Translation Lookaside Buffer (TLB)

• TLB is a (VV) cache for page-table entries

ASID

VPN

- TLB can be
 - hardware loaded, transparent to OS
- software loaded, maintained by OS
- TLB can be:
 split: I- and D-TLBs

unified

s

ASID

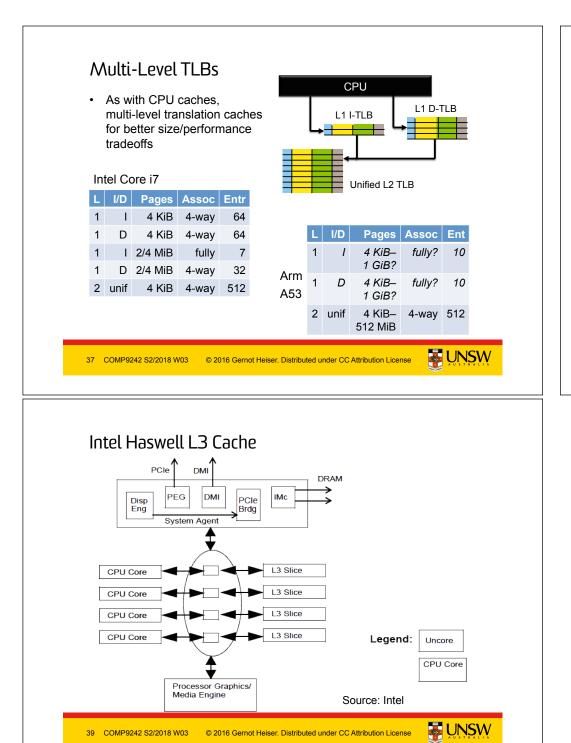
VPN

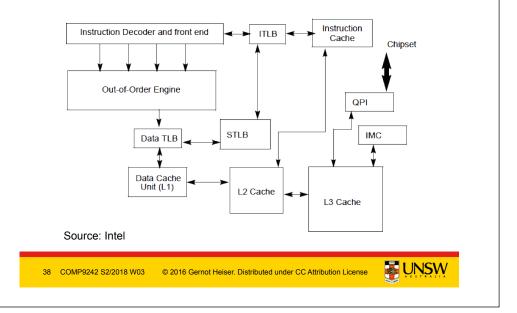
PFN

34 COMP9242 S2/2018 W03 © 2016 Gernot Heiser. Distributed under CC Attribution License

TLB Size (I-TLB + D-TLB)

TLB coverage


- · Memory sizes are increasing
- · Number of TLB entries are roughly constant
- · Page sizes are steady
 - 4 KiB (SPARC, Alpha used 8KiB)
 - OS designers have trouble using superpages effectively
- · Consequences:
 - total amount of RAM mapped by TLB is not changing much
 - fraction of RAM mapped by TLB is shrinking dramatically!
 - Modern architectures have very low TLB coverage!
- The TLB can become a bottleneck


flags

flags

UNSV

Intel Core i7 (Haswell) Cache Structure

