
COMP9242
Advanced Operating Systems

S2/2014 Week 7:
Microkernel Design

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 3

Microkernel Principles: Minimality

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e.
permitting competing implementations, would
prevent the implementation of the system’s
required functionality. [SOSP’95]

•  Advantages of resulting small kernel:
–  Easy to implement, port?
–  Easier to optimise
–  Hopefully enables a minimal trusted computing base (TCB)
–  Easier debug, maybe even prove correct?

•  Challenges:
–  API design: generality despite small code base
–  Kernel design and implementation for high performance

Limited by arch-
specific micro-
optimisations

Small attack
surface, fewer
failure modes

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Consequence of Minimality: User-level Services

•  Kernel provides no services, only mechanisms
•  Kernel is policy-free

–  Policies limit (good for 90% of cases, disastrous for some)
–  “General” policies lead to bloat, inefficiency

COMP9242 S2/2014

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
Server

Device
Driver

Syscall

IPC

Kernel
Mode

User
Mode

IPC
performance

is critical!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 5

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach
[µs]

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mach

L4

[µs]

1993 “Microkernel” IPC Performance

COMP9242 S2/2014

115 µs

5 µs

i486 @
50 MHz

Culprit:
Cache
footprint
[SOSP’95] raw copy

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 6

L4 IPC Performance over 20 Years

Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 R4700 100 86 0.86
L4/Alpha 1997 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 XScale 255 400 151 0.64
NOVA 2010 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2013 i7 Haswell (32-bit) 3,400 301 0.09
seL4 2013 ARM11 532 188 0.35
seL4 2013 Cortex A9 1,000 316 0.32

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Minimality: Source Code Size

Name Architecture C/C++ asm total kSLOC
Original i486 0 6.4 6.4
L4/Alpha Alpha 0 14.2 14.2
L4/MIPS MIPS64 6.0 4.5 10.5
Hazelnut x86 10.0 0.8 10.8
Pistachio x86 22.4 1.4 23.0
L4-embedded ARMv5 7.6 1.4 9.0
OKL4 3.0 ARMv6 15.0 0.0 15.0
Fiasco.OC x86 36.2 1.1 37.6
seL4 ARMv6 9.7 0.5 10.2

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 8

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3→L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4-µKernel

OKL4-Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

Nova GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

L4 Family Tree

Assember

C++

C

Asm+C

C++

C C

Portable

Caps

Verified

COMP9242 S2/2014

API Inheritance

Code Inheritance

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 9

L4 Deployments – in the Billions

COMP9242 S2/2014

SiMKo 3 “Merkelphone”

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 10

L4 Design and Implementation

Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

COMP9242 S2/2014

Objective: Minimise cache footprint and TLB misses
COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 11

DESIGN

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 12

What Mechanisms?

•  Fundamentally, the microkernel must abstract
–  Physical memory
–  CPU
–  Interrupts/Exceptions

•  Unfettered access to any of these bypasses security
–  No further abstraction needed for devices

•  memory-mapping device registers and interrupt abstraction suffices
•  …but some generalised memory abstraction needed for I/O space

•  Above isolates execution units, hence microkernel must also provide
–  Communication (traditionally referred to as IPC)
–  Synchronization

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 13

Policy-Free Address-Space Management

•  Kernel provides empty address-space “shell”
–  page faults forwarded to server
–  server provides mapping

•  Cost:
–  1 round-trip IPC, plus mapping operation

•  mapping may be side effect of IPC
•  kernel may expose data structure

–  kernel mechanism for forwarding page-fault exception
•  “External pagers” first appeared in Mach [Rashid et al, ’88]

–  … but were optional (and slow) – in L4 there’s no alternative

Text Data BSS Stack libc File

Page-fault
server

Map
Exception

Stack Stack

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 14

Abstracting Memory: Address Spaces

•  Minimum address-space abstraction: empty slots for page mappings
–  paging server can fill with mappings

•  virtual address → physical address + permissions
•  Can be

–  page-table–like: array under full user control
–  TLB-like: cache for mappings which may vanish

•  Main design decision: is source of a mapping a page or a frame?
–  Frame: hardware-like
–  Page: recursive address spaces (original L4 model)

Map’d
Page

Unm.
Page

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Traditional L4: Recursive Address Spaces

Map Grant
Unmap

X

Initial Address Space

Physical Memory

Mappings are
page → page Magic initial AS to

anchor recursion
(map of PM)

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 16

Recursive Address Space Experience

API complexity: Recursive address-space model
•  Conceptually elegant

–  trivially supports virtualization
•  Drawback: Complex mapping database

–  Kernel needs to track mapping relationship
•  Tear down dependent mappings on unmap

–  Mapping database problems:
•  accounts for 1/4–1/2 of kernel memory use
•  SMP coherence is performance bottleneck

•  NICTA’s L4-embedded, OKL4 removed MDB
–  Map frames rather than pages

•  need separate abstraction for frames / physical memory
•  subsystems no longer virtualizable (even in OKL4 cap model)

•  Properly addressed by seL4’s capability-based model
–  But have cap derivation tree, subject of on-going research

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 17

Abstracting Execution

•  Can abstract as:
–  kernel-scheduled threads

•  Forces (scheduling) policy into the kernel
–  vCPUs or scheduler activations

•  This essentially virtualizes the timer interrupt through upcall
–  Scheduler activations also upcall for exceptions, blocking etc

•  Multiple vCPUs only for real multiprocessing
•  Threads can be tied to address space or “migrating”

–  Implementation-wise not much of a difference
•  Tight integration/interdependence with IPC model!

IPC Cross-
AS call

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 18

Abstracting Interrupts and Exceptions

•  Can abstract as:
–  Upcall to interrupt/exception handler

•  hardware-like diversion of execution
•  need to save enough state to continue interrupted execution

–  IPC message to handler from magic “hardware thread”
•  OS-like
•  needs separate handler thread ready to receive

•  Page fault tends to be special-cased for practical reason
–  Tends to require handling external to faulter

•  IPC message to page-fault server rather than exception handler
–  But also “self-paging” as in Nemesis [Hand ’99] or Barrelfish

H/W
“Thread”

Handler
Thread

IPC Exception

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 19

L4 Synchronous IPC

COMP9242 S2/2014

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg)
 …....

Kernel
copy

Rendezvous
model

Kernel executes in sender’s context
•  copies memory data directly to

receiver (single-copy)
•  leaves message registers unchanged

during context switch (zero copy)

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 20

“Long” IPC

•  IPC page faults are nested exceptions ⇒ In-kernel concurrency
–  L4 executes with interrupts disabled for performance, no concurrency

•  Must invoke untrusted usermode page-fault handlers
–  potential for DOSing other thread

•  Timeouts to avoid DOS attacks
–  complexity

Receiver address space

Sender address space

Kernel copy
Page fault!

Why have long IPC?
•  POSIX-style APIs

write (fd, buf, nbytes)
•  Usually prefer shared buffers

LONG IPC

ABANDONED

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Timeouts

COMP9242 S2/2014

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

 Wait (src, msg) …....

Kernel
copy

Limit IPC
blocking

time

Thread1
Running Blocked

Rcv(NIL_THRD, delay)

 …....
Timed
wait

IPC Timeouts

ABANDONED

in seL4, OKL4

•  No theory/heuristics for
determining timeouts

•  Typically server reply
with zero TO, else ∞

•  Added complexity
•  Can do timed wait with

timer syscall

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 22

Synchronous IPC Issues

COMP9242 S2/2014

Thread1
Running Blocked

Initiate_IO(…,…)

IO_Wait(…,…)
Not

generally
possible

Worker_Th
Running Blocked

IO_Th
Blocked Running

Unblock (IO_Th) Call (IO,msg) …....

Sync(Worker_Th)

Sync(IO_Th) …....

•  Sync IPC forces multi-threaded code!
•  Also poor choice for multi-core

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Asynchronous Notifications

 …....

Thread1
Running Blocked

Thread2
Blocked Running

 w = Poll (…)

 …... w = Wait (…)

 ….... Send (Thr_2, …)

Send (Thr_2, …) •  Delivers few bits (destructively)
•  Kernel only buffers single word
•  Maps well to interrupts, exceptions

Server
Client Driver

Sync Async
•  Thread can wait for

synchronous and
asynchronous
messages concurrently

Sync IPC

complemented

with async

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 24

Is Synchronous IPC Redundant?

COMP9242 S2/2014

Client
Running Blocked

Server
Blocked Running

Call (dest, msg) ReplyWait (src, msg)

 …....

Control
transfer

2 IPC
mechanisms:
Minimality
violation

Sync IPC is useful intra-core:
•  fast control transfer
•  mimics migrating threads
•  enables scheduling context donation

Ø  useful for real-time systems
But presently no

clean model!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 25

Direct vs Indirect IPC Adressing

•  Direct: Queue senders/messages at receiver
–  Need unique thread IDs
–  Kernel guarantees identity of sender

•  useful for authentication

•  Indirect: Mailbox/port object
–  Just a user-level handle for the kernel-level queue
–  Extra object type – extra weight?
–  Communication partners are anonymous

•  Need separate mechanism for authentication

Receiver

Sender

Sender

Port

Sender

Sender

Port

Receiver

Receiver

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 26

IPC Destination Naming

COMP9242 S2/2014

IPC

Client Server

Client Server

Load
balancer Workers

Client Server

All IPCs
duplicated!

Original L4
addressed IPC
to threads

Client must do
load balancing?

RPC reply from
wrong thread!

•  Inefficient designs
•  Poor information hiding
•  Covert channels [Shapiro ‘02]

Interpose
transparently? Access

monitor

Thread IDs

replaced by

IPC “endpoints”

(ports)

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Endpoints

COMP9242 S2/2014

IPC

Client Server

Send

Client Server

Rcv
Sync EP

•  Sync EP queues senders/receivers
•  Does not buffer messages

0x01

0x10

0x30

Async EP

0x00 0x01 0x11 0x31 •  Async EP accumulates bits

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Other Design Issues

IPC Control: “Clans & Chiefs” Process Hierarchy

COMP9242 S2/2014

IPC

Chief

Clan

IPC outside clan
re-directs to chief

Create

Hierarchical
resource
management

•  Inflexible, clumsy,
inefficient hierarchies!

•  Fundamental problem:
no rights delegation

Hierarchies

replaced by

delegatable cap-

based access

control

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 29

IMPLEMENTATION

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Virtual TCB Array

COMP9242 S2/2014

TCB TCB VM

Thread ID

Fast TCB &
stack lookup

TC
B

pr

op
er

K
er

ne
l

st
ac

k
Trades cache for TLB footprint
and virtual address space

Not worthwhile on
modern processors!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 31

Process Kernel: Per-Thread Kernel Stack

TCB
TC

B

pr
op

er

K
er

ne
l

st
ac

k

Get own
TCB base

by masking
stack pointer

•  Not worthwhile on
 modern processors!
•  Stacks can dominate
 kernel memory use!

•  Reduces TLB footprint at cost
of cache and kernel memory

•  Easier to deal with blocking

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 32

Scheduler Optimisation Tricks: “Lazy Scheduling”

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {

 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);
 }

 }
 return idleThread;
}

•  Frequent blocking/unblocking
in IPC-based systems

•  Many ready-queue
manipulations

Idea: leave blocked
threads in ready
queue, scheduler

cleans up

Call()

Client

Reply_Wait()

Server

BLOCKED BLOCKED

Problem: Unbounded
scheduler execution time!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 33

Alternative: “Benno Scheduling”

COMP9242 S2/2014

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {

 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);
 }

 }
 return idleThread;
}

•  Frequent blocking/unblocking
in IPC-based systems

•  Many ready-queue
manipulations

Idea: Lazy on
unblocking instead

on blocking

Call()

Client

Reply_Wait()

Server

Only current thread
needs fixing up at
preemtion time!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 34

Scheduler Optimisation: “Direct Process Switch”

COMP9242 S2/2014

•  Sender was running ⇒ had highest prio
•  If receiver prio ≥ sender prio ⇒ run receiver

•  Frequent context switches in
IPC-based systems

•  Many scheduler invocations

Idea: Don’t invoke
scheduler if you know

who’ll be chosen

Call()

Client

Reply_Wait()

Server

Implication: Time slice
donation – receiver runs
on sender’s time slice

•  Arguably, sender should donate back if it’s
a server replying to a Call()

•  Hence, always donate on Reply_Wait()

Problem:
•  Accounting (RT systems)
•  Policy
•  No clean model yet!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 35

Speaking of Real Time…

•  Kernel runs with interrupts disabled
–  No concurrency control ⇒ simpler kernel

•  Easier reasoning about correctness
•  Better average-case performance

•  How about long-running system calls?
–  Use strategic premption points
–  (Original) Fiasco has fully preemptible kernel

•  Like commercial microkernels (QNX, Green Hills INTEGRITY)

COMP9242 S2/2014

while (!done) {

 process_stuff();

 PSW.IRQ_disable=1;

 PSW.IRQ_disable=0;

}

Limited
concurrency

in kernel!

Lots of
concurrency

in kernel!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 36

Incremental Consistency

COMP9242 S2/2014

Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart later

Disable
interrupts

Enable
interrupts

Avoids concurrency in (single-core) kernel

•  Consistency
•  Restartability
•  Progress

Good fit to
event kernel!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 37

Example: Destroying IPC Endpoint

Actions:

1.  Disable EP cap (prevent new messages)
2.  while message queue not empty do
3.  remove head of queue (abort message)
4.  check for pending interrupts
5.  done

COMP9242 S2/2014

Client1
Server

Client2

IPC
endpoint

Message
queue

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 38

Difficult Example: Revoking IPC “Badge”

State to keep across preemptions
•  Badge being removed
•  Point in queue where preempted
•  End of queue at time operation started
•  Thread performing revocation

Need to squeeze into endpoint data structure!

COMP9242 S2/2014

Client1
Server

Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 39

Synchronous IPC Implementation

Simple send (e.g. as part of RPC-like “call”):

1)  Preamble
§  save minimal state, get args

2)  Identify destination
§  Cap lookup;

get endpoint; check queue
3)  Get receiver TCB

§  Check receiver can still run
§  Check receiver priority is ≥ ours

4)  Mark sender blocked and enqueue
§  Create reply cap & insert in slot

5)  Switch to receiver
§  Leave message registers untouched
§  nuke reply cap

6)  Postamble (restore & return)

Running Wait to receive

Running Wait to receive

Wait to receive Running

185 cycles
on ARM11!

“Direct process
switch” without

scheduler invocation!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 40

Fastpath Coding Tricks

•  Reduces branch-prediction footprint
•  Avoids mispredicts, stalls & flushes
•  Uses ARM instruction predication
•  But: increases slow-path latency

–  should be minimal compared to basic slow-path cost

slow =
cap_get_capType(en_c) != cap_endpoint_cap ||

!cap_endpoint_cap_get_capCanSend(en_c);

if (slow) enter_slow_path();

Common case: 0

Common case: 1

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 41

Lazy FPU Switch

•  FPU context tends to be heavyweight
–  eg 512 bytes FPU state on x86

•  Only few apps use FPU (and those don’t do many syscalls)
–  saving and restoring FPU state on every context switch is wastive!

Kernel

current
 FPU_owner
 FPU_locked
 Saved

FPU state

finit

current
current
 FPU_owner
FPU_owner
 FPU_locked
 Saved

FPU state

Saved

FPU state

fld

fcos

fst

finit

fld

sosh()

Standard trick,

not only for
microkernels!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 42

Other implementation tricks

•  Cache-friendly data structure layout, especially TCBs
–  data likely used together is on same cache line
–  helps best-case and worst-case performance

•  Kernel mappings locked in TLB (using superpages)
–  helps worst-case performance
–  helps establish invariants: page table never walked when in kernel

Avoid RAM
like the
plague!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 43

Other Lessons Learned from 2nd Generation

•  Programming languages:
–  original i496 kernel [’95]: all assembler
–  UNSW MIPS and Alpha kernels [’96,’98]: half assembler, half C
–  Fiasco [TUD ’98], Pistachio [’02]: C++ with assembler “fast path”
–  seL4 [‘09], OKL4 [‘09]: all C

•  Lessons:
–  C++ sux: code bloat, no real benefit
–  Changing calling conventions not worthwhile

•  Conversion cost in library stubs and when entering C in kernel
•  Reduced compiler optimization

–  Assembler unnecessary for performance
•  Can write C so compiler will produce near-optimal code
•  C entry from assembler cheap if calling conventions maintained
•  seL4 performance with C-only pastpath as good as other L4 kernels

[Blackham & Heiser ‘12]

C++ ABANDONED

Assembler coding

ABANDONED

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 44

L4 Design and Implementation

Implement. Tricks [SOSP’93]

•  Process kernel
•  Virtual TCB array
•  Lazy scheduling
•  Direct process switch
•  Non-preemptible
•  Non-portable
•  Non-standard calling

convention
•  Assembler

Design Decisions [SOSP’95]

•  Synchronous IPC
•  Rich message structure,

arbitrary out-of-line messages
•  Zero-copy register messages
•  User-mode page-fault handlers
•  Threads as IPC destinations
•  IPC timeouts
•  Hierarchical IPC control
•  User-mode device drivers
•  Process hierarchy
•  Recursive address-space

construction

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 45

seL4 Design Principles

•  Fully delegatable access control
•  All resource management is subject to user-defined policies

–  Applies to kernel resources too!
•  Suitable for formal verification

–  Requires small size, avoid complex constructs
•  Performance on par with best-performing L4 kernels

–  Prerequisite for real-world deployment!
•  Suitability for real-time use

–  Only partially achieved to date L
•  on-going work…

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 46

(Informal) Requirements for Formal Verification

•  Verification scales poorly ⇒ small size (LOC and API)
•  Conceptual complexity hurts ⇒ KISS
•  Global invariants are expensive ⇒ KISS
•  Concurrency difficult to reason about ⇒ single-threaded kernel

Largely in line with traditional L4 approach!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 47

seL4 Fundamental Abstractions

•  Capabilities as opaque names and access tokens
–  All kernel operations are cap invokations (except Yield())

•  IPC:
–  Synchonous (blocking) message passing plus asynchous notification
–  Endpoint objects implemented as message queues

•  Send: get receiver TCB from endpoint or enqueue self
•  Receive: obtain sender’s TCB from endpoint or enqueue self

•  Other APIs:
–  Send()/Receive() to/from virtual kernel endpoint
–  Can interpose operations by substituting actual endpoint

•  Fully user-controlled memory management

seL4’s main
conceptual

novelty!

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 48

Remember: seL4 User-Level Memory Management

Global Resource Manager

RAM Kernel
Data

GRM
Data

Resource Manager

RM
Data

Resource Manager

RM
Data

Addr
Space

AS

Addr
Space

Addr
Space

RM

RM
Data

Resources fully
delegated, allows

autonomous
operation

Strong isolation,
No shared kernel

resources

Delegation
can be
revoked

COMP9242 S2/2014

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 49

Remaining Conceptual Issues in seL4

IPC & Tread Model:
•  Is the “mostly synchronous + a bit of async” model appropriate?

–  forces kernel scheduling of user activities
–  forces multi-threaded userland

Time management:
•  Present scheduling model is ad-hoc and insufficient

–  fixed-prio round-robin forces policy
–  not sufficient for some classes of real-time systems (time triggered)
–  no real support for hierarchical real-time scheduling
–  lack of an elegant resource management model for time

COMP9242 S2/2014

About to be
solved!

©2012 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 50

Lessons From 20 Years of L4

•  Minimality is excellent driver of design decisions
–  L4 kernels have become simpler over time
–  Policy-mechanism separation (user-mode page-fault handlers)
–  Device drivers really belong to user level
–  Minimality is key enabler for formal verification!

•  IPC speed still matters
–  But not everywhere, premature optimisation is wasteful
–  Compilers have got so much better
–  Verification does not compromise performance
–  Verification invariants can help improve speed! [Shi, OOPSLA’13]

•  Capabilities are the way to go

COMP9242 S2/2014

•  Details changed, but principles remained
•  Microkernels rock! (If done right!)

