UNSW

AUSTRALIA

NICTA
COMP9242

Advanced Operating Systems

S2/2015 Week 5:
Performance Evaluation

@GernotHeiser

%‘v‘ rdos 8 () WSHEth AT e ‘”‘chm\;mvmr
Moy DR Investment
orvIT [l B = B 3 &
Qinsnd grizes 8 Poow B v
Overview (Yo
NICTA

+ Performance

« Benchmarking

« Profiling

« Performance analysis

COMP9242 S2/2015 W04 3 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Copyright Notice @

These slides are distributed under the Creative Commons NICTA

Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

» “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2015 W04 2 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License H ey
Purpose of Performance Evaluation @

NICTA
Research:

» Establish performance advantages/drawbacks of an approach
— may investigate performance limits
— should investigate tradeoffs

Development:

» Ensure product meets performance objectives
— new features must not unduly impact performance of existing features
— quality assurance

Purchasing:

* Ensure proposed solution meets requirements
— avoid buying snake oil

» |dentify best of several competing products

Different objectives may require different approaches
* Unclear objectives will lead to unclear results

COMP9242 S2/2015 W04 4 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

AUSTRALIA

What Performance? ()®
NICTA

« Cold cache vs hot cache

- hot-cache figures are easy to produce and reproduce

+ but are they meaningful?

- Best case vs average case vs worst case

- best-case figures are nice — but are they useful?

- average case — what defines the “average™?

- expected case — what defines it?

— worst case — is it really “worst” or just bad? Does it matter?
+ What does “performance” mean?

- is there an absolute measure?

- can it be compared? With what?

- Benchmarking

Note: Always analyse performance before optimising!
« Ensure that you focus on the bottlenecks, they may be non-obvious!

COMP9242 S2/2015 W04 5 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Benchmarking in Research (JO®
NICTA

+ Generally one of two objectives:
— Show new approach improves performance
« Must satisfy progressive and conservative criteria:
- significant improvements of important aspect
- no significant degradation elsewhere
- Show otherwise attractive approach does not undermine performance

» Requirement: objectivity/fairness
- Selection of baseline
- Inclusion of relevant alternatives
- Fair evaluation of alternatives

+ Requirement: analysis/explanation of results
- Model of system, incorporating relevant parameters
- Hypothesis of behaviour
- Results must support hypothesis

COMP9242 S2/2015 W04 7 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Overview (Yo
+ Performance NICTA
+ Benchmarking
+ Profiling
+ Performance analysis

DO YOU WANT THE :
i e TEN- MINUTE EXPLANA- o
? TI F WHY THE
i DATA ARE USELESS, OR SALED HERE

A SIMPLE "HERE YOU

S
It

13-35-0Y 2004 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com scottadams®aol.com

COMP9242 S2/2015 W04 6 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Lies, Damned Lies, Benchmarks

« Micro- vs macro-benchmarks

+ Synthetic vs “real-world”

« Benchmark suites, use of subsets

« Completeness of results

« Significance of results

+ Baseline for comparison

- Benchmarking ethics

« What is good — analysing the results

COMP9242 S2/2015 W04 8 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

UNSW

AUSTRALIA

@
NICTA

UNSW

AUSTRALIA

Micro- vs Macro-Benchmarks (e

« Macro-benchmarks NICTA

— Use realistic workloads
- Measure real-life system performance (hopefully)
+ Micro-benchmarks

— Exercise particular operation, e.g. single system call

- Good for analysing performance / narrowing down down bottlenecks
+ critical operation is slower than expected
- critical operation performed more frequently than expected
+ operation is unexpectedly critical (because it's too slow)

COMP9242 S2/2015 W04 9 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Synthetic vs “Real-world” Benchmarks o

. Real-world benchmarks: NICTA

- real code taken from real problems
+ Livermore loops, SPEC, EEMBC, ...

- execution traces taken from real problems

- distributions taken from real use
- file sizes, network packet arrivals and sizes

— Caution: representative for one scenario doesn't mean for every scenario!
+ may not provide complete coverage of relevant data space
+ may be biased

+ Synthetic benchmarks

- created to simulate certain scenarios

- tend to use random data, or extreme data

— may represent unrealistic workloads

— may stress or omit pathological cases

COMP9242 S2/2015 W04 11 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Micro- vs Macro-Benchmarks (Y0

Benchmarking Crime: Micro-benchmarks only NICTA

« Pretend micro-benchmarks represent overall system performance

Real performance can generally not be assessed with micro-benchmarks

- Exceptions:
— Focus is on improving particular operation known to be critical
— There is an established base line

Note: My macro-benchmark is your micro-benchmark
- Depends on the level on which you are operating
+ Eg: Imbench

— ... Iis a Linux micro-benchmark suite

— ... Iis a hypervsior macro-benchmark

COMP9242 §2/2015 W04 10 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Standard vs Ad-Hoc Benchmarks (Y@
NICTA

Why use ad-hoc benchmarks?

+ There may not be a suitable standard

- Eg lack of standardised multi-tasking workloads
« Cannot run standard benchmarks

- Limitations of experimental system

— Resource-constrained embedded system

Why not use ad-hoc benchmarks?
« Not comparable to other work
« Poor reproducibility

Facit: Use ad-hoc BMs only if you have no choice!
+ Justify your approach carefully
+ Document your benchmarks well (for reproducibility!)

5W04 12 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Benchmark Suites (Y®

+ Widely used (and abused!) NICTA

« Collection of individual benchmarks, aiming to cover all of relevant
data space
+ Examples: SPEC CPU{92|95|2000|2006}
— Originally aimed at evaluating processor performance
— Heavily used by computer architects
- Widely (ab)used for other purposes
— Integer and floating-point suite
- Some short, some long-running
- Range of behaviours from memory-intensive to CPU-intensive
 behaviour changes over time, as memory systems change

+ need to keep increasing working sets to ensure significant memory
loads

COMP9242 §2/2015 W04 13 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

AUSTRALIA

Benchmark Suite Abuse (e

Benchmarking Crime: Select subset of suite NICTA

+ Introduces bias
- Point of suite is to cover a range of behaviour

» o«

— Be wary of “typical results”, “representative subset”

« Sometimes unavoidable
- some don't build on non-standard system or fail at run time
— some may be too big for a particular system
+ eg, don't have file system and run from RAM disk...
« Treat with extreme care!
- can only draw limited conclusion from results
— cannot compare with (complete) published results
- need to provide convincing explanation why only subset
Other SPEC crimes include use for multiprocessor scalability
— run multiple SPECs on different CPUs
— what does this prove?

COMP9242 S2/2015 W04 15 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

AUSTRALIA

Obtaining an Overall Score for a BM Suite (Yo

NICTA

+ How can we get a single figure of merit for the whole suite?
« Example: comparing 3 systems on suite of 2 BMs

Normalise to
System Y

Normalise to
System X

(@)
o}
Q}System X System Y System Z

Benchmark Abs Rel Abs Rel Abs Rel
1 20 2.00 10 1.00 40 4.00
40 0.50 80 1.00 20 0.25
eom. mean 1.00 1.00 1.00

Geometric
mean?

Invariant
under
normalisation

Arithmetic mean is meaningless for relative numbers
!

Rule: arithmetic mean for raw numbers,
geometric mean for normalised! [Fleming & Wallace, ‘86]

COMP9242 §2/2015 W04 14 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Partial Data ()e
NICTA

Frequently seen in I/O benchmarks:
- Throughput is degraded by 10%
+ “Our super-reliable stack only adds 10% overhead”

OOO

- Why is throughput degraded?
+ latency too high
+ CPU saturated?

- Also, changes to drivers or I/O subsystem may affect scheduling
- interrupt coalescence: do more with fewer interrupts

— Throughput on its own is useless!

Almost certainly
not true!

COMP9242 S2/2

©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Throughput Degradation @ Overview e

+ Scenario: Network driver or protocol stack NICTA « Performance NICTA
- New driver reduces throughput by 10% — why? « Benchmarking
- Compare: - Profiling
. 0, 0, .
100 Mb/s, 100% CPU vs 90 Mb/s, 100% CPU . Performance analysis
« 100 Mb/s, 20% CPU vs 90 Mb/s, 40% CPU -
. s . . atenc
- Correct figure of merit is processing cost per unit of data "mitedy
+ Proportional to CPU load divided by throughput
- Correct overhead calculation:
10 ps/kb vs 11 ps/kb: 10% overhead
2 ps/kb vs 4.4 ps/kb: 120% overhead
Benchmarking crime: Show throughput degradation only
« ... and pretend this represents total overhead
COMP9242 §2/2015 W04 17 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License e COMP9242 §2/2015 W04 18 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License e
Profiling e Gprof example output @
+ Run-time collection of execution statistics NICTA Each sample counts as 0.01 seconds. NICTA
. i . i . % cumulative self self total
- invasive (requires some degree of instrumentation) time seconds seconds calls ms/call ms/call name
- unless use hardware debugging tools or cycle-accurate simulators 33.34 0.02 0.02 7208 0.00 0.00 open
Y) 16.67 0.03 0.01 244 0.04 0.12 offtime
— therefore affects the execution it's trying to analyse 16.67 0.04 0.01 8 1.25 1.25 memccpy
- good profiling approaches minimise this interference 16.67 0.05 0.01 7 143 1.43 write
. L. . . . 16.67 0.06 0.01 mcount
+ ldentify parts of system where optimisation provides most benefit 0.00 0.06 0.00 236 0.00 0.00 tzset
. 0.00 0.06 0.00 192 0.00 0.00 tolower
+ Complementary to microbenchmarks 0.00 0.06 0.00 a7 0.00 0.00 strlen
. Example. gprof 0.00 0.06 0.00 45 0.00 0.00 strchr
- o 0.00 0.06 0.00 1 0.00 50.00 main
— compiles tracing into code, to record call graph 0.00 0.06 0.00 0.00 0.00 memcpy
- uses statistical sampling: 0.00 0.06 0.00 . 0.00 10.11 print
X X 0.00 0.06 0.00 1 0.00 0.00 profil
on each timer tick record program counter 0.00 0.06 0.00 1 0.00 50.00 report
« post execution translate this into execution-time share
Source: http://sourceware.org/binutils/docs-2.19/gprof
COMP9242 S2/2015 W04 19 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U COMP9242 §2/2015 W04 20 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

AUSTRALIA AUSTRALIA

Gprof example output (2) e Profiling (Je

ity: i 3 NICTA : : : - NICTA
granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds . Run't|me C0||eCtI0n Of executlon Statlstlcs
index % time self children called name — invasive (requires some degree of instrumentation)
<spontaneous> X R
(1] 100.0 0.00 0.05 start [1] - therefore affects the execution it's trying to analyse
0.00 0.05 1/1 main [2] - e e
0.00 0.00 1/2 on_exit [28] - good profiling approaches minimise this interference
0.00 0.00 1/1 exit [59] B 5 S . H
« Use to identify parts of system where optimisation provides most
0.00 0.05 1/1 start [1] benefit
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3] « Complementary to microbenchmarks
0.00 0.05 1/1 main [2] - Example: gprof
[3] 100.0 0.00 0.05 1 report [3] . .
0.00 0.03 8/8 timelocal [6] - compiles tracing into code, to record call graph
0.00 0.01 1/1 print [9] . g . .
0.00 0.01 9/9 fgets [12] — uses statistical sampling:
o + on each timer tick record program counter
Source: http://sourceware.org/binutils/docs-2.19/gprof . post execution translate this into execution-time share
« Example: oprof
- collects hardware performance-counter readings
- works for kernel and apps
— minimal overhead
COMP9242 S2/2015 W04 21 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U COMP9242 §2/2015 W04 22 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License
AUSTRALIA AUSTRALIA
oprof example output ()e oprof example output ()e
NICTA NICTA
Count e — Performance counter used
$ opreport --exclude-dependent $ opreport
CPU: PIII, speed 863.195 MHz (estimated) CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a .. Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a ..
450385 [75.6634 cclplus 506605 54.0125 cclplus
60213 10.1156 lyx 450385 88.9026 cclplus
29313 4.9245 XFree86 28201 5.5667 libc-2.3.2.50 o
11633 1.9543 as 27194 5.3679 vmlinux ©) O
10204 1.7142 oprofiled 677 0.1336 uhci_hcd Drilldown of top
7289 1.2245 vmlinux Profiler " consumers
7066 1.1871 bash 163209 17.4008 lyx
6417 1.0780 oprofile 60213 36.8932 lyx
6397 1.0747 vim 23881 14.6322 libc-2.3.2.s0
3027 0.5085 wineserver 21968 13.4600 libstdc++.s0.5.0.1
1165 0.1957 kdeinit 13676 8.3794 libpthread-0.10.s0
832 0.1398 wine 12988 7.9579 libfreetype.so.6.3.1

10375 6.3569 vmlinux

Source: http://oprofile.sourceforge.net/examples/ }
Source: http://oprofile.sourceforge.net/examples/

©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U COMP9242 §2/2015 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA AUSTRALIA

COMP9242 S2/2015

Performance Monitoring Unit (PMU) ()@
NICTA

- Collects certain events at run time
« Typically supports many events, small number of event counters
- Events refer to hardware (micro-architectural) features
- Typically relating to instruction pipeline or memory hierarchy
« Dozens or hundreds
— Counter can be bound to a particular event
- Via some configuration register
- Typically 2—4
+ OS can sample counters
+ Counters can trigger exception on exceeding threshold

COMP9242 S2/2015 W04 25 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Overview Yo

« Performance NICTA

« Benchmarking
« Profiling
« Performance analysis

COMP9242 S2/2015 W04 27 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Event Examples (ARM11) o)
0x00 I-cache miss 0xOb D-cache miss 0x22

0x01 Instr. buffer stall 0x0c D-cache writeback 0x23 Funct. call

0x02 Data depend. stall 0x0d PC changed by SW 0x24 Funct. return

0x03 Instr. micro-TLB miss 0xOf Main TLB miss 0x25 Funct. ret. predict
0x04 Data micro-TLB miss 0x10 Ext data access 0x26 Funct. ret. mispred
0x05 Branch executed 0x11 Load-store unit stall 0x30

0x06 Branch mispredicted 0x12 Write-buffer drained 0x38

0x07 Instr executed 0x13 Cycles FIRQ disabled 0xff Cycle counter

0x09 D-cache acc cachable 0x14 Cycles IRQ disabled

0x0a D-cache access any 0x20

COMP9242 S2/2015 W04 26 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Significance of Measurements (Je

All measurements are subject to random errors NICTA

« Standard scientific approach: Many iterations, collect statistics
+ Rarely done in systems work — why?
- Computer systems tend to be highly deterministic
- Repeated measurements often give identical results
— Main exception are experiments involving WANs
+ However, it is dangerous to rely on this without checking!
- Sometimes “random” fluctuations indicate hidden parameters

Benchmarking crime: results with no indication of significance

Non-criminal approach:

« Show at least standard deviation of your measurements

- ... or state explicitly it was below a certain value throughout

« Admit results are insignificant unless well-separated std deviations

COMP9242 S2/2015 W04 28 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance (e

Bare-minimum statistics: NICTA
« At minimum report the mean (p) and standard deviation (o)
- Don't believe any effect that is less than a standard deviation
+ 10.2+1.5 is not significantly different from 11.5
- Be highly suspicious if it is less than two standard deviations
+ 10.2+0.8 may not be different from 11.5
« Be very suspicious if reproducibility is poor (i.e. ¢ is not small)
- Distrust standard deviations of small iteration counts

- standard deviations are meaningless for small number of runs
- ... butokif effect > o
— The proper way to check significance of differences is Student's t-test!

COMP9242 §2/2015 W04 29 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance ()e

Obtaining meaningful execution times: NICTA

+ Make sure execution times are long enough
- What is the granularity of your time measurements?
- make sure the effect you're looking for is much bigger
- many repetitions won't help if your effect is dominated by clock resolution
- do many repetitions in a tight loop if necessary

COMP9242 S2/2015 W04 31 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance ()e

.. NICTA
Bare-minimum stats are sometimes insufficient

 Eg: Old: y = 3.1 sec,

Cumulative
distribution
function (CDI:)

l Max = 17.6 —»>

Distribution
Function

0.2
0
0 2 4 6 8 10
COMP9242 S2/2015 W04 30 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License H NNV
Example: gzip from SPEC CPU2000 (Yo
Observations? NICTA

- First iteration is special

Clock

« 20 Hz clock resolution

— will not be able to
observe any effects
that account for less

than 0.1 sec

Execution time [s]

VNN

15 20 25 30
Lesson? Iteration #
+ Need a mental model of the system
— Here: repeated runs should give the same result
+ Find reason (hidden parameters) if results do not comply!

COMP9242 §2/2015 W04 32 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance (e

Noisy data: NICTA

- Sometimes it isn't feasible to get a “clean” system

- e.g. running apps on a “standard configuration”

— this can lead to very noisy results, large standard deviations
Possible ways out:
- Ignoring lowest and highest result
« Taking the floor of results

- makes only sense if you're looking for minimum

+ but beware of difference-taking!

Both of these are dangerous, use with great care!
+ Only if you know what you are doing
- need to give a convincing explanation of why this is justified
« Only if you explicitly state what you've done in your paper/report

COMP9242 S2/2015 W04 33 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License H A i
How to Measure and Compare Performance (O
Vary inputs! NICTA

- Easy to produce low standard deviations by using identical runs
— but this is often not representative
— can lead to unrealistic caching effects
+ especially in benchmarks involving /O
« disks are notorious for this
— controllers do caching, pre-fetching etc out of control of OS
+ Good ways to achieve variations:
- time stamps for randomising inputs (but see below!)
— varying order:
- forward vs backward
+ sequential with increasing strides
+ random access
- best is to use combinations of the above, to ensure that results are sane

COMP9242 S2/2015 W04 35 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance (Y0

Check outputs! NICTA

« Benchmarks must check results are correct!
— Sometimes things are very fast because no work is done!
- Beware of compiler optimisations, implementation bugs
» Sometimes checking all results is infeasible
- eg takes too long, checking dominates effect you're looking for
- check at least some runs
— run same setup with checks en/disabled

COMP9242 §2/2015 W04 34 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance ()O

Ensure runs are comparable and reproducible: NICTA

+ Avoid true randomness!
— tends to lead to different execution paths or data access patterns
— makes results non-reproducible
- makes impossible to fairly compare results across implementations!
— exceptions exist
- crypto algorithms are designed for input-independent execution paths
+ Pseudo-random is good for benchmarking
— reproducible sequence of “random” inputs
+ capture sequence and replay for each run
+ use pseudo-random generator with same seed

©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

COMP9242 S2/2015 W(

How to Measure and Compare Performance ()e

Environment NICTA

« Ensure system is quiescent
- to the degree possible, turn off any unneeded functionality
« run Unix systems in single-user mode
+ turn off wireless, disconnect networks, put disk to sleep, etc
- Be aware of self-interference
+ eg logging benchmark results may wake up disk...
- Start different runs from the same system state (where possible)
- back-to-back processes may not find the system in the same state

COMP9242 §2/2015 W04 37 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

twolf on Linux: What's going on? (e

NICTA

400

Performance
counters are your
friends!

O b o L2 mll—lgzz

Time - 221cy/miss

20% performance

difference
225 | between
220 | ’ O “identical” runs!
O
215

Million

210

Execution time [s]

205 |

200

Subtract 221
cycles (123ns)
for each cache
miss

Iteration #

COMP9242 S2/2015 W04 39 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

AUSTRALIA

Real-World Example

Benchmark:
« 300.twolf from SPEC CPU2000 suite

Platform:
+ Dell Latitude D600

- Pentum M @ 1.8GHz

- 32KiB L1 cache, 8-way

- 1MiB L2 cache, 8-way

- DDR memory @ effective 266MHz
« Linux kernel version 2.6.24

Methodology:
« Multiple identical runs for statistics...

COMP9242 §2/2015 W04 38 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

twolf on Linux: Lessons?

- Pointer to problem was standard deviation

- o for “twolf” was much higher than normal for SPEC programs
- Standard deviation did not conform to mental model

— Shows the value of verifying that model holds

— Correcting model improved results dramatically
+ Shows danger of assuming reproducibility without checking!

Conclusion: Always collect and analyse standard deviations!

COMP9242 S2/2015 W04 40 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

(Jo
NICTA

UNSW

AUSTRALIA

(Jo
NICTA

UNSW

AUSTRALIA

How to Measure and Compare Performance (e

Vary only one thing at a time! NICTA

« Typical example: used a combination of techniques to improve system
- what can you learn from a 20% overall improvement?
« Need to run sequence of evaluations, looking at individual changes
- identify contribution and relevance
— understand how they combine to an overall effect
- they may enhance or counter-balance each other
— make sure you understand what's going on!!!!

Record all configurations and data!
« May have overlooked something at first
- May develop better model later

- could be much faster to re-analyse existing data than re-run all
benchmarks

COMP9242 S2/2015 W04 41 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance (O

Avoid incorrect conclusions from pathological cases NICTA

+ Typical cases:
- sequential access optimised by underlying hardware/disk controller...
potentially massive differences between sequentially up/down
+ pre-fetching by processor, disk cache
- random access may be an unrealistic scenario that destroys performance
- for file systems
— powers of two may be particularly good or particularly bad for strides
- often good for cache utilisation
— minimise number of cache lines used
- often bad for cache utilisation
- maximise cache conflicts
— similarly just-off powers (2"-1, 2"+1)
- What is “pathological” depends a lot on what you're measuring
- e.g. caching in underlying hardware

COMP9242 S2/2015 W04 43 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance (Y0

Measure as directly as possible: NICTA

- Eg, when looking at effects of pinning TLB entries
- don't just look at overall execution time (combination of many things)
- use performance counter to compare
+ TLB misses
- cache misses (from page table reloads)

« Cannot always measure directly
- eg, actual TLB-miss cost not known
- extrapolate by artificially reducing TLB size
+ eg by pinning useless entries

COMP9242 §2/2015 W04 42 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

How to Measure and Compare Performance ()O

Use a model NICTA

« You need a (mental or explicit) model of the behaviour of your system
- benchmarking should aim to support or disprove that model
- need to think about this in selecting data, evaluating results
- eg: I/0 performance dependent on FS layout, caching in controller...
- cache sizes (HW & SW caches)
- buffer sizes vs cache size
+ Should tell you the size of what to expect
- you should understand that a 2ns cache miss penalty can't be right

5W04 44 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Example: Memory Copy

Pipelining,
loop overhead
18
N ime -1 16
500 T \ throughput j:?‘:]
| e 114 _
@ | e %)
2 40 F | |4 cache (32KiB) / {8
= 0 {10 5
5 300 | - 1g 2
3 | E
¢ 200 || {6 8
] L L2 cache (1MiB) 14 F
100 | ~— 1
42
oL o L s L L 0
0 200 400 600 800 1000
Buffer size [KiB]
COMP9242 S2/2015 W04 45

©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Loop and Timing Overhead

Ensure that measuring overhead does not affect results:
« Cost of accessing clock may be significant

+ Loop overhead may be significant

- Stub overhead may be significant

Approaches:

- May iterations in tight loop

« Measure and eliminate timer overhead

+ Measure and eliminate loop overhead

- Eliminate effect of any instrumentation code

COMP9242 S2/2015 W04 47 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

How to Measure and Compare Performance

Understand your results!

(Jo
NICTA

« Results you don't understand will almost certainly hide a problem

— Never publish results you don't understand

- chances are the reviewers understand them, and will reject the paper

maybe worse: someone at the conference does it
— this will make you look like an idiot

Of course, if this
happens you are an
idiot!

COMP9242 S2/2015 W04 46 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Eliminating Overhead

t0 = time();
for (i=0; 1i<MAX; i++) {
asm(nop) ;
}
tl = time();
for (i=0; i<MAX; i++) {
asm(syscall);
}
t2 = time();
printf (“Cost is %dus\n”, (t2-2*t1l+t0)*1000000/MAX) ;

Beware of compiler optimizations!

COMP9242 S2/2015 W04 48 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

UNSW

AUSTRALIA

(Jo
NICTA

UNSW

AUSTRALIA

Relative vs Absolute Data (Y®
NICTA

From a real paper (IEEE CCNC’09):
« No data other than this figure

» No figure caption

+ Only explanation in text:

- “The L4 overhead compared to VLX ranges from
a 2x to 20x factor depending on the Linux .
system call benchmark” ‘

« No definition of “overhead factor” w1
« No native Linux data '

Benchmarking crime: Relative numbers only
- Makes it impossible to check whether results make sense
- How hard did they try to get the competitor system to perform?
- Eg, did they run it with default build parameters (debugging enabled)?

COMP9242 S2/2015 W04 49 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Benchmarking Ethics ()@
NICTA

- Do compare with published competitor data, but...
— Ensure comparable setup
Same hardware (or convincing argument why it doesn’t matter)
- You may be looking at an aspect the competitor didn't focus on
eg: they designed for large NUMA, you optimise for embedded
« Be ultra-careful when benchmarking competitor’s system yourself
— Are you sure you're running the competitor system optimally?
you could have the system mis-configured (eg debugging enabled)
Do your results match their (published or else) data?
— Make sure you understand exactly what is going on!
Eg use profiling/tracing to understand source of difference
Explain it!

Benchmarking crime: Unethical benchmarking of competitor

« Lack of care is unethical too!

COMP9242 S2/2015 W04 51 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Data Range @)
NICTA

Example: Scaling database load

32-core
machine Looking a bit further:
250000 250000
200000 200000
2 2
£ 150000 £ 150000
E] E]
2 2
S 100000 2 100000
2 2
= £
S =
50000 50000
0 0t
5 10 15 20 25 30 20 40 60 80 100 120 140 160 180 200
Load (concurrent Tx) Load (concurrent Tx)

Scales well, right?

Benchmarking crime: Selective data set hiding deficiencies

COMP9242 §2/2015 W04 50 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

Other Ways to Cheat With Benchmarks (JO
NICTA

+ Benchmark-specific optimisations
- Recognise particular benchmark, insert BM-specific hand-optimised code
— Popular with compiler-writers, rarely an issue in OS area

— Pioneered for smartphone performance by Samsung
http://bgr.com/2014/03/05/samsung-benchmark-cheating-ends/

- Benchmarking simulated system
— ... with simulation simplifications matching model assumptions
- GIGO

+ Uniprocessor benchmarks to “measure” multicore scalability
— ... by running multiple copies of benchmark on different cores

+ CPU-intensive benchmark to “measure” networking performance

I’'ve seen all of these BM crimes!

©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U
AUSTRALIA

COMP9242 S2/2

What Is “Good”? o.
NICTA

« Easy if there are established and published benchmarks
- Eg your improved algorithm beats best published Linux data by x%
- But are you sure that it doesn't lead to worse performance elsewhere?
+ important to run complete benchmark suites
« think of everything that could be adversely effected, and measure!
« Tricky if no published standard
— Can run competitor/incumbent

+ eg run Imbench, kernel compile etc on your modified Linux and
standard Linux

+ but be very careful to avoid running the competitor sub-optimally!
- Establish performance limits
ie compare against optimal scenario
+ micro-benchmarks or profiling can be highly valuable here!

COMP9242 S2/2015 W04 53 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U SW

Performance Counters are Your Friends! o.

D-cache miss

D-uTLB miss

Main-TLB miss

D-stall cycles

Total Cycles

COMP9242 S2/2015 W04 55 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

+ Symbian null-syscall microbenchmark:
— native: 0.24ps, virtualized (on OKL4): 0. 799us

- 230% overhead

« ARM11 processor runs at 368 MHz:
- Native: 0.24ps =93 cy
- Virtualized: 0.79us =292 cy
— Overhead: 0.55ps = 199 cy
- Cache-miss penalty = 20 cy

« Model:

— native: 2 mode switches, 0 context switches, 1 x save+restore state
— virtualized: 4 mode switches, 2 context switches, 3 x save+restore state

e}

0
O
Expected
overhead?
COMP9242 S2/2015 W04 54 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License QN§W
More of the Same... Qe

NICTA

First step:

represeniaton [Comest it | eveose [deos]

O © Create/close [us]

Second step:
overheads in
appropriate
units!

Further Analysis shows
guest dis-&enables
IRQs 22 times!

Create/clos€’ [us] 1472

COMP9242 S2/2015 W04 56 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW
AUSTRALIA

Yet Another One... Good or (e

bad? or
) . NICTA

[Benchmark Nafvelus) Vitlps] Overhead Pertiok |
TDes16_NumO 1.2900 1.2936 0.28% 2.8 s
TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 ys
TDes16_RadixDecimal2 1.2338 1.2373 0.28% 2.8 ps
TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 us
TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 ps
TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 ps
TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 pus
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 us

Note: these are purely user-level operations!
+ What's going on?

Timer interrupt
virtualization
overhead!

COMP9242 §2/2015 W04 57 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Lessons Learned (e

- Ensure stable results NICTA

- repeat for good statistics

- investigate source of apparent randomness
+ Have a model of what you expect

- investigate if behaviour is different

- unexplained effects are likely to indicate problems — don't ignore them!
+ Tools are your friends

- performance counters

- simulators

- traces

— spreadsheets

Annotated list of benchmarking crimes: http://www.gernot-heiser.org/

COMP9242 §2/2015 W04 58 ©2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNS
R

