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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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Microkernel Principles: Minimality 

A concept is tolerated inside the microkernel 
only if moving it outside the kernel, i.e. 
permitting competing implementations, would 
prevent the implementation of the system’s 
required functionality. [SOSP’95] 

•  Advantages of resulting small kernel: 
–  Easy to implement, port? 
–  Easier to optimise 
–  Hopefully enables a minimal trusted computing base (TCB) 
–  Easier debug, maybe even prove correct? 

•  Challenges: 
–  API design: generality despite small code base 
–  Kernel design and implementation for high performance 

Limited by arch-
specific micro-
optimisations 

Small attack 
surface, fewer 
failure modes 
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Consequence of Minimality: User-level Services 

 

•  Kernel provides no services, only mechanisms 
•  Kernel is policy-free 

–  Policies limit (good for 90% of cases, disastrous for some) 
–  “General” policies lead to bloat, inefficiency 
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i486 @ 
50 MHz 

Culprit: 
Cache 
footprint 
[SOSP’95] raw copy 
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L4 IPC Performance over 20 Years 

Name Year Processor MHz Cycles µs 
Original 1993 i486 50 250 5.00 
Original 1997 Pentium 160 121 0.75 
L4/MIPS 1997 R4700 100 86 0.86 
L4/Alpha 1997 21064 433 45 0.10 
Hazelnut 2002 Pentium 4 1,400 2,000 1.38 
Pistachio 2005 Itanium 1,500 36 0.02 
OKL4 2007 XScale 255 400 151 0.64 
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11 
seL4 2013 i7 Haswell (32-bit) 3,400 301 0.09 
seL4 2013 ARM11 532 188 0.35 
seL4 2013 Cortex A9 1,000 316 0.32 
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Minimality: Source Code Size 

Name Architecture C/C++ asm total kSLOC 
Original i486 0 6.4 6.4 
L4/Alpha Alpha 0 14.2 14.2 
L4/MIPS MIPS64 6.0 4.5 10.5 
Hazelnut x86 10.0 0.8 10.8 
Pistachio x86 22.4 1.4 23.0 
L4-embedded ARMv5 7.6 1.4 9.0 
OKL4 3.0 ARMv6 15.0 0.0 15.0 
Fiasco.OC x86 36.2 1.1 37.6 
seL4 ARMv6 9.7 0.5 10.2 
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L4 Deployments – in the Billions 
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SiMKo 3 “Merkelphone” 
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L4 Design and Implementation 

Implement. Tricks [SOSP’93] 

•  Process kernel 
•  Virtual TCB array 
•  Lazy scheduling 
•  Direct process switch 
•  Non-preemptible 
•  Non-portable 
•  Non-standard calling 

convention 
•  Assembler 

Design Decisions [SOSP’95] 

•  Synchronous IPC 
•  Rich message structure, 

arbitrary out-of-line messages 
•  Zero-copy register messages 
•  User-mode page-fault handlers 
•  Threads as IPC destinations 
•  IPC timeouts 
•  Hierarchical IPC control 
•  User-mode device drivers 
•  Process hierarchy 
•  Recursive address-space 

construction 

COMP9242 S2/2014 
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DESIGN 
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What Mechanisms? 

•  Fundamentally, the microkernel must abstract 
–  Physical memory 
–  CPU 
–  Interrupts/Exceptions 

•  Unfettered access to any of these bypasses security 
–  No further abstraction needed for devices 

•  memory-mapping device registers and interrupt abstraction suffices 
•  …but some generalised memory abstraction needed for I/O space 

•  Above isolates execution units, hence microkernel must also provide 
–  Communication (traditionally referred to as IPC) 
–  Synchronization 

COMP9242 S2/2014 
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Policy-Free Address-Space Management 

•  Kernel provides empty address-space “shell” 
–  page faults forwarded to server 
–  server provides mapping 

•  Cost: 
–  1 round-trip IPC, plus mapping operation 

•  mapping may be side effect of IPC 
•  kernel may expose data structure 

–  kernel mechanism for forwarding page-fault exception 
•  “External pagers” first appeared in Mach [Rashid et al, ’88] 

–  … but were optional (and slow) – in L4 there’s no alternative 

Text Data BSS Stack libc File 

Page-fault  
server 

Map 
Exception 

Stack Stack 
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Abstracting Memory: Address Spaces 

•  Minimum address-space abstraction: empty slots for page mappings 
–  paging server can fill with mappings 

•  virtual address → physical address + permissions 
•  Can be 

–  page-table–like: array under full user control 
–  TLB-like: cache for mappings which may vanish 

•  Main design decision: is source of a mapping a page or a frame? 
–  Frame: hardware-like 
–  Page: recursive address spaces (original L4 model) 

Map’d 
Page 

Unm. 
Page 
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Traditional L4: Recursive Address Spaces 

Map Grant 
Unmap 

X 

Initial Address Space 

Physical Memory 

Mappings are 
page → page Magic initial AS to 

anchor recursion 
(map of PM) 
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Recursive Address Space Experience 

API complexity: Recursive address-space model 
•  Conceptually elegant 

–  trivially supports virtualization 
•  Drawback: Complex mapping database 

–  Kernel needs to track mapping relationship 
•  Tear down dependent mappings on unmap 

–  Mapping database problems: 
•  accounts for 1/4–1/2 of kernel memory use 
•  SMP coherence is performance bottleneck 

•  NICTA’s L4-embedded, OKL4 removed MDB 
–  Map frames rather than pages 

•  need separate abstraction for frames / physical memory 
•  subsystems no longer virtualizable (even in OKL4 cap model) 

•  Properly addressed by seL4’s capability-based model 
–  But have cap derivation tree, subject of on-going research 

COMP9242 S2/2014 
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Abstracting Execution 

•  Can abstract as: 
–  kernel-scheduled threads 

•  Forces (scheduling) policy into the kernel 
–  vCPUs or scheduler activations 

•  This essentially virtualizes the timer interrupt through upcall 
–  Scheduler activations also upcall for exceptions, blocking etc 

•  Multiple vCPUs only for real multiprocessing 
•  Threads can be tied to address space or “migrating” 

–  Implementation-wise not much of a difference 
•  Tight integration/interdependence with IPC model! 

IPC Cross- 
AS call 

COMP9242 S2/2014 
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Abstracting Interrupts and Exceptions 

•  Can abstract as: 
–  Upcall to interrupt/exception handler 

•  hardware-like diversion of execution 
•  need to save enough state to continue interrupted execution 

–  IPC message to handler from magic “hardware thread” 
•  OS-like 
•  needs separate handler thread ready to receive 

•  Page fault tends to be special-cased for practical reason 
–  Tends to require handling external to faulter 

•  IPC message to page-fault server rather than exception handler 
–  But also “self-paging” as in Nemesis [Hand ’99] or Barrelfish 

H/W 
“Thread” 

Handler 
Thread 

IPC Exception 
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L4 Synchronous IPC 
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Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

Send (dest, msg) 

       Wait (src, msg) 
    …....  

     
Kernel 
copy     

Rendezvous 
model 

Kernel executes in sender’s context 
•  copies memory data directly to 

receiver (single-copy) 
•  leaves message registers unchanged 

during context switch (zero copy) 
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“Long” IPC 

•  IPC page faults are nested exceptions ⇒ In-kernel concurrency 
–  L4 executes with interrupts disabled for performance, no concurrency 

•  Must invoke untrusted usermode page-fault handlers 
–  potential for DOSing other thread 

•  Timeouts to avoid DOS attacks 
–  complexity 

Receiver address space 

Sender address space 

Kernel copy 
Page fault! 

Why have long IPC? 
•  POSIX-style APIs 

write (fd, buf, nbytes) 
•  Usually prefer shared buffers 

LONG IPC 

ABANDONED 
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Timeouts 
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Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

Send (dest, msg) 

       Wait (src, msg)     …....  
     

Kernel 
copy     

Limit IPC 
blocking 

time 

Thread1 
Running  Blocked 

Rcv(NIL_THRD, delay) 

    …....  
Timed 
wait 

IPC Timeouts 

ABANDONED 

in seL4, OKL4 

•  No theory/heuristics for 
determining timeouts 

•  Typically server reply 
with zero TO, else ∞ 

•  Added complexity 
•  Can do timed wait with 

timer syscall 
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Synchronous IPC Issues 
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Thread1 
Running  Blocked 

Initiate_IO(…,…) 

IO_Wait(…,…) 
Not 

generally 
possible 

Worker_Th 
Running  Blocked 

IO_Th 
Blocked  Running 

Unblock (IO_Th) Call (IO,msg) …....  

     
Sync(Worker_Th) 

Sync(IO_Th) …....  

•  Sync IPC forces multi-threaded code! 
•  Also poor choice for multi-core 
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Asynchronous Notifications 

    …....  

Thread1 
Running  Blocked 

Thread2 
Blocked  Running 

       w = Poll (…) 

    …... w = Wait (…)     

    …....       Send (Thr_2, …) 

Send (Thr_2, …) •  Delivers few bits (destructively) 
•  Kernel only buffers single word 
•  Maps well to interrupts, exceptions 

Server 
Client Driver 

Sync Async 
•  Thread can wait for 

synchronous and 
asynchronous 
messages concurrently 

Sync IPC 

complemented 

with async 

COMP9242 S2/2014 
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Is Synchronous IPC Redundant? 
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Client 
Running  Blocked 

Server 
Blocked  Running 

Call (dest, msg) ReplyWait (src, msg) 

    …....  

     

Control 
transfer 

2 IPC 
mechanisms: 
Minimality 
violation 

Sync IPC is useful intra-core: 
•  fast control transfer 
•  mimics migrating threads 
•  enables scheduling context donation 

Ø  useful for real-time systems 
But presently no 

clean model! 
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Direct vs Indirect IPC Adressing 

•  Direct: Queue senders/messages at receiver 
–  Need unique thread IDs 
–  Kernel guarantees identity of sender 

•  useful for authentication 

•  Indirect: Mailbox/port object 
–  Just a user-level handle for the kernel-level queue 
–  Extra object type – extra weight? 
–  Communication partners are anonymous 

•  Need separate mechanism for authentication 

Receiver 

Sender 

Sender 

Port 

Sender 

Sender 

Port 

Receiver 

Receiver 
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IPC Destination Naming 
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IPC 

Client Server 

Client Server 

Load 
balancer Workers 

Client Server 

All IPCs 
duplicated! 

Original L4 
addressed IPC 
to threads 

Client must do 
load balancing? 

RPC reply from 
wrong thread! 

•  Inefficient designs 
•  Poor information hiding 
•  Covert channels [Shapiro ‘02] 

Interpose 
transparently? Access 

monitor 

Thread IDs 

replaced by  

IPC “endpoints” 

(ports) 
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Endpoints 
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IPC 

Client Server 

Send 

Client Server 

Rcv 
Sync EP 

•  Sync EP queues senders/receivers 
•  Does not buffer messages 

0x01 

0x10 

0x30 

Async EP 

0x00 0x01 0x11 0x31 •  Async EP accumulates bits 
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Other Design Issues 

IPC Control: “Clans & Chiefs” Process Hierarchy 
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IPC 

Chief 

Clan 

IPC outside clan 
re-directs to chief 

Create 

Hierarchical 
resource 
management 

•  Inflexible, clumsy, 
inefficient hierarchies! 

•  Fundamental problem: 
no rights delegation 

Hierarchies 

replaced by  

delegatable cap-

based access 

control 
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IMPLEMENTATION 
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Virtual TCB Array 
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TCB TCB VM 

Thread ID 

Fast TCB & 
stack lookup 

TC
B

 
pr

op
er

 

K
er

ne
l 

st
ac

k 
Trades cache for TLB footprint 
and virtual address space 

Not worthwhile on 
modern processors! 
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Process Kernel: Per-Thread Kernel Stack 

TCB 
TC

B
 

pr
op

er
 

K
er

ne
l 

st
ac

k 

Get own 
TCB base 

by masking 
stack pointer 

•  Not worthwhile on 
  modern processors! 
•  Stacks can dominate 
  kernel memory use! 

•  Reduces TLB footprint at cost 
of cache and kernel memory 

•  Easier to deal with blocking 
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Scheduler Optimisation Tricks: “Lazy Scheduling” 

thread_t schedule() { 
    foreach (prio in priorities) { 
        foreach (thread in runQueue[prio]) { 

 if (isRunnable(thread)) 
     return thread; 
 else 
     schedDequeue(thread); 
 } 

        } 
    return idleThread; 
} 

•  Frequent blocking/unblocking 
in IPC-based systems 

•  Many ready-queue 
manipulations 

Idea: leave blocked 
threads in ready 
queue, scheduler 

cleans up 

Call()

Client 

Reply_Wait()

Server 

BLOCKED BLOCKED 

Problem: Unbounded 
scheduler execution time! 
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Alternative: “Benno Scheduling” 
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thread_t schedule() { 
    foreach (prio in priorities) { 
        foreach (thread in runQueue[prio]) { 

 if (isRunnable(thread)) 
     return thread; 
 else 
     schedDequeue(thread); 
 } 

        } 
    return idleThread; 
} 

•  Frequent blocking/unblocking 
in IPC-based systems 

•  Many ready-queue 
manipulations 

Idea: Lazy on 
unblocking instead 

on blocking 

Call()

Client 

Reply_Wait()

Server 

Only current thread 
needs fixing up at 
preemtion time! 
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Scheduler Optimisation: “Direct Process Switch” 
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•  Sender was running ⇒ had highest prio 
•  If receiver prio ≥ sender prio ⇒ run receiver 

•  Frequent context switches in 
IPC-based systems 

•  Many scheduler invocations 

Idea: Don’t invoke 
scheduler if you know 

who’ll be chosen 

Call()

Client 

Reply_Wait()

Server 

Implication: Time slice 
donation – receiver runs 
on sender’s time slice 

•  Arguably, sender should donate back if it’s 
a server replying to a Call() 

•  Hence, always donate on Reply_Wait() 

Problem:  
•  Accounting (RT systems) 
•  Policy 
•  No clean model yet!  
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Speaking of Real Time… 

•  Kernel runs with interrupts disabled 
–  No concurrency control ⇒ simpler kernel 

•  Easier reasoning about correctness 
•  Better average-case performance 

•  How about long-running system calls? 
–  Use strategic premption points 
–  (Original) Fiasco has fully preemptible kernel 

•  Like commercial microkernels (QNX, Green Hills INTEGRITY) 

COMP9242 S2/2014 

while (!done) {

    process_stuff();

    PSW.IRQ_disable=1;

    PSW.IRQ_disable=0;

}


Limited 
concurrency 

in kernel! 

Lots of 
concurrency 

in kernel! 
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Incremental Consistency 
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Kernel 
entry 

O(1) 
operation 

Long operation 

Kernel 
exit 

Check pending 
interrupts 

O(1) 
operation 

O(1) 
operation 

O(1) 
operation 

Abort &  
restart later 

Disable 
interrupts 

Enable 
interrupts 

Avoids concurrency in (single-core) kernel 

•   Consistency 
•   Restartability 
•   Progress 

Good fit to 
event kernel! 
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Example: Destroying IPC Endpoint 

Actions: 
 
1.  Disable EP cap (prevent new messages) 
2.  while message queue not empty do 
3.      remove head of queue (abort message) 
4.      check for pending interrupts 
5.  done 

COMP9242 S2/2014 

Client1 
Server 

Client2 

IPC 
endpoint 

Message 
queue 
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Difficult Example: Revoking IPC “Badge” 

State to keep across preemptions 
•  Badge being removed 
•  Point in queue where preempted 
•  End of queue at time operation started 
•  Thread performing revocation 

Need to squeeze into endpoint data structure! 

COMP9242 S2/2014 

Client1 
Server 

Client1 
state 

Client2 Client2 
state 

Badge 

Removing 
orange 
badge 



©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 39 

Synchronous IPC Implementation 

Simple send (e.g. as part of RPC-like “call”): 

1)  Preamble 
§  save minimal state, get args 

2)  Identify destination 
§  Cap lookup; 

get endpoint; check queue 
3)  Get receiver TCB 

§  Check receiver can still run 
§  Check receiver priority is ≥ ours 

4)  Mark sender blocked and enqueue 
§  Create reply cap & insert in slot 

5)  Switch to receiver 
§  Leave message registers untouched 
§  nuke reply cap 

6)  Postamble (restore & return) 

Running Wait to receive 

Running Wait to receive 

Wait to receive Running 

185 cycles 
on ARM11! 

“Direct process 
switch” without 

scheduler invocation! 

COMP9242 S2/2014 
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Fastpath Coding Tricks 

•  Reduces branch-prediction footprint 
•  Avoids mispredicts, stalls & flushes 
•  Uses ARM instruction predication 
•  But: increases slow-path latency 

–  should be minimal compared to basic slow-path cost 

slow = 
cap_get_capType(en_c) != cap_endpoint_cap ||


!cap_endpoint_cap_get_capCanSend(en_c);


if (slow)    enter_slow_path();  


Common case: 0 

Common case: 1 

COMP9242 S2/2014 
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Lazy FPU Switch 

•  FPU context tends to be heavyweight 
–  eg 512 bytes FPU state on x86 

•  Only few apps use FPU (and those don’t do many syscalls) 
–  saving and restoring FPU state on every context switch is wastive! 

Kernel 

current
 FPU_owner
 FPU_locked
 Saved

FPU state




finit


current
current
 FPU_owner
FPU_owner
 FPU_locked
 Saved

FPU state




Saved

FPU state




fld


fcos

fst


finit

fld


sosh()

Standard trick, 

not only for 
microkernels! 

COMP9242 S2/2014 
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Other implementation tricks 

•  Cache-friendly data structure layout, especially TCBs 
–  data likely used together is on same cache line 
–  helps best-case and worst-case performance 
 

•  Kernel mappings locked in TLB (using superpages) 
–  helps worst-case performance 
–  helps establish invariants: page table never walked when in kernel 

Avoid RAM 
like the 
plague! 

COMP9242 S2/2014 
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Other Lessons Learned from 2nd Generation 

•  Programming languages: 
–  original i496 kernel [’95]: all assembler 
–  UNSW MIPS and Alpha kernels [’96,’98]: half assembler, half C 
–  Fiasco [TUD ’98], Pistachio [’02]: C++ with assembler “fast path” 
–  seL4 [‘09], OKL4 [‘09]: all C 

•  Lessons:  
–  C++ sux: code bloat, no real benefit 
–  Changing calling conventions not worthwhile 

•  Conversion cost in library stubs and when entering C in kernel 
•  Reduced compiler optimization 

–  Assembler unnecessary for performance 
•  Can write C so compiler will produce near-optimal code 
•  C entry from assembler cheap if calling conventions maintained 
•  seL4 performance with C-only pastpath as good as other L4 kernels 

[Blackham & Heiser ‘12] 

C++ ABANDONED 

Assembler coding 

ABANDONED 

COMP9242 S2/2014 
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L4 Design and Implementation 

Implement. Tricks [SOSP’93] 

•  Process kernel 
•  Virtual TCB array 
•  Lazy scheduling 
•  Direct process switch 
•  Non-preemptible 
•  Non-portable 
•  Non-standard calling 

convention 
•  Assembler 

Design Decisions [SOSP’95] 

•  Synchronous IPC 
•  Rich message structure, 

arbitrary out-of-line messages 
•  Zero-copy register messages 
•  User-mode page-fault handlers 
•  Threads as IPC destinations 
•  IPC timeouts 
•  Hierarchical IPC control 
•  User-mode device drivers 
•  Process hierarchy 
•  Recursive address-space 

construction 

COMP9242 S2/2014 
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seL4 Design Principles 

•  Fully delegatable access control  
•  All resource management is subject to user-defined policies 

–  Applies to kernel resources too! 
•  Suitable for formal verification 

–  Requires small size, avoid complex constructs 
•  Performance on par with best-performing L4 kernels 

–  Prerequisite for real-world deployment! 
•  Suitability for real-time use 

–  Only partially achieved to date L 
•  on-going work… 

COMP9242 S2/2014 
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(Informal) Requirements for Formal Verification 

•  Verification scales poorly ⇒ small size (LOC and API) 
•  Conceptual complexity hurts ⇒ KISS 
•  Global invariants are expensive ⇒ KISS 
•  Concurrency difficult to reason about ⇒ single-threaded kernel 

Largely in line with traditional L4 approach! 

COMP9242 S2/2014 
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seL4 Fundamental Abstractions 

•  Capabilities as opaque names and access tokens 
–  All kernel operations are cap invokations (except Yield()) 

•  IPC: 
–  Synchonous (blocking) message passing plus asynchous notification 
–  Endpoint objects implemented as message queues 

•  Send: get receiver TCB from endpoint or enqueue self 
•  Receive: obtain sender’s TCB from endpoint or enqueue self 

•  Other APIs: 
–  Send()/Receive() to/from virtual kernel endpoint 
–  Can interpose operations by substituting actual endpoint 

•  Fully user-controlled memory management 

seL4’s main 
conceptual 

novelty! 

COMP9242 S2/2014 



©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 48 

Remember: seL4 User-Level Memory Management 

Global Resource Manager 

RAM Kernel 
Data 

GRM 
Data 

Resource Manager 

RM 
Data 

Resource Manager 

RM 
Data 

Addr 
Space 

AS 

Addr 
Space 

Addr 
Space 

RM 

RM 
Data 

Resources fully 
delegated, allows 

autonomous 
operation 

Strong isolation, 
No shared kernel 

resources 

Delegation 
can be 
revoked 
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Remaining Conceptual Issues in seL4 

IPC & Tread Model: 
•  Is the “mostly synchronous + a bit of async” model appropriate? 

–  forces kernel scheduling of user activities 
–  forces multi-threaded userland 

Time management: 
•  Present scheduling model is ad-hoc and insufficient 

–  fixed-prio round-robin forces policy 
–  not sufficient for some classes of real-time systems (time triggered) 
–  no real support for hierarchical real-time scheduling 
–  lack of an elegant resource management model for time 

COMP9242 S2/2014 

About to be 
solved! 
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Lessons From 20 Years of L4 

•  Minimality is excellent driver of design decisions 
–  L4 kernels have become simpler over time 
–  Policy-mechanism separation (user-mode page-fault handlers) 
–  Device drivers really belong to user level 
–  Minimality is key enabler for formal verification! 

•  IPC speed still matters 
–  But not everywhere, premature optimisation is wasteful 
–  Compilers have got so much better 
–  Verification does not compromise performance 
–  Verification invariants can help improve speed! [Shi, OOPSLA’13] 

•  Capabilities are the way to go 
 

COMP9242 S2/2014 

•  Details changed, but principles remained 
•  Microkernels rock! (If done right!) 


