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From a software�technology point of view� the ��
kernel concept is superior to large integrated kernels�
On the other hand� it is widely believed that �a� ��
kernel based systems are inherently ine�cient and �b�
they are not su�ciently �exible� Contradictory to this
belief� we show and support by documentary evidence
that ine�ciency and in�exibility of current ��kernels is
not inherited from the basic idea but mostly from over�
loading the kernel and	or from improper implementa�
tion�
Based on functional reasons� we describe some con�

cepts which must be implemented by a ��kernel and
illustrate their �exibility� Then� we analyze the per�
formance critical points� We show what performance
is achievable� that the e�ciency is su�cient with re�
spect to macro�kernels and why some published contra�
dictory measurements are not evident� Furthermore� we
describe some implementation techniques and illustrate
why ��kernels are inherently not portable� although
they improve portability of the whole system�

� Rationale

��kernel based systems have been built long before the
term itself was introduced� e�g� by Brinch Hansen 
����
and Wulf et al� 
����� Traditionally� the word �kernel�
is used to denote the part of the operating system that is
mandatory and common to all other software� The basic
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idea of the ��kernel approach is to minimize this part�
i�e� to implement outside the kernel whatever possible�
The software technological advantages of this ap�

proach are obvious�

�a� A clear ��kernel interface enforces a more modular
system structure��

�b� Servers can use the mechanisms provided by the
��kernel like any other user program� Server mal�
function is as isolated as any other user program�s
malfunction�

�c� The system is more �exible and tailorable� Di�er�
ent strategies and APIs� implemented by di�erent
servers� can coexist in the system�

Although much e�ort has been invested in ��kernel
construction� the approach is not �yet� generally ac�
cepted� This is due to the fact that most existing ��
kernels do not perform su�ciently well� Lack of e��
ciency also heavily restricts �exibility� since important
mechanisms and principles cannot be used in practice
due to poor performance� In some cases� the ��kernel
interface has been weakened and special servers have
been re�integrated into the kernel to regain e�ciency�

It is widely believed that the mentioned ine�ciency
�and thus in�exibility� is inherent to the ��kernel ap�
proach� Folklore holds that increased user�kernel mode
and address�space switches are responsible� At a �rst
glance� published performance measurements seem to
support this view�

In fact� the cited performance studies measured the
performance of a particular ��kernel based system with�
out analyzing the reasons which limit e�ciency� We can
only guess whether it is caused by the ��kernel approach�
by the concepts implemented by this particular ��kernel
or by the implementation of the ��kernel� Since it is
known that conventional IPC� one of the traditional ��
kernel bottlenecks� can be implemented an order of mag�
nitude faster� than believed before� the question is still

�Although many macro�kernels tend to be less modular� there
are exceptions from this rule� e�g� Chorus �Rozier et al� 	
��� and
Peace �Schroder�Preikschat 	

���

�Short user�to�user cross�address space IPC in L� �Liedtke



open� It might be possible that we are still not applying
the appropriate construction techniques�
For the above reasons� we feel that a conceptual anal�

ysis is needed which derives ��kernel concepts from pure
functionality requirements �section �� and that discusses
achievable performance �section �� and �exibility �sec�
tion ��� Further sections discuss portability �section ��
and the chances of some new developments �section ���

� Some ��Kernel Concepts

In this section� we reason about the minimal concepts
or �primitives� that a ��kernel should implement�� The
determining criterion used is functionality� not perfor�
mance� More precisely� a concept is tolerated inside the
��kernel only if moving it outside the kernel� i�e� per�
mitting competing implementations� would prevent the
implementation of the system�s required functionality�
We assume that the target system has to support

interactive and	or not completely trustworthy applica�
tions� i�e� it has to deal with protection� We further
assume that the hardware implements page�based vir�
tual memory�
One inevitable requirement for such a system is that

a programmer must be able to implement an arbitrary
subsystem S in such a way that it cannot be disturbed or
corrupted by other subsystems S�� This is the principle
of independence� S can give guarantees independent of
S�� The second requirement is that other subsystems
must be able to rely on these guarantees� This is the
principle of integrity� there must be a way for S� to
address S� and to establish a communication channel
which can neither be corrupted nor eavesdropped by
S��
Provided hardware and kernel are trustworthy� fur�

ther security services� like those described by Gasser
et al� 
������ can be implemented by servers� Their in�
tegrity can be ensured by system administration or by
user�level boot servers� For illustration� a key server
should deliver public�secret RSA key pairs on demand�
It should guarantee that each pair has the desired RSA
property and that each pair is delivered only once and
only to the demander� The key server can only be
realized if there are mechanisms which �a� protect its
code and data� �b� ensure that nobody else reads or
modi�es the key and �c� enable the demander to check
whether the key comes from the key server� Finding the
key server can be done by means of a name server and
checked by public key based authentication�

	

�� is �� times faster than in Mach� both running on a ����
On the R����� the specialized Exo�tlrpc �Engler et al� 	

�� is ��
times faster than Mach�s general RPC�

�Proving minimality� necessarity and completeness would be
nice but is impossible� since there is no agreed�upon metric and
all is Turing�equivalent�

��� Address Spaces

At the hardware level� an address space is a mapping
which associates each virtual page to a physical page
frame or marks it �non�accessible�� For the sake of
simplicity� we omit access attributes like read�only and
read	write� The mapping is implemented by TLB hard�
ware and page tables�

The ��kernel� the mandatory layer commonto all sub�
systems� has to hide the hardware concept of address
spaces� since otherwise� implementing protection would
be impossible� The ��kernel concept of address spaces
must be tamed� but must permit the implementation of
arbitrary protection �and non�protection� schemes on
top of the ��kernel� It should be simple and similar to
the hardware concept�

The basic idea is to support recursive construction
of address spaces outside the kernel� By magic� there
is one address space �

�
which essentially represents the

physical memory and is controlled by the �rst subsys�
tem S� � At system start time� all other address spaces
are empty� For constructing and maintaining further
address spaces on top of �� � the ��kernel provides three
operations�

Grant� The owner of an address space can grant any
of its pages to another space� provided the recipient
agrees� The granted page is removed from the granter�s
address space and included into the grantee�s address
space� The important restriction is that instead of phys�
ical page frames� the granter can only grant pages which
are already accessible to itself�

Map� The owner of an address space canmap any of its
pages into another address space� provided the recipient
agrees� Afterwards� the page can be accessed in both
address spaces� In contrast to granting� the page is not
removed from the mapper�s address space� Comparable
to the granting case� the mapper can only map pages
which itself already can access�

Flush� The owner of an address space can �ush any of
its pages� The �ushed page remains accessible in the
�usher�s address space� but is removed from all other
address spaces which had received the page directly or
indirectly from the �usher� Although explicit consent
of the a�ected address�space owners is not required� the
operation is safe� since it is restricted to own pages� The
users of these pages already agreed to accept a potential
�ushing� when they received the pages by mapping or
granting�

Appendix A contains a more precise de�nition of ad�
dress spaces and the above three operations�

Reasoning

The described address�space concept leaves memory
management and paging outside the ��kernel� only the
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grant� map and �ush operations are retained inside the
kernel� Mapping and �ushing are required to implement
memory managers and pagers on top of the ��kernel�

The grant operation is required only in very special
situations� consider a pager F which combines two un�
derlying �le systems �implemented as pagers f� and f��
operating on top of the standard pager� into one uni�
�ed �le system �see �gure ��� In this example� f� maps

user A � � � � � � user X
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Figure �� A Granting Example�

one of its pages to F which grants the received page
to user A� By granting� the page disappears from F so
that it is then available only in f� and user A� the re�
sulting mappings are denoted by the thin line� the page
is mapped in user A� f� and the standard pager� Flush�
ing the page by the standard pager would a�ect f� and
user A� �ushing by f� only user A� F is not a�ected by
either �ush �and cannot �ush itself�� since it used the
page only transiently� If F had used mapping instead
of granting� it would have needed to replicate most of
the bookkeeping which is already done in f� and f��
Furthermore� granting avoids a potential address�space
over�ow of F �

In general� granting is used when page mappings
should be passed through a controlling subsystem with�
out burdening the controller�s address space by all pages
mapped through it�

The model can easily be extended to access rights on
pages� Mapping and granting copy the source page�s
access right or a subset of them� i�e�� can restrict the
access but not widen it� Special �ushing operations may
remove only speci�ed access rights�

I�O

An address space is the natural abstraction for incorpo�
rating device ports� This is obvious for memorymapped
I	O� but I	O ports can also be included� The granu�
larity of control depends on the given processor� The
��� and its successors permit control per port �one very
small page per port� but no mapping of port addresses
�it enforces mappings with v �v��� the PowerPC uses

pure memorymapped I	O� i�e�� device ports can be con�
trolled and mapped with �K granularity�

Controlling I	O rights and device drivers is thus also
done by memory managers and pagers on top of the
��kernel�

��� Threads and IPC

A thread is an activity executing inside an address space�
A thread � is characterized by a set of registers� includ�
ing at least an instruction pointer� a stack pointer and
a state information� A thread�s state also includes the
address space ���� in which � currently executes� This
dynamic or static association to address spaces is the de�
cisive reason for including the thread concept �or some�
thing equivalent� in the ��kernel� To prevent corruption
of address spaces� all changes to a thread�s address space
����� �� ��� must be controlled by the kernel� This im�
plies that the ��kernel includes the notion of some � that
represents the above mentioned activity� In some oper�
ating systems� there may be additional reasons for intro�
ducing threads as a basic abstraction� e�g� preemption�
Note that choosing a concrete thread concept remains
subject to further OS�speci�c design decisions�

Consequently� cross�address�space communication�
also called inter�process communication �IPC�� must be
supported by the ��kernel� The classical method is
transferring messages between threads by the ��kernel�

IPC always enforces a certain agreement between
both parties of a communication� the sender decides
to send information and determines its contents� the
receiver determines whether it is willing to receive in�
formation and is free to interpret the received message�
Therefore� IPC is not only the basic concept for com�
munication between subsystems but also� together with
address spaces� the foundation of independence�

Other forms of communication� remote procedure call
�RPC� or controlled thread migration between address
spaces� can be constructed from message�transfer based
IPC�

Note that the grant and map operations �section ����
need IPC� since they require an agreement between
granter	mapper and recipient of the mapping�

Supervising IPC

Architectures like those described by Yokote 
����� and
K�uhnhauser 
����� need not only supervise the memory
of subjects but also their communication� This can be
done by introducing either communication channels or
Clans 
Liedtke ����� which allow supervision of IPC by
user�de�ned servers� Such concepts are not discussed
here� since they do not belong to the minimal set of
concepts� We only remark that Clans do not burden
the ��kernel� their base cost is � cycles per IPC�
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Interrupts

The natural abstraction for hardware interrupts is the
IPC message� The hardware is regarded as a set of
threads which have special thread ids and send empty
messages �only consisting of the sender id� to associated
software threads� A receiving thread concludes from the
message source id� whether the message comes from a
hardware interrupt and from which interrupt�

driver thread�
do

wait for �msg� sender� �
if sender � my hardware interrupt

then read�write io ports �
reset hardware interrupt

else � � �

�

od �

Transforming the interrupts into messages must be
done by the kernel� but the ��kernel is not involved in
device�speci�c interrupt handling� In particular� it does
not know anything about the interrupt semantics� On
some processors� resetting the interrupt is a device spe�
ci�c action which can be handled by drivers at user level�
The iret�instruction then is used solely for popping sta�
tus information from the stack and	or switching back to
user mode and can be hidden by the kernel� However� if
a processor requires a privileged operation for releasing
an interrupt� the kernel executes this action implicitly
when the driver issues the next IPC operation�

��� Unique Identi�ers

A ��kernel must supply unique identi�ers �uid� for
something� either for threads or tasks or communication
channels� Uids are required for reliable and e�cient lo�
cal communication� If S� wants to send a message to
S�� it needs to specify the destination S� �or some chan�
nel leading to S��� Therefore� the ��kernel must know
which uid relates to S�� On the other hand� the receiver
S� wants to be sure that the message comes from S��
Therefore the identi�er must be unique� both in space
and time�
In theory� cryptography could also be used� In prac�

tice� however� enciphering messages for local commu�
nication is far too expensive and the kernel must be
trusted anyway� S� can also not rely on purely user�
supplied capabilities� since S� or some other instance
could duplicate and pass them to untrusted subsystems
without control of S��

� Flexibility

To illustrate the �exibility of the basic concepts� we
sketch some applications which typically belong to the
basic operating system but can easily be implemented

on top of the ��kernel� In this section� we show the
principal �exibility of a ��kernel� Whether it is really
as �exible in practice strongly depends on the achieved
e�ciency of the ��kernel� The latter performance topic
is discussed in section ��

Memory Manager� A server managing the initial
address space �

�
is a classical main memory manager�

but outside the ��kernel� Memory managers can easily
be stacked� M� maps or grants parts of the physical
memory ��� � to �� � controlled by M�� other parts to �� �
controlled by M�� Now we have two coexisting main
memory managers�

Pager� A Pager may be integrated with a memory
manager or use a memory managing server� Pagers use
the ��kernel�s grant� map and �ush primitives� The
remaining interfaces� pager  client� pager  memory
server and pager  device driver� are completely based
on IPC and are user�level de�ned�

Pagers can be used to implement traditional paged
virtual memory and �le	database mapping into user ad�
dress spaces as well as unpaged resident memory for de�
vice drivers and	or real time systems� Stacked pagers�
i�e� multiple layers of pagers� can be used for combin�
ing access control with existing pagers or for combining
various pagers �e�g� one per disk� into one composed ob�
ject� User�supplied paging strategies 
Lee et al� �����
Cao et al� ����� are handled at the user level and are in
no way restricted by the ��kernel� Stacked �le systems

Khalidi and Nelson ����� can be realized accordingly�

Multimedia Resource Allocation� Multimedia
and other real�time applications require memory re�
sources to be allocated in a way that allows predictable
execution times� The above mentioned user�level mem�
ory managers and pagers permit e�g� �xed allocation
of physical memory for speci�c data or locking data in
memory for a given time�

Note that resource allocators for multimedia and for
timesharing can coexist� Managing allocation con�icts
is part of the servers� jobs�

Device Driver� A device driver is a process which
directly accesses hardware I	O ports mapped into its
address space and receives messages from the hard�
ware �interrupts� through the standard IPC mechanism�
Device�speci�c memory� e�g� a screen� is handled by
means of appropriate memory managers� Compared to
other user�level processes� there is nothing special about
a device driver� No device driver has to be integrated
into the ��kernel��

�In general� there is no reason for integrating boot drivers into
the kernel� The booter� e�g� located in ROM� simply loads a bit
image into memory that contains the micro�kernel and perhaps
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Second Level Cache and TLB� Improving the hit
rates of a secondary cache by means of page allocation or
reallocation 
Kessler and Hill ����� Romer et al� �����
can be implemented by means of a pager which applies
some cache�dependent �hopefully con�ict reducing� pol�
icy when allocating virtual pages in physical memory�
In theory� even a software TLB handler could be im�

plemented like this� In practice� the �rst�level TLB
handler will be implemented in the hardware or in the
��kernel� However� a second�level TLB handler� e�g�
handling misses of a hashed page table� might be imple�
mented as a user�level server�

Remote Communication� Remote IPC is imple�
mented by communication servers which translate local
messages to external communication protocols and vice
versa� The communication hardware is accessed by de�
vice drivers� If special sharing of communication bu�ers
and user address space is required� the communication
server will also act as a special pager for the client� The
��kernel is not involved�

Unix Server� Unix� system calls are implemented by
IPC� The Unix server can act as a pager for its clients
and also use memory sharing for communicating with
its clients� The Unix server itself can be pageable or
resident�

Conclusion� A small set of ��kernel concepts lead to
abstractions which stress �exibility� provided they per�
form well enough� The only thing which cannot be im�
plemented on top of these abstractions is the processor
architecture� registers� �rst�level caches and �rst�level
TLBs�

� Performance� Facts � Rumors

��� Switching Overhead

It is widely believed that switching between kernel and
user mode� between address spaces and between threads
is inherently expensive� Some measurements seem to
support this belief�

����� Kernel�User Switches

Ousterhout 
����� measured the costs for executing the
�null� kernel call getpid� Since the real getpid opera�
tion consists only of a few loads and stores� this method
measures the basic costs of a kernel call� Normalized to
a hypothetical machine with �� MIPS rating ���� VAX

some set of initial pagers and drivers �running at user mode and
not linked but simply appended to the kernel�� Afterwards� the
boot drivers are no longer used�

�Unix is a registered trademark of UNIX System Laboratories�

��	�� or roughly a ��� at �� MHz�� he showed that
most machines need �� �� �s per getpid� one required
even �� �s� Corroborating these results� we measured
�� �s per Mach	 ��kernel call get self thread� In fact�
the measured kernel�call costs are high�

For analyzing the measured costs� our argument is
based on a ��� ��� MHz� processor� We take an x��
processor� because kernel�user mode switches are ex�
tremely expensive on these processors� In contrast to
the worst case processor� we use a best�case measure�
ment for discussion� �� �s for Mach on a ���	���

The measured costs per kernel call are ��� �� � ���
cycles� The bare machine instruction for entering kernel
mode costs � cycles� followed by an additional �� cy�
cles for returning to user mode� These two instructions
switch between the user and kernel stack and push	pop
�ag register and instruction pointer� �� cycles �about
� �s� is therefore a lower bound on kernel user mode
switches� The remaining ��� or more cycles are pure
kernel overhead� By this term� we denote all cycles
which are solely due to the construction of the kernel�
nevermind whether they are spent in executing instruc�
tions ���� cycles � ��� instructions� or in cache and
TLB misses ���� cycles � �� primary cache misses �
�� TLB misses�� We have to conclude that the measured
kernels do a lot of work when entering and exiting the
kernel� Note that this work by de�nition has no net
e�ect�

Is an ��� cycle kernel overhead really necessary! The
answer is no� Empirical proof� L� 
Liedtke ����� has a
minimal kernel overhead of �� cycles� If the ��kernel call
is executed infrequently enough� it may increase by up
to � additional cycles �� TLB misses� �� cache misses��
The complete L� kernel call costs are thus ��� to ���
cycles� mostly less than � �s�

The L� ��kernel is process oriented� uses a kernel
stack per thread and supports persistent user processes
�i�e� the kernel can be exchanged without a�ecting the
remaining system� even if a process actually resides in
kernel mode�� Therefore� it should be possible for any
other ��kernel to achieve comparably low kernel call
overhead on the same hardware�

Other processors may require a slightly higher over�
head� but they o�er substantially cheaper basic op�
erations for entering and leaving kernel mode� From
an architectural point of view� calling the kernel from
user mode is simply an indirect call� complemented by
a stack switch and setting the internal �kernel��bit to
permit privileged operations� Accordingly� returning
from kernel mode is a normal return operation comple�
mented by switching back to user stack and resetting the
�kernel��bit� If the processor has di�erent stack pointer
registers for user and kernel stack� the stack switching
costs can be hidden� Conceptually� entering and leaving

�Mach ���� NORMA MK 	�
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kernel mode can perform exactly like a normal indirect
call and return instruction �which do not rely on branch
prediction�� Ideally� this means �"��� cycles on a ��
issue processor

Conclusion� Compared to the theoretical minimum�
kernel user mode switches are costly on some proces�
sors� Compared to existing kernels however� they can
be improved � to �� times by appropriate ��kernel con�
struction� Kernel user mode switches are not a serious
conceptual problem but an implementational one�

����� Address Space Switches

Folklore also considers address�space switches as costly�
All measurements known to the author and related to
this topic deal with combined thread and address�space
switch costs� Therefore� in this section� we analyze only
the architectural processor costs for pure address�space
switching� The combined measurements are discussed
together with thread switching�
Most modern processors use a physically indexed

primary cache which is not a�ected by address�space
switching� Switching the page table is usually very
cheap� � to �� cycles� The real costs are determined
by the TLB architecture�
Some processors �e�g� Mips R����� use tagged TLBs�

where each entry does not only contain the virtual page
address but also the address�space id� Switching the
address space is thus transparent to the TLB and costs
no additional cycles� However� address�space switching
may induce indirect costs� since shared pages occupy
one TLB entry per address space� Provided that the ��
kernel �shared by all address spaces� has a small working
set and that there are enough TLB entries� the problem
should not be serious� However� we cannot support this
empirically� since we do not know an appropriate ��
kernel running on such a processor�
Most current processors �e�g� ���� Pentium� PowerPC

and Alpha� include untagged TLBs� An address�space
switch thus requires a TLB �ush� The real costs are de�
termined by the TLB load operations which are required
to re�establish the current working set later� If the work�
ing set consists of n pages� the TLB is fully�associative�
has s entries and a TLB miss costs m cycles� at most
min�n� s��m cycles are required in total�
Apparently� larger untagged TLBs lead to a perfor�

mance problem� For example� completely reloading
the Pentium�s data and code TLBs requires at least
��� " ��� � � � ��� cycles� Therefore� intercepting a
program every ����s could imply an overhead of up to
�#� Although using the complete TLB is unrealistic
�

�Both TLBs are ��way set�associative� Working sets which
are not compact in the virtual address space� usually imply some
con�icts so that only about half of the TLB entries are used si�
multaneously� Furthermore� a working set of �� data pages will

this worst�case calculation shows that switching page
tables may become critical in some situations�

Fortunately� this is not a problem� since on Pentium
and PowerPC� address�space switches can be handled
di�erently� The PowerPC architecture includes segment
registers which can be controlled by the ��kernel and
o�er an additional address translation facility from the
local ����byte address space to a global ����byte space�
If we regard the global space as a set of one million local
spaces� address�space switches can be implemented by
reloading the segment registers instead of switching the
page table� With �� cycles for ��� GB or �� cycles for
� GB segment switching� the overhead is low compared
to a no longer required TLB �ush� In fact� we have a
tagged TLB�

Things are not quite as easy on the Pentium or the
���� Since segments are mapped into a ����byte space�
mapping multiple user address spaces into one linear
space must be handled dynamically and depends on the
actually used sizes of the active user address spaces�
The according implementation technique 
Liedtke �����
is transparent to the user and removes the potential
performance bottleneck� Address space switch overhead
then is �� cycles on the Pentium and �� cycles on ����

For understanding that the restriction of a ����byte
global space is not crucial to performance� one has to
mention that address spaces which are used only for
very short periods and with small working sets are ef�
fectively very small in most cases� say � MB or less for a
device driver� For example� we can multiplex one � GB
user address space with � user spaces of �� MB and ad�
ditionally ��� user spaces of � MB� The trick is to share
the smaller spaces with all large � GB spaces� Then any
address�space switch to a medium or small space is al�
ways fast� Switching between two large address spaces
is uncritical anyway� since switching between two large
working sets implies TLB and cache miss costs� never�
mind whether the two programs execute in the same or
in di�erent address spaces�

Table � shows the page table switch and segment
switch overhead for several processors� For a TLB miss�
the minimal and maximal cycles are given �provided
that no referenced or modi�ed bits need updating�� In
the case of ���� Pentium and PowerPC� this depends on
whether the corresponding page table entry is found in
the cache or not� As a minimal working set� we assume
� pages� For the maximum case� we exclude � pages
from the address�space overhead costs� because at most
� pages are required by the ��kernel and thus would as
well occupy TLB entries when the address space would
not be switched�

most likely lead to cache thrashing� in best case� the cache sup�
ports � � �� bytes per page� Since the cache is only ��way set�
associative� probably only 	 or � cache entries can be used per
page in practice�
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TLB TLB miss Page Table Segment
entries cycles switch cycles

��� �� �� � � �� ��� � � ��� ��
Pentium �� �� � � �� ��� � � ���� ��
PowerPC ��� ��� 	 	 ��
Alpha ����� �� ��� � � ��a ��� � � ���� n
a

Mips R���� �� ��� � � ��a �b n
a

aAlpha and Mips TLB misses are handled by software�
bR���� has a tagged TLB�

Table �� Address Space Switch Overhead

Conclusion� Properly constructed address�space
switches are not very expensive� less than �� cycles on
modern processors� On a ��� MHz processor� the in�
herited costs of address�space switches can be ignored
roughly up to ������� switches per second� Special op�
timizations� like executing dedicated servers in kernel
space� are super�uous� Expensive context switching in
some existing ��kernels is due to implementation and
not caused by inherent problems with the concept�

����� Thread Switches and IPC

Ousterhout 
����� also measured context switching in
some Unix systems by echoing one byte back and forth
through pipes between two processes� Again normalized
to a �� Mips machine� most results are between ��� and

System CPU� MHz RPC time cycles
IPC
�round trip� �oneway�

full IPC semantics

L� ���� �� �� �s ���
QNX ���� �� �� �s ����
Mach R����� ��� ��� �s ����
SRC RPC CVAX� ��� ��� �s ����
Mach ���� �� ��� �s ����
Amoeba ������ �� ��� �s ����
Spin Alpha ������ ��� ��� �s ����
Mach Alpha ������ ��� ��� �s ����

restricted IPC semantics

Exo�tlrpc R����� ��� � �s ��
Spring SparcV�� �� �� �s ���
DP�Mach ���� �� �� �s ���
LRPC CVAX� ��� ��� �s ���

Table �� ��byte�RPC performance

��� �s per ping�pong� one was ���� �s� All existing ��
kernels are at least � times faster� but it is proved by
construction that �� �s� i�e� a �� to �� times faster RPC
is achievable� Table � gives the costs of echoing one byte
by a round trip RPC� i�e� two IPC operations��

�The respective data is taken from �Liedtke 	

�� Hildebrand
	

�� Schroeder and Burroughs 	
�
� Draves et al� 	

	� van

All times are user to user� cross�address space�They
include system call� argument copy� stack and address
space switch costs� Exokernel� Spring and L� show that
communication can be implemented pretty fast and that
the costs are heavily in�uenced by the processor archi�
tecture� Spring on Sparc has to deal with register win�
dows� whereas L� is burdened by the fact that a ���
trap is ��� cycles more expensive than a Sparc trap�

The e�ect of using segment based address�space
switch on Pentium is shown in �gure �� One long run�
ning application with a stable working set �� to ��
data pages� executes a short RPC to a server with
a small working set �� pages�� After the RPC� the
application re�accesses all its pages� Measurement is
done by ������� repetitions and comparing each run
against running the application �������� time access�
ing all pages� without RPC� The given times are round
trip RPC times� user to user� plus the required time for
re�establishing the application�s working set�

application data working set �pages�
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Figure �� Segmented Versus Standard Address�Space
Switch in L� on Pentium� �� MHz�

Conclusion� IPC can be implemented fast enough to
handle also hardware interrupts by this mechanism�

��� Memory E�ects

Chen and Bershad 
����� compared the memory system
behaviour of Ultrix� a large monolithic Unix system�
with that of the Mach ��kernel which was complemented
with a Unix server� They measured memory cycle over�
head per instruction �MCPI� and found that programs
running under Mach " Unix server had a substantially

Renesse et al� 	
��� Liedtke 	

�� Bershad et al� 	

�� Engler
et al� 	

�� Hamilton and Kougiouris 	

�� Bryce and Muller
	

�� Bershad et al� 	
�
��





higher MCPI than running the same programs under Ul�
trix� For some programs� the di�erences were up to ����
cycles per instruction� averaged over the total program
�user " system�� Similar memory system degradation
of Mach versus Ultrix is noticed by others 
Nagle et al�
������ The crucial point is whether this problem is due
to the way that Mach is constructed� or whether it is
caused by the ��kernel approach�
Chen and Bershad 
����� p� ���� state� �This suggests

that microkernel optimizations focussing exclusively on
IPC 
� � � �� without considering other sources of system
overhead such as MCPI� will have a limited impact on
overall system performance�� Although one might sup�
pose a principal impact of OS architecture� the men�
tioned paper exclusively presents facts �as is� about a
speci�c implementation without analyzing the reasons
for memory system degradation�
Careful analysis of the results is thus required� Ac�

cording to the original paper� we comprise under �sys�
tem� either all Ultrix activities or the joined activities
of the Mach ��kernel� Unix emulation library and Unix
server� The Ultrix case is denoted by U� the Mach
case by M� We restrict our analysis to the samples that
show a signi�cant MCPI di�erence for both systems�
sed� egrep� yacc� gcc� compress� espresso and the an�
drew benchmark ab�

In �gure �� we present the results of Chen�s �gure ��
� in a slightly reordered way� We have colored MCPI

sed U �	���

M �	��

egrep U �	�


M �	���

yacc U �	���

M �	���

gcc U �	�
�

M �	���

compress U �	��

M �	���

ab U �	���

M �	
�

espresso U �	���

M �	���

other MCPI
system cache miss MCPI

							
																																																																																																																																															

							
							
							
							
																																																																																																																																																																																																																													

Figure �� Baseline MCPI for Ultrix and Mach�

black that are due to system i�cache or d�cache misses�
The white bars comprise all other causes� system write
bu�er stalls� system uncached reads� user i�cache and
d�cache misses and user write bu�er stalls� It is easy
to see that the white bars do not di�er signi�cantly
between Ultrix and Mach� the average di�erence is �����
the standard deviation is ���� MCPI�
We conclude that the di�erences in memory system

behaviour are essentially caused by increased system ca�
che misses for Mach� They could be con�ict misses �the
measured system used direct mapped caches� or capac�
ity misses� A large fraction of con�ict misses would

suggest a potential problem due to OS structure�
Chen and Bershad measured cache con�icts by com�

paring the direct mapped to a simulated ��way cache�

They found that system self�interference is more impor�
tant than user	system interference� but the data also
show that the ratio of con�ict to capacity misses in
Mach is lower than in Ultrix� Table � shows the con�ict
�black� and capacity �white� system cache misses both
in an absolute scale �left� and as ratio �right��

sed U �	���

M �	��

egrep U �	���

M �	���

yacc U �	�
�

M �	���

gcc U �	�
�

M �	
��

compress U �	���

M �	��

ab U �	�
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M �	
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�

con�ict misses
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Figure �� MCPI Caused by Cache Misses�

From this we can deduce that the increased cache
misses are caused by higher cache consumption of the
system �Mach " emulation library " Unix server�� not
by con�icts which are inherent to the system�s structure�

The next task is to �nd the component which is re�
sponsible for the higher cache consumption� We assume
that the used Unix single server behaves comparably
to the corresponding part of the Ultrix kernel� This
is supported by the fact that the samples spent even
fewer instructions in Mach�s Unix server than in the
corresponding Ultrix routines� We also exclude Mach�s
emulation library� since Chen and Bershad report that
only �# or less of system overhead is caused by it�

What remains is Mach itself� including trap handling�
IPC and memory management� which therefore must
induce nearly all of the additional cache misses�

Therefore� the mentioned measurements suggest that
memory system degradation is caused solely by high
cache consumption of the ��kernel� Or in other words�
drastically reducing the cache working set of a ��kernel
will solve the problem�

Since a ��kernel is basically a set of procedures which
are invoked by user�level threads or hardware� a high
cache consumption can only�� be explained by a large
number of very frequently used ��kernel operations or

	Although this method does not determine all con�ict misses
as de�ned by Hill and Smith �	
�
�� it can be used as a �rst�level
approximation�
��We do not believe that the Mach kernel �ushes the cache ex�

plicitly� The measured system was a uniprocessor with physically
tagged caches� The hardware does not even require explicit cache
�ushes for DMA�

�



by high cache working sets of a few frequently used op�
erations� According to section �� the �rst case has to be
considered as a conceptual mistake� Large cache work�
ing sets are also not an inherent feature of ��kernels�
For example� L� requires less than � K for short IPC�
�Recall� voluminous communication can be made by dy�
namic or static mapping so that the cache is not �ooded
by copying very long messages��

Mogul and Borg 
����� reported an increase in cache
misses after preemptively�scheduled context switches
between applications with large working sets� This de�
pends mostly on the application load and the require�
ment for interleaved execution �timesharing�� The type
of kernel is almost irrelevant� We showed �section �����
and ������ that ��kernel context switches are not ex�
pensive in the sense that there is not much di�erence
between executing application � servers in one or in
multiple address spaces�

Conclusion� The hypothesis that ��kernel architec�
tures inherently lead to memory system degradation is
not substantiated� On the contrary� the quoted mea�
surements support the hypothesis that properly con�
structed ��kernels will automatically avoid the memory
system degradation measured for Mach�

� Non�Portability

Older ��kernels were built machine�independently on
top of a small hardware�dependent layer� This approach
has strong advantages from the software technological
point of view� programmers did not need to know very
much about processors and the resulting ��kernels could
easily be ported to new machines� Unfortunately� this
approach prevented these ��kernels from achieving the
necessary performance and thus �exibility�
In retrospective� we should not be surprised� since

building a ��kernel on top of abstract hardware has se�
rious implications�

� Such a ��kernel cannot take advantage of speci�c
hardware�

� It cannot take precautions to circumvent or avoid
performance problems of speci�c hardware�

� The additional layer per se costs performance�

��kernels form the lowest layer of operating systems
beyond the hardware� Therefore� we should accept that
they are as hardware dependent as optimizing code gen�
erators� We have learned that not only the coding but

� even the algorithms used inside a ��kernel and its
internal concepts are extremely processor depen�
dent�

��� Compatible Processors

For illustration� we brie�y describe how a ��kernel has
to be conceptually modi�ed even when �ported� from
��� to Pentium� i�e� to a compatible processor�

Although the Pentium processor is binary compatible
to the ���� there are some di�erences in the internal

��� Pentium

TLB entries� ways ���u� �� ���i� 
 ���d� ��

Cache size� ways �K�u� �� �K�i� 
 �K�d� ��

line� write 	�B through ��B back

fast instructions 	 cycle ����	 cycle
segment register 
 cycles � cycles
trap 	�� cycles �
 cycles

Table �� ��	 
 Pentium Di�erences

hardware architecture �see table �� which in�uence the
internal ��kernel architecture�

User�address�space implementation� As men�
tioned in section ������ a Pentium ��kernel should use
segment registers for implementing user address spaces
so that each ����byte hardware address space shares all
small and one large user address space� Recall that this
can be implemented transparently to the user�

Ford 
����� proposed a similar technique for the ����
and table � also suggests it for the ���� Nevertheless�
the conventional hardware�address�space switch is pre�
ferrable on this processor� Expensive segment register
loads and additional instructions at various places in
the kernel sum to roughly ��� cycles required in addi�
tion� Now look at the relevant situation� an address�
space switch from a large space to a small one and back
to the large� Assuming cache hits� the costs of the seg�
ment register model would be �������������� cycles�
whereas the conventional address�space model would re�
quire �� � �������� cycles in the theoretical case of
���#TLB use� ����������� cycles for the more prob�
able case that the large address space uses only ��# of
the TLB and only � cycles in the best case� In total�
the conventional method wins�

On the Pentium however� the segment register
method pays� The reasons are several� �a� Segment reg�
ister loads are faster� �b� Fast instructions are cheaper�
whereas the overhead by trap and TLB misses remain
nearly constant� �c� Con�ict cache misses �which� rel�
ative to instruction execution� are anyway more expen�
sive� are more likely because of reduced associativity�
Avoiding TLB misses thus also reduces cache con�icts�
�d� Due to the three times larger TLB� the �ush costs
can increase substantially� As a result� on Pentium� the
segment register method always pays �see �gure ���

�



As a consequence� we have to implement an addi�
tional user�address�space multiplexer� we have to mod�
ify address�space switch routines� handling of user sup�
plied addresses� thread control blocks� task control
blocks� the IPC implementation and the address�space
structure as seen by the kernel� In total� the mentioned
changes a�ect algorithms in about half of all ��kernel
modules�

IPC implementation� Due to reduced associativity�
the Pentium caches tend to exhibit increased con�ict
misses� One simple way to improve cache behaviour
during IPC is by restructuring the thread control block
data such that it pro�ts from the doubled cache line
size� This can be adopted to the ��� kernel� since it has
no e�ect on ��� and can be implemented transparently
to the user�
In the ��� kernel� thread control blocks �including

kernel stacks� were page aligned� IPC always accesses
� control blocks and kernel stacks simultaneously� The
cache hardware maps the according data of both con�
trol blocks to identical cache addresses� Due to its
��way associativity� this problem could be ignored on
the ���� However� Pentium�s data cache is only ��way
set�associative� A nice optimization is to align thread
control blocks no longer on �K but on �K boundaries�
��K is the lower bound due to internal reasons�� Then
there is a �# chance that two randomly selected con�
trol blocks do not compete in the cache�
Surprisingly� this a�ects the internal bit�structure of

unique thread identi�ers supplied by the ��kernel �see

Liedtke ����� for details�� Therefore� the new kernel
cannot simply replace the old one� since �persistent� user
programs already hold uids which would become invalid�

��� Incompatible Processors

Processors of competing families di�er in instruction set�
register architecture� exception handling� cache	TLB
architecture� protection and memory model� Especially
the latter ones radically in�uence ��kernel structure�
There are systems with

� multi�level page tables�
� hashed page tables�
� �no� reference bits�
� �no� page protection�
� strange page protection���
� single	multiple page sizes�
� ����� ����� ���� and �	��byte address spaces�
� �at and segmented address spaces�
� various segment models�
� tagged	untagged TLBs�
� virtually	physically tagged caches�

��e�g� the ��� ignores write protection in kernel mode� the Pow�
erPC supports read only in kernel mode but this implies that the
page is seen in user mode as well�

The di�erences are orders of magnitude higher than be�
tween ��� and Pentium� We have to expect that a new
processor requires a new ��kernel design�

For illustration� we compare two di�erent kernels on
two di�erent processors� the Exokernel 
Engler et al�
����� running on an R���� and L� running on a ���� Al�
though this is similar to comparing apples with oranges�
a careful analysis of the performance di�erences helps
understanding the performance�determining factors and
weighting the di�erences in processor architecture� Fi�
nally� this results in di�erent ��kernel architectures�

We compare Exokernel�s protected control transfer
�PCT� with L��s IPC� Exo�PCT on the R���� requires
about �� cycles� whereas L� takes ��� cycles on a ���
processor for an ��byte message transfer� If this dif�
ference cannot be explained by di�erent functionality
and	or average processor performance� there must be
an anomaly relevant to ��kernel design�
Exo�PCT is a �substrate for implementing e�cient

IPC mechanisms� 
It� changes the program counter to
an agreed�upon value in the callee� donates the current
time�slice to the callee�s processor environment� and in�
stalls required elements of the callee�s processor con�
text�� L��IPC is used for secure communication be�
tween potentially untrusted partners� it therefore addi�
tionally checks the communication permission �whether
the partner is willing to receive a message from the
sender and whether no clan borderline is crossed�� syn�
chronizes both threads� supports error recovery by send
and receive timeouts� and permits complex messages to
reduce marshaling costs and IPC frequency� From our
experience� extending Exo�PCT accordingly should re�
quire no more than �� additional cycles� �Note that
using PCT for a trusted LRPC already costs an ad�
ditional �� cycles� see table ��� Therefore� we assume
that a hypothetical L��equivalent �Exo�IPC� would cost
about �� cycles on the R����� Finally� we must take into
consideration that the cycles of both processors are not
equivalent as far as most�frequently�executed instruc�
tions are concerned� Based on SpecInts� roughly ���
����cycles appear to do as much work as one R�����
cycle� comparing the �ve instructions most relevant in
this context ���op�alu� ��op�alu� load� branch taken and
not taken� gives ��� for well�optimized code� Thus we
estimate that the Exo�IPC would cost up to approx� ���
����cycles being de�nitely less than L��s ��� cycles�

This substantial di�erence in timing indicates an iso�
lated di�erence between both processor architectures
that strongly in�uences IPC �and perhaps other ��
kernel mechanisms�� but not average programs�

In fact� the ��� processor imposes a high penalty on
entering	exiting the kernel and requires a TLB �ush
per IPC due to its untagged TLB� This costs at least
�� " �� � ��� cycles� On the other hand� the R����
has a tagged TLB� i�e� avoids the TLB �ush� and needs
less than �� cycles for entering and exiting the kernel�

��



From the above example� we learn two lessons�

� For well�engineered ��kernels on di�erent processor
architectures� in particular with di�erent memory
systems� we should expect isolated timing di�er�
ences that are not related to overall processor per�
formance�

� Di�erent architectures require processor�speci�c
optimization techniques that even a�ect the global
��kernel structure�

To understand the second point� recall that the manda�
tory ����TLB �ush requires minimization of the num�
ber of subsequent TLB misses� The relevant tech�
niques 
Liedtke ����� pp� ������ ���� are mostly based
on proper address space construction� concentrating
processor�internal tables and heavily used kernel data in
one page �there is no unmapped memory on then �����
implementing control blocks and kernel stacks as virtual
objects� lazy scheduling� In toto� these techniques save
�� TLB misses� i�e� at least �� cycles on the ��� and are
thus inevitable�
Due to its unmapped memory facility and tagged

TLB� the mentioned constraint disappears on the
R����� Consequently� the internal structure �address
space structure� page fault handling� perhaps control
block access and scheduling� of a corresponding kernel
can substantially di�er from a ����kernel� If other fac�
tors also imply implementing control blocks as physical
objects� even the uids will di�er between the R���� �no
� pointer size �x� and ��� kernel �no � control block
size �x��

Conclusion� ��kernels form the link between a mini�
mal ����set of abstractions and the bare processor� The
performance demands are comparable to those of earlier
microprogramming� As a consequence� ��kernels are in�
herently not portable� Instead� they are the processor
dependent basis for portable operating systems�

� Synthesis� Spin� DP�Mach�

Panda� Cache and Exokernel

Synthesis� Henry Massalin�s Synthesis operating sys�
tem 
Pu et al� ����� is another example of a high per�
forming �and non�portable� kernel� Its distinguishing
feature was a kernel�integrated �compiler� which gener�
ated kernel code at runtime� For example� when issuing
a read pipe system call� the Synthesis kernel generated
specialized code for reading out of this pipe and modi�ed
the respective invocation� This technique was highly
successful on the ������ However �a good example for
non�portability�� it would most probably no longer pay
on modern processors� because �a� code in�ation will
degrade cache performance and �b� frequent generation
of small code chunks pollutes the instruction cache�

Spin� Spin 
Bershad et al� ����� Bershad et al� �����
is a new development which tries to extend the Synthesis
idea� user�supplied algorithms are translated by a ker�
nel compiler and added to the kernel� i�e� the user may
write new system calls� By controlling branches and
memory references� the compiler ensures that the newly�
generated code does not violate kernel or user integrity�
This approach reduces kernel user mode switches and
sometimes address space switches� Spin is based on
Mach and may thus inherit many of its ine�ciencies
which makes it di�cult to evaluate performance results�
Rescaling them to an e�cient ��kernel with fast kernel 
user mode switches and fast IPC is needed� The most
crucial problem� however� is the estimation of how an
optimized ��kernel architecture and the requirements
coming from a kernel compiler interfere with each other�
Kernel architecture and performance might be e�g� af�
fected by the requirement for larger kernel stacks� �A
pure ��kernel needs only a few hundred bytes per kernel
stack�� Furthermore� the costs of safety�guaranteeing
code have to be related to ��kernel overhead and to op�
timal user�level code�

The �rst published results 
Bershad et al� ����� can�
not answer these questions� On an Alpha ������ ���
MHz� a Spin system call needs nearly twice as many cy�
cles ������ ���s� as the already expensive Mach system
call ����� �s�� The application measurements show
that Mach can be substantially improved by using a
kernel compiler� however� it remains open whether this
technique can reach or outperform a pure ��kernel ap�
proach like that described here� For example� a simple
user�level page�fault handler ����� �s under Mach� ex�
ecutes in � �s under Spin� However� we must take into
consideration that in a traditional ��kernel� the kernel
is invoked and left only twice� page fault �enter�� mes�
sage to pager �exit�� reply map message �enter"exit��
The Spin technique can save only one system call which
on this processor should cost less than � �s i�e� with
�� �s the actual Spin overhead is far beyond the ideal
traditional overhead of �"� �s�

From our experience� we expect a notable gain if
a kernel compiler eliminates nested IPC redirection�
e�g� when using deep hierarchies of Clans or Custodi�
ans 
H�artig et al� ������ E�cient integration of the
kernel compiler technique and appropriate ��kernel de�
sign might be a promising research direction�

Utah�Mach� Ford and Lepreau 
����� changed Mach
IPC semantics to migrating RPC which is based on
thread migration between address spaces� similar to the
Clouds model 
Bernabeu�Auban et al� ������ Substan�
tial performance gain was achieved� a factor of � to ��

DP�Mach� DP�Mach 
Bryce and Muller ����� imple�
ments multiple domains of protection within one user
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address space and o�ers a protected inter�domain call�
The performance results �see table �� are encouraging�
However� although this inter�domain call is highly spe�
cialized� it is twice as slow as achievable by a general
RPC mechanism� In fact� an inter�domain call needs
two kernel calls and two address�space switches� A gen�
eral RPC requires two additional thread switches and
argument transfers��� Apparently� the kernel call and
address�space switch costs dominate� Bryce and Muller
presented an interesting optimization for small inter�
domain calls� when switching back from a very small
domain� the TLB is only selectively �ushed� Although
the e�ects are rather limited on their host machine �a
��� with only �� TLB entries�� it might become more
relevant on processors with larger TLBs� To analyze
whether kernel enrichment by inter�domain calls pays�
we need e�g� a Pentium implementation and then com�
pare it with a general RPC based on segment switching�

Panda� The Panda system�s 
Assenmacher et al�
����� ��kernel is a further example of a small kernel
which delegates as much as possible to user space� Be�
sides its two basic concepts protection domain and vir�
tual processor� the Panda kernel handles only interrupts
and exceptions�

Cache�Kernel� The Cache�kernel 
Cheriton and
Duda ����� is also a small and hardware�dependent ��
kernel� In contrast to the Exokernel� it relies on a small
�xed �non extensible� virtual machine� It caches ker�
nels� threads� address spaces and mappings� The term
�caching� refers to the fact that the ��kernel never han�
dles the complete set of e�g� all address spaces� but only
a dynamically selected subset� It was hoped that this
technique would lead to a smaller ��kernel interface and
also to less ��kernel code� since it no longer has to deal
with special but infrequent cases� In fact� this could
be done as well on top of a pure ��kernel by means of
according pagers� �Kernel data structures� e�g� thread
control blocks� could be held in virtual memory in the
same way as other data��

Exokernel� In contrast to Spin� the Exokernel 
En�
gler et al� ����� Engler et al� ����� is a small and
hardware�dependent ��kernel� In accordance with our
processor�dependency thesis� the exokernel is tailored
to the R���� and gets excellent performance values
for its primitives� In contrast to our approach� it is
based on the philosophy that a kernel should not pro�
vide abstractions but only a minimal set of primitives�

��Sometimes� the argument transfer can be omitted� For im�
plementing inter�domain calls� a pager can be used which shares
the address spaces of caller and callee such that the trusted callee
can access the parameters in the caller space� E�g� LRPC �Ber�
shad et al� 	
�
� and NetWare �Major et al� 	

�� use a similar
technique�

Consequently� the Exokernel interface is archtecture de�
pendent� in particular dedicated to software�controlled
TLBs� A further di�erence to our driver�less ��kernel
approach is that Exokernel appears to partially inte�
grate device drivers� in particular for disks� networks
and frame bu�ers�

We believe that dropping the abstractional approach
could only be justi�ed by substantial performance gains�
Whether these can be achieved remains open �see dis�
cussion in section ���� until we have well�engineered exo�
and abstractional ��kernels on the same hardware plat�
form� It might then turn out that the right abstractions
are even more e�cient than securely multiplexing hard�
ware primitives or� on the other hand� that abstractions
are too in�exible� We should try to decide these ques�
tions by constructing comparable ��kernels on at least
two reference platforms� Such a co�construction will
probably also lead to new insights for both approaches�

	 Conclusions

A ��kernel can provide higher layers with a minimal set
of appropriate abstractions that are �exible enough to al�
low implementation of arbitrary operating systems and
allow exploitation of a wide range of hardware� The
presented mechanisms �address space with map� �ush
and grant operation� threads with IPC and unique iden�
ti�ers� form such a basis� Multi�level�security systems
may additionally need clans or a similar reference mon�
itor concept� Choosing the right abstractions is crucial
for both �exibility and performance� Some existing ��
kernels chose inappropriate abstractions� or too many
or too specialized and in�exible ones�

Similar to optimizing code generators� ��kernels must
be constructed per processor and are inherently not
portable� Basic implementation decisions� most algo�
rithms and data structures inside a ��kernel are pro�
cessor dependent� Their design must be guided by
performance prediction and analysis� Besides inappro�
priate basic abstractions� the most frequent mistakes
come from insu�cient understanding of the combined
hardware�software system or ine�cient implementation�

The presented design shows that it is possible to
achieve well performing ��kernels through processor�
speci�c implementations of processor�independent ab�
stractions�

Availability

The source code of the L� ��kernel� a successor of the L�
��kernel� is available for examination and experimenta�
tion through the web�

http���borneo�gmd�de�RS�L��

��
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A Address Spaces

An Abstract Model of Address Spaces

We describe address spaces as mappings� �
�
� V �

R�f�g is the initial address space� where V is the set
of virtual pages� R the set of available physical �real�
pages and � the nilpage which cannot be accessed� Fur�
ther address spaces are de�ned recursively as mappings
� � V � �$ � V ��f�g� where $ is the set of address
spaces� It is convenient to regard each mapping as a one
column table which contains ��v� for all v �V and can
be indexed by v� We denote the elements of this table
by �v�
All modi�cations of address spaces are based on the

replacement operation� we write �v � x to describe a
change of � at v� precisely�

�ush ��� v� � �v �� x �

A page potentially mapped at v in � is �ushed� and the
new value x is copied into �v� This operation is internal
to the ��kernel� We use it only for describing the three
exported operations�
A subsystem S with address space � can grant any

of its pages v to a subsystem S� with address space ��

provided S� agrees�

��
v�
� �v � �v � � �

Note that S determines which of its pages should be
granted� whereas S� determines at which virtual address
the granted page should be mapped in ��� The granted
page is transferred to �� and removed from ��
A subsystem S with address space � can map any

of its pages v to a subsystem S� with address space ��

provided S� agrees�

��
v�
� ��� v� �

In contrast to grant� the mapped page remains in the
mapper�s space � and a link to the page in the map�
pers address space ��� v� is stored in the receiving ad�
dress space ��� instead of transferring the existing link
from �v to ��

v�
� This operation permits to construct

address spaces recursively� i�e� new spaces based on ex�
isting ones�

Flushing� the reverse operation� can be executed with�
out explicit agreement of the mappees� since they agreed
implicitly when accepting the prior map operation� S

can �ush any of its pages�

���
v�

� ���v� � ��
v�
� � �

Note that� and �ush are de�ned recursively� Flushing
recursively a�ects also all mappings which are indirectly
derived from �v�

No cycles can be established by these three opera�
tions� since � �ushes the destination prior to copying�

Implementing the Model

At a �rst glance� deriving the phyical address of page v
in address space � seems to be rather complicated and
expensive�

��v� �

��
�

���v�� if �v � ���� v��
r if �v � r

� if �v ��

Fortunately� a recursive evaluation of ��v� is never re�
quired� The three basic operations guarantee that the
physical address of a virtual page will never change�
except by �ushing� For implementation� we therefore
complement each � by an additional table P � where Pv

corresponds to �v and holds either the physical address
of v or �� Mapping and granting then include

P �

v�
�� Pv

and each replacement �v � � invoked by a �ush oper�
ation includes

Pv �� � �

Pv can always be used instead of evaluating ��v�� In
fact� P is equivalent to a hardware page table� ��kernel
address spaces can be implemented straightforward by
means of the hardware�address�translation facilities�

The recommended implementation of � is to use one
mapping tree per physical page frame which describes
all actual mappings of the frame� Each node contains
�P� v�� where v is the according virtual page in the ad�
dress space which is implemented by the page table P �

Assume that a grant�� map� or �ush�operation deals
with a page v in address space � to which the page
table P is associated� In a �rst step� the operation se�
lects the according tree by Pv� the physical page� In the
next step� it selects the node of the tree that contains
�P� v�� �This selection can be done by parsing the tree
or in a single step� if Pv is extended by a link to the
node�� Granting then simply replaces the values stored
in the node and map creates a new child node for stor�
ing �P �� v��� Flush lets the selected node una�ected but
parses and erases the complete subtree� where P �

v
�� �

is executed for each node �P �� v�� in the subtree�

��
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