
On ��Kernel Construction

Jochen Liedtke

GMD � German National Research Center for Information Technology �

jochen�liedtke�gmd�de

Abstract

��th ACM Symposium on Operating System Principles �SOSP�
December ���� Copper Mountain Resort� Colorado

From a software�technology point of view� the ��
kernel concept is superior to large integrated kernels�
On the other hand� it is widely believed that �a� ��
kernel based systems are inherently ine�cient and �b�
they are not su�ciently �exible� Contradictory to this
belief� we show and support by documentary evidence
that ine�ciency and in�exibility of current ��kernels is
not inherited from the basic idea but mostly from over�
loading the kernel and	or from improper implementa�
tion�
Based on functional reasons� we describe some con�

cepts which must be implemented by a ��kernel and
illustrate their �exibility� Then� we analyze the per�
formance critical points� We show what performance
is achievable� that the e�ciency is su�cient with re�
spect to macro�kernels and why some published contra�
dictory measurements are not evident� Furthermore� we
describe some implementation techniques and illustrate
why ��kernels are inherently not portable� although
they improve portability of the whole system�

� Rationale

��kernel based systems have been built long before the
term itself was introduced� e�g� by Brinch Hansen
����
and Wulf et al�
����� Traditionally� the word �kernel�
is used to denote the part of the operating system that is
mandatory and common to all other software� The basic

�GMD SET�RS� ����� Sankt Augustin� Germany
�Copyright c� ���� by the Association for Computing Machinery�

Inc� Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial ad�
vantage and that new copies bear this notice and the full citation
on the �rst page� Copyrights for components of this WORK owned
by others than ACM must be honored� Abstracting with credit is
permitted� To copy otherwise� to republish� to post on servers or
to redistribute to lists� requires prior speci�c permission and�or a
fee� Request Permissions from Publications Dept� ACM Inc�� Fax ��
	
�
� �������� or permissions�acm�org�

idea of the ��kernel approach is to minimize this part�
i�e� to implement outside the kernel whatever possible�
The software technological advantages of this ap�

proach are obvious�

�a� A clear ��kernel interface enforces a more modular
system structure��

�b� Servers can use the mechanisms provided by the
��kernel like any other user program� Server mal�
function is as isolated as any other user program�s
malfunction�

�c� The system is more �exible and tailorable� Di�er�
ent strategies and APIs� implemented by di�erent
servers� can coexist in the system�

Although much e�ort has been invested in ��kernel
construction� the approach is not �yet� generally ac�
cepted� This is due to the fact that most existing ��
kernels do not perform su�ciently well� Lack of e��
ciency also heavily restricts �exibility� since important
mechanisms and principles cannot be used in practice
due to poor performance� In some cases� the ��kernel
interface has been weakened and special servers have
been re�integrated into the kernel to regain e�ciency�

It is widely believed that the mentioned ine�ciency
�and thus in�exibility� is inherent to the ��kernel ap�
proach� Folklore holds that increased user�kernel mode
and address�space switches are responsible� At a �rst
glance� published performance measurements seem to
support this view�

In fact� the cited performance studies measured the
performance of a particular ��kernel based system with�
out analyzing the reasons which limit e�ciency� We can
only guess whether it is caused by the ��kernel approach�
by the concepts implemented by this particular ��kernel
or by the implementation of the ��kernel� Since it is
known that conventional IPC� one of the traditional ��
kernel bottlenecks� can be implemented an order of mag�
nitude faster� than believed before� the question is still

�Although many macro�kernels tend to be less modular� there
are exceptions from this rule� e�g� Chorus �Rozier et al� 	
��� and
Peace �Schroder�Preikschat 	

���

�Short user�to�user cross�address space IPC in L� �Liedtke

open� It might be possible that we are still not applying
the appropriate construction techniques�
For the above reasons� we feel that a conceptual anal�

ysis is needed which derives ��kernel concepts from pure
functionality requirements �section �� and that discusses
achievable performance �section �� and �exibility �sec�
tion ��� Further sections discuss portability �section ��
and the chances of some new developments �section ���

� Some ��Kernel Concepts

In this section� we reason about the minimal concepts
or �primitives� that a ��kernel should implement�� The
determining criterion used is functionality� not perfor�
mance� More precisely� a concept is tolerated inside the
��kernel only if moving it outside the kernel� i�e� per�
mitting competing implementations� would prevent the
implementation of the system�s required functionality�
We assume that the target system has to support

interactive and	or not completely trustworthy applica�
tions� i�e� it has to deal with protection� We further
assume that the hardware implements page�based vir�
tual memory�
One inevitable requirement for such a system is that

a programmer must be able to implement an arbitrary
subsystem S in such a way that it cannot be disturbed or
corrupted by other subsystems S�� This is the principle
of independence� S can give guarantees independent of
S�� The second requirement is that other subsystems
must be able to rely on these guarantees� This is the
principle of integrity� there must be a way for S� to
address S� and to establish a communication channel
which can neither be corrupted nor eavesdropped by
S��
Provided hardware and kernel are trustworthy� fur�

ther security services� like those described by Gasser
et al�
������ can be implemented by servers� Their in�
tegrity can be ensured by system administration or by
user�level boot servers� For illustration� a key server
should deliver public�secret RSA key pairs on demand�
It should guarantee that each pair has the desired RSA
property and that each pair is delivered only once and
only to the demander� The key server can only be
realized if there are mechanisms which �a� protect its
code and data� �b� ensure that nobody else reads or
modi�es the key and �c� enable the demander to check
whether the key comes from the key server� Finding the
key server can be done by means of a name server and
checked by public key based authentication�

	

�� is �� times faster than in Mach� both running on a ����
On the R����� the specialized Exo�tlrpc �Engler et al� 	

�� is ��
times faster than Mach�s general RPC�

�Proving minimality� necessarity and completeness would be
nice but is impossible� since there is no agreed�upon metric and
all is Turing�equivalent�

��� Address Spaces

At the hardware level� an address space is a mapping
which associates each virtual page to a physical page
frame or marks it �non�accessible�� For the sake of
simplicity� we omit access attributes like read�only and
read	write� The mapping is implemented by TLB hard�
ware and page tables�

The ��kernel� the mandatory layer commonto all sub�
systems� has to hide the hardware concept of address
spaces� since otherwise� implementing protection would
be impossible� The ��kernel concept of address spaces
must be tamed� but must permit the implementation of
arbitrary protection �and non�protection� schemes on
top of the ��kernel� It should be simple and similar to
the hardware concept�

The basic idea is to support recursive construction
of address spaces outside the kernel� By magic� there
is one address space �

�
which essentially represents the

physical memory and is controlled by the �rst subsys�
tem S� � At system start time� all other address spaces
are empty� For constructing and maintaining further
address spaces on top of �� � the ��kernel provides three
operations�

Grant� The owner of an address space can grant any
of its pages to another space� provided the recipient
agrees� The granted page is removed from the granter�s
address space and included into the grantee�s address
space� The important restriction is that instead of phys�
ical page frames� the granter can only grant pages which
are already accessible to itself�

Map� The owner of an address space canmap any of its
pages into another address space� provided the recipient
agrees� Afterwards� the page can be accessed in both
address spaces� In contrast to granting� the page is not
removed from the mapper�s address space� Comparable
to the granting case� the mapper can only map pages
which itself already can access�

Flush� The owner of an address space can �ush any of
its pages� The �ushed page remains accessible in the
�usher�s address space� but is removed from all other
address spaces which had received the page directly or
indirectly from the �usher� Although explicit consent
of the a�ected address�space owners is not required� the
operation is safe� since it is restricted to own pages� The
users of these pages already agreed to accept a potential
�ushing� when they received the pages by mapping or
granting�

Appendix A contains a more precise de�nition of ad�
dress spaces and the above three operations�

Reasoning

The described address�space concept leaves memory
management and paging outside the ��kernel� only the

�

grant� map and �ush operations are retained inside the
kernel� Mapping and �ushing are required to implement
memory managers and pagers on top of the ��kernel�

The grant operation is required only in very special
situations� consider a pager F which combines two un�
derlying �le systems �implemented as pagers f� and f��
operating on top of the standard pager� into one uni�
�ed �le system �see �gure ��� In this example� f� maps

user A � � � � � � user X

F

f� f�

std pager

�
��map

HH
HH

HY
grant

HH
HH

HY
map

A
A
A
A
A
A
A

A
A
A

��
��
disk

�
���

Figure �� A Granting Example�

one of its pages to F which grants the received page
to user A� By granting� the page disappears from F so
that it is then available only in f� and user A� the re�
sulting mappings are denoted by the thin line� the page
is mapped in user A� f� and the standard pager� Flush�
ing the page by the standard pager would a�ect f� and
user A� �ushing by f� only user A� F is not a�ected by
either �ush �and cannot �ush itself�� since it used the
page only transiently� If F had used mapping instead
of granting� it would have needed to replicate most of
the bookkeeping which is already done in f� and f��
Furthermore� granting avoids a potential address�space
over�ow of F �

In general� granting is used when page mappings
should be passed through a controlling subsystem with�
out burdening the controller�s address space by all pages
mapped through it�

The model can easily be extended to access rights on
pages� Mapping and granting copy the source page�s
access right or a subset of them� i�e�� can restrict the
access but not widen it� Special �ushing operations may
remove only speci�ed access rights�

I�O

An address space is the natural abstraction for incorpo�
rating device ports� This is obvious for memorymapped
I	O� but I	O ports can also be included� The granu�
larity of control depends on the given processor� The
��� and its successors permit control per port �one very
small page per port� but no mapping of port addresses
�it enforces mappings with v �v��� the PowerPC uses

pure memorymapped I	O� i�e�� device ports can be con�
trolled and mapped with �K granularity�

Controlling I	O rights and device drivers is thus also
done by memory managers and pagers on top of the
��kernel�

��� Threads and IPC

A thread is an activity executing inside an address space�
A thread � is characterized by a set of registers� includ�
ing at least an instruction pointer� a stack pointer and
a state information� A thread�s state also includes the
address space ���� in which � currently executes� This
dynamic or static association to address spaces is the de�
cisive reason for including the thread concept �or some�
thing equivalent� in the ��kernel� To prevent corruption
of address spaces� all changes to a thread�s address space
����� �� ��� must be controlled by the kernel� This im�
plies that the ��kernel includes the notion of some � that
represents the above mentioned activity� In some oper�
ating systems� there may be additional reasons for intro�
ducing threads as a basic abstraction� e�g� preemption�
Note that choosing a concrete thread concept remains
subject to further OS�speci�c design decisions�

Consequently� cross�address�space communication�
also called inter�process communication �IPC�� must be
supported by the ��kernel� The classical method is
transferring messages between threads by the ��kernel�

IPC always enforces a certain agreement between
both parties of a communication� the sender decides
to send information and determines its contents� the
receiver determines whether it is willing to receive in�
formation and is free to interpret the received message�
Therefore� IPC is not only the basic concept for com�
munication between subsystems but also� together with
address spaces� the foundation of independence�

Other forms of communication� remote procedure call
�RPC� or controlled thread migration between address
spaces� can be constructed from message�transfer based
IPC�

Note that the grant and map operations �section ����
need IPC� since they require an agreement between
granter	mapper and recipient of the mapping�

Supervising IPC

Architectures like those described by Yokote
����� and
K�uhnhauser
����� need not only supervise the memory
of subjects but also their communication� This can be
done by introducing either communication channels or
Clans
Liedtke ����� which allow supervision of IPC by
user�de�ned servers� Such concepts are not discussed
here� since they do not belong to the minimal set of
concepts� We only remark that Clans do not burden
the ��kernel� their base cost is � cycles per IPC�

�

Interrupts

The natural abstraction for hardware interrupts is the
IPC message� The hardware is regarded as a set of
threads which have special thread ids and send empty
messages �only consisting of the sender id� to associated
software threads� A receiving thread concludes from the
message source id� whether the message comes from a
hardware interrupt and from which interrupt�

driver thread�
do

wait for �msg� sender� �
if sender � my hardware interrupt

then read�write io ports �
reset hardware interrupt

else � � �

�

od �

Transforming the interrupts into messages must be
done by the kernel� but the ��kernel is not involved in
device�speci�c interrupt handling� In particular� it does
not know anything about the interrupt semantics� On
some processors� resetting the interrupt is a device spe�
ci�c action which can be handled by drivers at user level�
The iret�instruction then is used solely for popping sta�
tus information from the stack and	or switching back to
user mode and can be hidden by the kernel� However� if
a processor requires a privileged operation for releasing
an interrupt� the kernel executes this action implicitly
when the driver issues the next IPC operation�

��� Unique Identi�ers

A ��kernel must supply unique identi�ers �uid� for
something� either for threads or tasks or communication
channels� Uids are required for reliable and e�cient lo�
cal communication� If S� wants to send a message to
S�� it needs to specify the destination S� �or some chan�
nel leading to S��� Therefore� the ��kernel must know
which uid relates to S�� On the other hand� the receiver
S� wants to be sure that the message comes from S��
Therefore the identi�er must be unique� both in space
and time�
In theory� cryptography could also be used� In prac�

tice� however� enciphering messages for local commu�
nication is far too expensive and the kernel must be
trusted anyway� S� can also not rely on purely user�
supplied capabilities� since S� or some other instance
could duplicate and pass them to untrusted subsystems
without control of S��

� Flexibility

To illustrate the �exibility of the basic concepts� we
sketch some applications which typically belong to the
basic operating system but can easily be implemented

on top of the ��kernel� In this section� we show the
principal �exibility of a ��kernel� Whether it is really
as �exible in practice strongly depends on the achieved
e�ciency of the ��kernel� The latter performance topic
is discussed in section ��

Memory Manager� A server managing the initial
address space �

�
is a classical main memory manager�

but outside the ��kernel� Memory managers can easily
be stacked� M� maps or grants parts of the physical
memory ��� � to �� � controlled by M�� other parts to �� �
controlled by M�� Now we have two coexisting main
memory managers�

Pager� A Pager may be integrated with a memory
manager or use a memory managing server� Pagers use
the ��kernel�s grant� map and �ush primitives� The
remaining interfaces� pager client� pager memory
server and pager device driver� are completely based
on IPC and are user�level de�ned�

Pagers can be used to implement traditional paged
virtual memory and �le	database mapping into user ad�
dress spaces as well as unpaged resident memory for de�
vice drivers and	or real time systems� Stacked pagers�
i�e� multiple layers of pagers� can be used for combin�
ing access control with existing pagers or for combining
various pagers �e�g� one per disk� into one composed ob�
ject� User�supplied paging strategies
Lee et al� �����
Cao et al� ����� are handled at the user level and are in
no way restricted by the ��kernel� Stacked �le systems

Khalidi and Nelson ����� can be realized accordingly�

Multimedia Resource Allocation� Multimedia
and other real�time applications require memory re�
sources to be allocated in a way that allows predictable
execution times� The above mentioned user�level mem�
ory managers and pagers permit e�g� �xed allocation
of physical memory for speci�c data or locking data in
memory for a given time�

Note that resource allocators for multimedia and for
timesharing can coexist� Managing allocation con�icts
is part of the servers� jobs�

Device Driver� A device driver is a process which
directly accesses hardware I	O ports mapped into its
address space and receives messages from the hard�
ware �interrupts� through the standard IPC mechanism�
Device�speci�c memory� e�g� a screen� is handled by
means of appropriate memory managers� Compared to
other user�level processes� there is nothing special about
a device driver� No device driver has to be integrated
into the ��kernel��

�In general� there is no reason for integrating boot drivers into
the kernel� The booter� e�g� located in ROM� simply loads a bit
image into memory that contains the micro�kernel and perhaps

�

Second Level Cache and TLB� Improving the hit
rates of a secondary cache by means of page allocation or
reallocation
Kessler and Hill ����� Romer et al� �����
can be implemented by means of a pager which applies
some cache�dependent �hopefully con�ict reducing� pol�
icy when allocating virtual pages in physical memory�
In theory� even a software TLB handler could be im�

plemented like this� In practice� the �rst�level TLB
handler will be implemented in the hardware or in the
��kernel� However� a second�level TLB handler� e�g�
handling misses of a hashed page table� might be imple�
mented as a user�level server�

Remote Communication� Remote IPC is imple�
mented by communication servers which translate local
messages to external communication protocols and vice
versa� The communication hardware is accessed by de�
vice drivers� If special sharing of communication bu�ers
and user address space is required� the communication
server will also act as a special pager for the client� The
��kernel is not involved�

Unix Server� Unix� system calls are implemented by
IPC� The Unix server can act as a pager for its clients
and also use memory sharing for communicating with
its clients� The Unix server itself can be pageable or
resident�

Conclusion� A small set of ��kernel concepts lead to
abstractions which stress �exibility� provided they per�
form well enough� The only thing which cannot be im�
plemented on top of these abstractions is the processor
architecture� registers� �rst�level caches and �rst�level
TLBs�

� Performance� Facts � Rumors

��� Switching Overhead

It is widely believed that switching between kernel and
user mode� between address spaces and between threads
is inherently expensive� Some measurements seem to
support this belief�

����� Kernel�User Switches

Ousterhout
����� measured the costs for executing the
�null� kernel call getpid� Since the real getpid opera�
tion consists only of a few loads and stores� this method
measures the basic costs of a kernel call� Normalized to
a hypothetical machine with �� MIPS rating ���� VAX

some set of initial pagers and drivers �running at user mode and
not linked but simply appended to the kernel�� Afterwards� the
boot drivers are no longer used�

�Unix is a registered trademark of UNIX System Laboratories�

��	�� or roughly a ��� at �� MHz�� he showed that
most machines need �� �� �s per getpid� one required
even �� �s� Corroborating these results� we measured
�� �s per Mach	 ��kernel call get self thread� In fact�
the measured kernel�call costs are high�

For analyzing the measured costs� our argument is
based on a ��� ��� MHz� processor� We take an x��
processor� because kernel�user mode switches are ex�
tremely expensive on these processors� In contrast to
the worst case processor� we use a best�case measure�
ment for discussion� �� �s for Mach on a ���	���

The measured costs per kernel call are ��� �� � ���
cycles� The bare machine instruction for entering kernel
mode costs � cycles� followed by an additional �� cy�
cles for returning to user mode� These two instructions
switch between the user and kernel stack and push	pop
�ag register and instruction pointer� �� cycles �about
� �s� is therefore a lower bound on kernel user mode
switches� The remaining ��� or more cycles are pure
kernel overhead� By this term� we denote all cycles
which are solely due to the construction of the kernel�
nevermind whether they are spent in executing instruc�
tions ���� cycles � ��� instructions� or in cache and
TLB misses ���� cycles � �� primary cache misses �
�� TLB misses�� We have to conclude that the measured
kernels do a lot of work when entering and exiting the
kernel� Note that this work by de�nition has no net
e�ect�

Is an ��� cycle kernel overhead really necessary! The
answer is no� Empirical proof� L�
Liedtke ����� has a
minimal kernel overhead of �� cycles� If the ��kernel call
is executed infrequently enough� it may increase by up
to � additional cycles �� TLB misses� �� cache misses��
The complete L� kernel call costs are thus ��� to ���
cycles� mostly less than � �s�

The L� ��kernel is process oriented� uses a kernel
stack per thread and supports persistent user processes
�i�e� the kernel can be exchanged without a�ecting the
remaining system� even if a process actually resides in
kernel mode�� Therefore� it should be possible for any
other ��kernel to achieve comparably low kernel call
overhead on the same hardware�

Other processors may require a slightly higher over�
head� but they o�er substantially cheaper basic op�
erations for entering and leaving kernel mode� From
an architectural point of view� calling the kernel from
user mode is simply an indirect call� complemented by
a stack switch and setting the internal �kernel��bit to
permit privileged operations� Accordingly� returning
from kernel mode is a normal return operation comple�
mented by switching back to user stack and resetting the
�kernel��bit� If the processor has di�erent stack pointer
registers for user and kernel stack� the stack switching
costs can be hidden� Conceptually� entering and leaving

�Mach ���� NORMA MK 	�

�

kernel mode can perform exactly like a normal indirect
call and return instruction �which do not rely on branch
prediction�� Ideally� this means �"��� cycles on a ��
issue processor

Conclusion� Compared to the theoretical minimum�
kernel user mode switches are costly on some proces�
sors� Compared to existing kernels however� they can
be improved � to �� times by appropriate ��kernel con�
struction� Kernel user mode switches are not a serious
conceptual problem but an implementational one�

����� Address Space Switches

Folklore also considers address�space switches as costly�
All measurements known to the author and related to
this topic deal with combined thread and address�space
switch costs� Therefore� in this section� we analyze only
the architectural processor costs for pure address�space
switching� The combined measurements are discussed
together with thread switching�
Most modern processors use a physically indexed

primary cache which is not a�ected by address�space
switching� Switching the page table is usually very
cheap� � to �� cycles� The real costs are determined
by the TLB architecture�
Some processors �e�g� Mips R����� use tagged TLBs�

where each entry does not only contain the virtual page
address but also the address�space id� Switching the
address space is thus transparent to the TLB and costs
no additional cycles� However� address�space switching
may induce indirect costs� since shared pages occupy
one TLB entry per address space� Provided that the ��
kernel �shared by all address spaces� has a small working
set and that there are enough TLB entries� the problem
should not be serious� However� we cannot support this
empirically� since we do not know an appropriate ��
kernel running on such a processor�
Most current processors �e�g� ���� Pentium� PowerPC

and Alpha� include untagged TLBs� An address�space
switch thus requires a TLB �ush� The real costs are de�
termined by the TLB load operations which are required
to re�establish the current working set later� If the work�
ing set consists of n pages� the TLB is fully�associative�
has s entries and a TLB miss costs m cycles� at most
min�n� s��m cycles are required in total�
Apparently� larger untagged TLBs lead to a perfor�

mance problem� For example� completely reloading
the Pentium�s data and code TLBs requires at least
��� " ��� � � � ��� cycles� Therefore� intercepting a
program every ����s could imply an overhead of up to
�#� Although using the complete TLB is unrealistic
�

�Both TLBs are ��way set�associative� Working sets which
are not compact in the virtual address space� usually imply some
con�icts so that only about half of the TLB entries are used si�
multaneously� Furthermore� a working set of �� data pages will

this worst�case calculation shows that switching page
tables may become critical in some situations�

Fortunately� this is not a problem� since on Pentium
and PowerPC� address�space switches can be handled
di�erently� The PowerPC architecture includes segment
registers which can be controlled by the ��kernel and
o�er an additional address translation facility from the
local ����byte address space to a global ����byte space�
If we regard the global space as a set of one million local
spaces� address�space switches can be implemented by
reloading the segment registers instead of switching the
page table� With �� cycles for ��� GB or �� cycles for
� GB segment switching� the overhead is low compared
to a no longer required TLB �ush� In fact� we have a
tagged TLB�

Things are not quite as easy on the Pentium or the
���� Since segments are mapped into a ����byte space�
mapping multiple user address spaces into one linear
space must be handled dynamically and depends on the
actually used sizes of the active user address spaces�
The according implementation technique
Liedtke �����
is transparent to the user and removes the potential
performance bottleneck� Address space switch overhead
then is �� cycles on the Pentium and �� cycles on ����

For understanding that the restriction of a ����byte
global space is not crucial to performance� one has to
mention that address spaces which are used only for
very short periods and with small working sets are ef�
fectively very small in most cases� say � MB or less for a
device driver� For example� we can multiplex one � GB
user address space with � user spaces of �� MB and ad�
ditionally ��� user spaces of � MB� The trick is to share
the smaller spaces with all large � GB spaces� Then any
address�space switch to a medium or small space is al�
ways fast� Switching between two large address spaces
is uncritical anyway� since switching between two large
working sets implies TLB and cache miss costs� never�
mind whether the two programs execute in the same or
in di�erent address spaces�

Table � shows the page table switch and segment
switch overhead for several processors� For a TLB miss�
the minimal and maximal cycles are given �provided
that no referenced or modi�ed bits need updating�� In
the case of ���� Pentium and PowerPC� this depends on
whether the corresponding page table entry is found in
the cache or not� As a minimal working set� we assume
� pages� For the maximum case� we exclude � pages
from the address�space overhead costs� because at most
� pages are required by the ��kernel and thus would as
well occupy TLB entries when the address space would
not be switched�

most likely lead to cache thrashing� in best case� the cache sup�
ports � � �� bytes per page� Since the cache is only ��way set�
associative� probably only 	 or � cache entries can be used per
page in practice�

�

TLB TLB miss Page Table Segment
entries cycles switch cycles

��� �� �� � � �� ��� � � ��� ��
Pentium �� �� � � �� ��� � � ���� ��
PowerPC ��� ��� 	 	 ��
Alpha ����� �� ��� � � ��a ��� � � ���� n
a

Mips R���� �� ��� � � ��a �b n
a

aAlpha and Mips TLB misses are handled by software�
bR���� has a tagged TLB�

Table �� Address Space Switch Overhead

Conclusion� Properly constructed address�space
switches are not very expensive� less than �� cycles on
modern processors� On a ��� MHz processor� the in�
herited costs of address�space switches can be ignored
roughly up to ������� switches per second� Special op�
timizations� like executing dedicated servers in kernel
space� are super�uous� Expensive context switching in
some existing ��kernels is due to implementation and
not caused by inherent problems with the concept�

����� Thread Switches and IPC

Ousterhout
����� also measured context switching in
some Unix systems by echoing one byte back and forth
through pipes between two processes� Again normalized
to a �� Mips machine� most results are between ��� and

System CPU� MHz RPC time cycles
IPC
�round trip� �oneway�

full IPC semantics

L� ���� �� �� �s ���
QNX ���� �� �� �s ����
Mach R����� ��� ��� �s ����
SRC RPC CVAX� ��� ��� �s ����
Mach ���� �� ��� �s ����
Amoeba ������ �� ��� �s ����
Spin Alpha ������ ��� ��� �s ����
Mach Alpha ������ ��� ��� �s ����

restricted IPC semantics

Exo�tlrpc R����� ��� � �s ��
Spring SparcV�� �� �� �s ���
DP�Mach ���� �� �� �s ���
LRPC CVAX� ��� ��� �s ���

Table �� ��byte�RPC performance

��� �s per ping�pong� one was ���� �s� All existing ��
kernels are at least � times faster� but it is proved by
construction that �� �s� i�e� a �� to �� times faster RPC
is achievable� Table � gives the costs of echoing one byte
by a round trip RPC� i�e� two IPC operations��

�The respective data is taken from �Liedtke 	

�� Hildebrand
	

�� Schroeder and Burroughs 	
�
� Draves et al� 	

	� van

All times are user to user� cross�address space�They
include system call� argument copy� stack and address
space switch costs� Exokernel� Spring and L� show that
communication can be implemented pretty fast and that
the costs are heavily in�uenced by the processor archi�
tecture� Spring on Sparc has to deal with register win�
dows� whereas L� is burdened by the fact that a ���
trap is ��� cycles more expensive than a Sparc trap�

The e�ect of using segment based address�space
switch on Pentium is shown in �gure �� One long run�
ning application with a stable working set �� to ��
data pages� executes a short RPC to a server with
a small working set �� pages�� After the RPC� the
application re�accesses all its pages� Measurement is
done by ������� repetitions and comparing each run
against running the application �������� time access�
ing all pages� without RPC� The given times are round
trip RPC times� user to user� plus the required time for
re�establishing the application�s working set�

application data working set �pages�

�

�

�

�

��

��

��

RPC
time
�

working
set

reestablish
��s�

by page�table switch

�

�	

��

�	�

�

�

��

��	�

��

��	�

	�
	�
	�
	�
	�

by segment switch

Figure �� Segmented Versus Standard Address�Space
Switch in L� on Pentium� �� MHz�

Conclusion� IPC can be implemented fast enough to
handle also hardware interrupts by this mechanism�

��� Memory E�ects

Chen and Bershad
����� compared the memory system
behaviour of Ultrix� a large monolithic Unix system�
with that of the Mach ��kernel which was complemented
with a Unix server� They measured memory cycle over�
head per instruction �MCPI� and found that programs
running under Mach " Unix server had a substantially

Renesse et al� 	
��� Liedtke 	

�� Bershad et al� 	

�� Engler
et al� 	

�� Hamilton and Kougiouris 	

�� Bryce and Muller
	

�� Bershad et al� 	
�
��

higher MCPI than running the same programs under Ul�
trix� For some programs� the di�erences were up to ����
cycles per instruction� averaged over the total program
�user " system�� Similar memory system degradation
of Mach versus Ultrix is noticed by others
Nagle et al�
������ The crucial point is whether this problem is due
to the way that Mach is constructed� or whether it is
caused by the ��kernel approach�
Chen and Bershad
����� p� ���� state� �This suggests

that microkernel optimizations focussing exclusively on
IPC
� � � �� without considering other sources of system
overhead such as MCPI� will have a limited impact on
overall system performance�� Although one might sup�
pose a principal impact of OS architecture� the men�
tioned paper exclusively presents facts �as is� about a
speci�c implementation without analyzing the reasons
for memory system degradation�
Careful analysis of the results is thus required� Ac�

cording to the original paper� we comprise under �sys�
tem� either all Ultrix activities or the joined activities
of the Mach ��kernel� Unix emulation library and Unix
server� The Ultrix case is denoted by U� the Mach
case by M� We restrict our analysis to the samples that
show a signi�cant MCPI di�erence for both systems�
sed� egrep� yacc� gcc� compress� espresso and the an�
drew benchmark ab�

In �gure �� we present the results of Chen�s �gure ��
� in a slightly reordered way� We have colored MCPI

sed U �	���

M �	��

egrep U �	�

M �	���

yacc U �	���

M �	���

gcc U �	�
�

M �	���

compress U �	��

M �	���

ab U �	���

M �	
�

espresso U �	���

M �	���

other MCPI
system cache miss MCPI

							
																																																																																																																																															

							
							
							
							
																																																																																																																																																																																																																													

Figure �� Baseline MCPI for Ultrix and Mach�

black that are due to system i�cache or d�cache misses�
The white bars comprise all other causes� system write
bu�er stalls� system uncached reads� user i�cache and
d�cache misses and user write bu�er stalls� It is easy
to see that the white bars do not di�er signi�cantly
between Ultrix and Mach� the average di�erence is �����
the standard deviation is ���� MCPI�
We conclude that the di�erences in memory system

behaviour are essentially caused by increased system ca�
che misses for Mach� They could be con�ict misses �the
measured system used direct mapped caches� or capac�
ity misses� A large fraction of con�ict misses would

suggest a potential problem due to OS structure�
Chen and Bershad measured cache con�icts by com�

paring the direct mapped to a simulated ��way cache�

They found that system self�interference is more impor�
tant than user	system interference� but the data also
show that the ratio of con�ict to capacity misses in
Mach is lower than in Ultrix� Table � shows the con�ict
�black� and capacity �white� system cache misses both
in an absolute scale �left� and as ratio �right��

sed U �	���

M �	��

egrep U �	���

M �	���

yacc U �	�
�

M �	���

gcc U �	�
�

M �	
��

compress U �	���

M �	��

ab U �	�
�

M �	
��

espresso U �	���

M �	�
�

con�ict misses
capacity misses

							
																																																																																																											

								
							
							
							
																																																																																																																																																												

Figure �� MCPI Caused by Cache Misses�

From this we can deduce that the increased cache
misses are caused by higher cache consumption of the
system �Mach " emulation library " Unix server�� not
by con�icts which are inherent to the system�s structure�

The next task is to �nd the component which is re�
sponsible for the higher cache consumption� We assume
that the used Unix single server behaves comparably
to the corresponding part of the Ultrix kernel� This
is supported by the fact that the samples spent even
fewer instructions in Mach�s Unix server than in the
corresponding Ultrix routines� We also exclude Mach�s
emulation library� since Chen and Bershad report that
only �# or less of system overhead is caused by it�

What remains is Mach itself� including trap handling�
IPC and memory management� which therefore must
induce nearly all of the additional cache misses�

Therefore� the mentioned measurements suggest that
memory system degradation is caused solely by high
cache consumption of the ��kernel� Or in other words�
drastically reducing the cache working set of a ��kernel
will solve the problem�

Since a ��kernel is basically a set of procedures which
are invoked by user�level threads or hardware� a high
cache consumption can only�� be explained by a large
number of very frequently used ��kernel operations or

	Although this method does not determine all con�ict misses
as de�ned by Hill and Smith �	
�
�� it can be used as a �rst�level
approximation�
��We do not believe that the Mach kernel �ushes the cache ex�

plicitly� The measured system was a uniprocessor with physically
tagged caches� The hardware does not even require explicit cache
�ushes for DMA�

�

by high cache working sets of a few frequently used op�
erations� According to section �� the �rst case has to be
considered as a conceptual mistake� Large cache work�
ing sets are also not an inherent feature of ��kernels�
For example� L� requires less than � K for short IPC�
�Recall� voluminous communication can be made by dy�
namic or static mapping so that the cache is not �ooded
by copying very long messages��

Mogul and Borg
����� reported an increase in cache
misses after preemptively�scheduled context switches
between applications with large working sets� This de�
pends mostly on the application load and the require�
ment for interleaved execution �timesharing�� The type
of kernel is almost irrelevant� We showed �section �����
and ������ that ��kernel context switches are not ex�
pensive in the sense that there is not much di�erence
between executing application � servers in one or in
multiple address spaces�

Conclusion� The hypothesis that ��kernel architec�
tures inherently lead to memory system degradation is
not substantiated� On the contrary� the quoted mea�
surements support the hypothesis that properly con�
structed ��kernels will automatically avoid the memory
system degradation measured for Mach�

� Non�Portability

Older ��kernels were built machine�independently on
top of a small hardware�dependent layer� This approach
has strong advantages from the software technological
point of view� programmers did not need to know very
much about processors and the resulting ��kernels could
easily be ported to new machines� Unfortunately� this
approach prevented these ��kernels from achieving the
necessary performance and thus �exibility�
In retrospective� we should not be surprised� since

building a ��kernel on top of abstract hardware has se�
rious implications�

� Such a ��kernel cannot take advantage of speci�c
hardware�

� It cannot take precautions to circumvent or avoid
performance problems of speci�c hardware�

� The additional layer per se costs performance�

��kernels form the lowest layer of operating systems
beyond the hardware� Therefore� we should accept that
they are as hardware dependent as optimizing code gen�
erators� We have learned that not only the coding but

� even the algorithms used inside a ��kernel and its
internal concepts are extremely processor depen�
dent�

��� Compatible Processors

For illustration� we brie�y describe how a ��kernel has
to be conceptually modi�ed even when �ported� from
��� to Pentium� i�e� to a compatible processor�

Although the Pentium processor is binary compatible
to the ���� there are some di�erences in the internal

��� Pentium

TLB entries� ways ���u� �� ���i�
 ���d� ��

Cache size� ways �K�u� �� �K�i�
 �K�d� ��

line� write 	�B through ��B back

fast instructions 	 cycle ����	 cycle
segment register
 cycles � cycles
trap 	�� cycles �
 cycles

Table �� ��	
 Pentium Di�erences

hardware architecture �see table �� which in�uence the
internal ��kernel architecture�

User�address�space implementation� As men�
tioned in section ������ a Pentium ��kernel should use
segment registers for implementing user address spaces
so that each ����byte hardware address space shares all
small and one large user address space� Recall that this
can be implemented transparently to the user�

Ford
����� proposed a similar technique for the ����
and table � also suggests it for the ���� Nevertheless�
the conventional hardware�address�space switch is pre�
ferrable on this processor� Expensive segment register
loads and additional instructions at various places in
the kernel sum to roughly ��� cycles required in addi�
tion� Now look at the relevant situation� an address�
space switch from a large space to a small one and back
to the large� Assuming cache hits� the costs of the seg�
ment register model would be �������������� cycles�
whereas the conventional address�space model would re�
quire �� � �������� cycles in the theoretical case of
���#TLB use� ����������� cycles for the more prob�
able case that the large address space uses only ��# of
the TLB and only � cycles in the best case� In total�
the conventional method wins�

On the Pentium however� the segment register
method pays� The reasons are several� �a� Segment reg�
ister loads are faster� �b� Fast instructions are cheaper�
whereas the overhead by trap and TLB misses remain
nearly constant� �c� Con�ict cache misses �which� rel�
ative to instruction execution� are anyway more expen�
sive� are more likely because of reduced associativity�
Avoiding TLB misses thus also reduces cache con�icts�
�d� Due to the three times larger TLB� the �ush costs
can increase substantially� As a result� on Pentium� the
segment register method always pays �see �gure ���

�

As a consequence� we have to implement an addi�
tional user�address�space multiplexer� we have to mod�
ify address�space switch routines� handling of user sup�
plied addresses� thread control blocks� task control
blocks� the IPC implementation and the address�space
structure as seen by the kernel� In total� the mentioned
changes a�ect algorithms in about half of all ��kernel
modules�

IPC implementation� Due to reduced associativity�
the Pentium caches tend to exhibit increased con�ict
misses� One simple way to improve cache behaviour
during IPC is by restructuring the thread control block
data such that it pro�ts from the doubled cache line
size� This can be adopted to the ��� kernel� since it has
no e�ect on ��� and can be implemented transparently
to the user�
In the ��� kernel� thread control blocks �including

kernel stacks� were page aligned� IPC always accesses
� control blocks and kernel stacks simultaneously� The
cache hardware maps the according data of both con�
trol blocks to identical cache addresses� Due to its
��way associativity� this problem could be ignored on
the ���� However� Pentium�s data cache is only ��way
set�associative� A nice optimization is to align thread
control blocks no longer on �K but on �K boundaries�
��K is the lower bound due to internal reasons�� Then
there is a �# chance that two randomly selected con�
trol blocks do not compete in the cache�
Surprisingly� this a�ects the internal bit�structure of

unique thread identi�ers supplied by the ��kernel �see

Liedtke ����� for details�� Therefore� the new kernel
cannot simply replace the old one� since �persistent� user
programs already hold uids which would become invalid�

��� Incompatible Processors

Processors of competing families di�er in instruction set�
register architecture� exception handling� cache	TLB
architecture� protection and memory model� Especially
the latter ones radically in�uence ��kernel structure�
There are systems with

� multi�level page tables�
� hashed page tables�
� �no� reference bits�
� �no� page protection�
� strange page protection���
� single	multiple page sizes�
� ����� ����� ���� and �	��byte address spaces�
� �at and segmented address spaces�
� various segment models�
� tagged	untagged TLBs�
� virtually	physically tagged caches�

��e�g� the ��� ignores write protection in kernel mode� the Pow�
erPC supports read only in kernel mode but this implies that the
page is seen in user mode as well�

The di�erences are orders of magnitude higher than be�
tween ��� and Pentium� We have to expect that a new
processor requires a new ��kernel design�

For illustration� we compare two di�erent kernels on
two di�erent processors� the Exokernel
Engler et al�
����� running on an R���� and L� running on a ���� Al�
though this is similar to comparing apples with oranges�
a careful analysis of the performance di�erences helps
understanding the performance�determining factors and
weighting the di�erences in processor architecture� Fi�
nally� this results in di�erent ��kernel architectures�

We compare Exokernel�s protected control transfer
�PCT� with L��s IPC� Exo�PCT on the R���� requires
about �� cycles� whereas L� takes ��� cycles on a ���
processor for an ��byte message transfer� If this dif�
ference cannot be explained by di�erent functionality
and	or average processor performance� there must be
an anomaly relevant to ��kernel design�
Exo�PCT is a �substrate for implementing e�cient

IPC mechanisms�
It� changes the program counter to
an agreed�upon value in the callee� donates the current
time�slice to the callee�s processor environment� and in�
stalls required elements of the callee�s processor con�
text�� L��IPC is used for secure communication be�
tween potentially untrusted partners� it therefore addi�
tionally checks the communication permission �whether
the partner is willing to receive a message from the
sender and whether no clan borderline is crossed�� syn�
chronizes both threads� supports error recovery by send
and receive timeouts� and permits complex messages to
reduce marshaling costs and IPC frequency� From our
experience� extending Exo�PCT accordingly should re�
quire no more than �� additional cycles� �Note that
using PCT for a trusted LRPC already costs an ad�
ditional �� cycles� see table ��� Therefore� we assume
that a hypothetical L��equivalent �Exo�IPC� would cost
about �� cycles on the R����� Finally� we must take into
consideration that the cycles of both processors are not
equivalent as far as most�frequently�executed instruc�
tions are concerned� Based on SpecInts� roughly ���
����cycles appear to do as much work as one R�����
cycle� comparing the �ve instructions most relevant in
this context ���op�alu� ��op�alu� load� branch taken and
not taken� gives ��� for well�optimized code� Thus we
estimate that the Exo�IPC would cost up to approx� ���
����cycles being de�nitely less than L��s ��� cycles�

This substantial di�erence in timing indicates an iso�
lated di�erence between both processor architectures
that strongly in�uences IPC �and perhaps other ��
kernel mechanisms�� but not average programs�

In fact� the ��� processor imposes a high penalty on
entering	exiting the kernel and requires a TLB �ush
per IPC due to its untagged TLB� This costs at least
�� " �� � ��� cycles� On the other hand� the R����
has a tagged TLB� i�e� avoids the TLB �ush� and needs
less than �� cycles for entering and exiting the kernel�

��

From the above example� we learn two lessons�

� For well�engineered ��kernels on di�erent processor
architectures� in particular with di�erent memory
systems� we should expect isolated timing di�er�
ences that are not related to overall processor per�
formance�

� Di�erent architectures require processor�speci�c
optimization techniques that even a�ect the global
��kernel structure�

To understand the second point� recall that the manda�
tory ����TLB �ush requires minimization of the num�
ber of subsequent TLB misses� The relevant tech�
niques
Liedtke ����� pp� ������ ���� are mostly based
on proper address space construction� concentrating
processor�internal tables and heavily used kernel data in
one page �there is no unmapped memory on then �����
implementing control blocks and kernel stacks as virtual
objects� lazy scheduling� In toto� these techniques save
�� TLB misses� i�e� at least �� cycles on the ��� and are
thus inevitable�
Due to its unmapped memory facility and tagged

TLB� the mentioned constraint disappears on the
R����� Consequently� the internal structure �address
space structure� page fault handling� perhaps control
block access and scheduling� of a corresponding kernel
can substantially di�er from a ����kernel� If other fac�
tors also imply implementing control blocks as physical
objects� even the uids will di�er between the R���� �no
� pointer size �x� and ��� kernel �no � control block
size �x��

Conclusion� ��kernels form the link between a mini�
mal ����set of abstractions and the bare processor� The
performance demands are comparable to those of earlier
microprogramming� As a consequence� ��kernels are in�
herently not portable� Instead� they are the processor
dependent basis for portable operating systems�

� Synthesis� Spin� DP�Mach�

Panda� Cache and Exokernel

Synthesis� Henry Massalin�s Synthesis operating sys�
tem
Pu et al� ����� is another example of a high per�
forming �and non�portable� kernel� Its distinguishing
feature was a kernel�integrated �compiler� which gener�
ated kernel code at runtime� For example� when issuing
a read pipe system call� the Synthesis kernel generated
specialized code for reading out of this pipe and modi�ed
the respective invocation� This technique was highly
successful on the ������ However �a good example for
non�portability�� it would most probably no longer pay
on modern processors� because �a� code in�ation will
degrade cache performance and �b� frequent generation
of small code chunks pollutes the instruction cache�

Spin� Spin
Bershad et al� ����� Bershad et al� �����
is a new development which tries to extend the Synthesis
idea� user�supplied algorithms are translated by a ker�
nel compiler and added to the kernel� i�e� the user may
write new system calls� By controlling branches and
memory references� the compiler ensures that the newly�
generated code does not violate kernel or user integrity�
This approach reduces kernel user mode switches and
sometimes address space switches� Spin is based on
Mach and may thus inherit many of its ine�ciencies
which makes it di�cult to evaluate performance results�
Rescaling them to an e�cient ��kernel with fast kernel
user mode switches and fast IPC is needed� The most
crucial problem� however� is the estimation of how an
optimized ��kernel architecture and the requirements
coming from a kernel compiler interfere with each other�
Kernel architecture and performance might be e�g� af�
fected by the requirement for larger kernel stacks� �A
pure ��kernel needs only a few hundred bytes per kernel
stack�� Furthermore� the costs of safety�guaranteeing
code have to be related to ��kernel overhead and to op�
timal user�level code�

The �rst published results
Bershad et al� ����� can�
not answer these questions� On an Alpha ������ ���
MHz� a Spin system call needs nearly twice as many cy�
cles ������ ���s� as the already expensive Mach system
call ����� �s�� The application measurements show
that Mach can be substantially improved by using a
kernel compiler� however� it remains open whether this
technique can reach or outperform a pure ��kernel ap�
proach like that described here� For example� a simple
user�level page�fault handler ����� �s under Mach� ex�
ecutes in � �s under Spin� However� we must take into
consideration that in a traditional ��kernel� the kernel
is invoked and left only twice� page fault �enter�� mes�
sage to pager �exit�� reply map message �enter"exit��
The Spin technique can save only one system call which
on this processor should cost less than � �s i�e� with
�� �s the actual Spin overhead is far beyond the ideal
traditional overhead of �"� �s�

From our experience� we expect a notable gain if
a kernel compiler eliminates nested IPC redirection�
e�g� when using deep hierarchies of Clans or Custodi�
ans
H�artig et al� ������ E�cient integration of the
kernel compiler technique and appropriate ��kernel de�
sign might be a promising research direction�

Utah�Mach� Ford and Lepreau
����� changed Mach
IPC semantics to migrating RPC which is based on
thread migration between address spaces� similar to the
Clouds model
Bernabeu�Auban et al� ������ Substan�
tial performance gain was achieved� a factor of � to ��

DP�Mach� DP�Mach
Bryce and Muller ����� imple�
ments multiple domains of protection within one user

��

address space and o�ers a protected inter�domain call�
The performance results �see table �� are encouraging�
However� although this inter�domain call is highly spe�
cialized� it is twice as slow as achievable by a general
RPC mechanism� In fact� an inter�domain call needs
two kernel calls and two address�space switches� A gen�
eral RPC requires two additional thread switches and
argument transfers��� Apparently� the kernel call and
address�space switch costs dominate� Bryce and Muller
presented an interesting optimization for small inter�
domain calls� when switching back from a very small
domain� the TLB is only selectively �ushed� Although
the e�ects are rather limited on their host machine �a
��� with only �� TLB entries�� it might become more
relevant on processors with larger TLBs� To analyze
whether kernel enrichment by inter�domain calls pays�
we need e�g� a Pentium implementation and then com�
pare it with a general RPC based on segment switching�

Panda� The Panda system�s
Assenmacher et al�
����� ��kernel is a further example of a small kernel
which delegates as much as possible to user space� Be�
sides its two basic concepts protection domain and vir�
tual processor� the Panda kernel handles only interrupts
and exceptions�

Cache�Kernel� The Cache�kernel
Cheriton and
Duda ����� is also a small and hardware�dependent ��
kernel� In contrast to the Exokernel� it relies on a small
�xed �non extensible� virtual machine� It caches ker�
nels� threads� address spaces and mappings� The term
�caching� refers to the fact that the ��kernel never han�
dles the complete set of e�g� all address spaces� but only
a dynamically selected subset� It was hoped that this
technique would lead to a smaller ��kernel interface and
also to less ��kernel code� since it no longer has to deal
with special but infrequent cases� In fact� this could
be done as well on top of a pure ��kernel by means of
according pagers� �Kernel data structures� e�g� thread
control blocks� could be held in virtual memory in the
same way as other data��

Exokernel� In contrast to Spin� the Exokernel
En�
gler et al� ����� Engler et al� ����� is a small and
hardware�dependent ��kernel� In accordance with our
processor�dependency thesis� the exokernel is tailored
to the R���� and gets excellent performance values
for its primitives� In contrast to our approach� it is
based on the philosophy that a kernel should not pro�
vide abstractions but only a minimal set of primitives�

��Sometimes� the argument transfer can be omitted� For im�
plementing inter�domain calls� a pager can be used which shares
the address spaces of caller and callee such that the trusted callee
can access the parameters in the caller space� E�g� LRPC �Ber�
shad et al� 	
�
� and NetWare �Major et al� 	

�� use a similar
technique�

Consequently� the Exokernel interface is archtecture de�
pendent� in particular dedicated to software�controlled
TLBs� A further di�erence to our driver�less ��kernel
approach is that Exokernel appears to partially inte�
grate device drivers� in particular for disks� networks
and frame bu�ers�

We believe that dropping the abstractional approach
could only be justi�ed by substantial performance gains�
Whether these can be achieved remains open �see dis�
cussion in section ���� until we have well�engineered exo�
and abstractional ��kernels on the same hardware plat�
form� It might then turn out that the right abstractions
are even more e�cient than securely multiplexing hard�
ware primitives or� on the other hand� that abstractions
are too in�exible� We should try to decide these ques�
tions by constructing comparable ��kernels on at least
two reference platforms� Such a co�construction will
probably also lead to new insights for both approaches�

	 Conclusions

A ��kernel can provide higher layers with a minimal set
of appropriate abstractions that are �exible enough to al�
low implementation of arbitrary operating systems and
allow exploitation of a wide range of hardware� The
presented mechanisms �address space with map� �ush
and grant operation� threads with IPC and unique iden�
ti�ers� form such a basis� Multi�level�security systems
may additionally need clans or a similar reference mon�
itor concept� Choosing the right abstractions is crucial
for both �exibility and performance� Some existing ��
kernels chose inappropriate abstractions� or too many
or too specialized and in�exible ones�

Similar to optimizing code generators� ��kernels must
be constructed per processor and are inherently not
portable� Basic implementation decisions� most algo�
rithms and data structures inside a ��kernel are pro�
cessor dependent� Their design must be guided by
performance prediction and analysis� Besides inappro�
priate basic abstractions� the most frequent mistakes
come from insu�cient understanding of the combined
hardware�software system or ine�cient implementation�

The presented design shows that it is possible to
achieve well performing ��kernels through processor�
speci�c implementations of processor�independent ab�
stractions�

Availability

The source code of the L� ��kernel� a successor of the L�
��kernel� is available for examination and experimenta�
tion through the web�

http���borneo�gmd�de�RS�L��

��

Acknowledgements

Many thanks to Hermann H�artig for discussion and Rich
Uhlig for proofreading and stylistic help� Further thanks
for reviewing remarks to Dejan Milojicic� some anony�
mous referees and Sacha Krakowiak for shepherding�

A Address Spaces

An Abstract Model of Address Spaces

We describe address spaces as mappings� �
�
� V �

R�f�g is the initial address space� where V is the set
of virtual pages� R the set of available physical �real�
pages and � the nilpage which cannot be accessed� Fur�
ther address spaces are de�ned recursively as mappings
� � V � �$ � V ��f�g� where $ is the set of address
spaces� It is convenient to regard each mapping as a one
column table which contains ��v� for all v �V and can
be indexed by v� We denote the elements of this table
by �v�
All modi�cations of address spaces are based on the

replacement operation� we write �v � x to describe a
change of � at v� precisely�

�ush ��� v� � �v �� x �

A page potentially mapped at v in � is �ushed� and the
new value x is copied into �v� This operation is internal
to the ��kernel� We use it only for describing the three
exported operations�
A subsystem S with address space � can grant any

of its pages v to a subsystem S� with address space ��

provided S� agrees�

��
v�
� �v � �v � � �

Note that S determines which of its pages should be
granted� whereas S� determines at which virtual address
the granted page should be mapped in ��� The granted
page is transferred to �� and removed from ��
A subsystem S with address space � can map any

of its pages v to a subsystem S� with address space ��

provided S� agrees�

��
v�
� ��� v� �

In contrast to grant� the mapped page remains in the
mapper�s space � and a link to the page in the map�
pers address space ��� v� is stored in the receiving ad�
dress space ��� instead of transferring the existing link
from �v to ��

v�
� This operation permits to construct

address spaces recursively� i�e� new spaces based on ex�
isting ones�

Flushing� the reverse operation� can be executed with�
out explicit agreement of the mappees� since they agreed
implicitly when accepting the prior map operation� S

can �ush any of its pages�

���
v�

� ���v� � ��
v�
� � �

Note that� and �ush are de�ned recursively� Flushing
recursively a�ects also all mappings which are indirectly
derived from �v�

No cycles can be established by these three opera�
tions� since � �ushes the destination prior to copying�

Implementing the Model

At a �rst glance� deriving the phyical address of page v
in address space � seems to be rather complicated and
expensive�

��v� �

��
�

���v�� if �v � ���� v��
r if �v � r

� if �v ��

Fortunately� a recursive evaluation of ��v� is never re�
quired� The three basic operations guarantee that the
physical address of a virtual page will never change�
except by �ushing� For implementation� we therefore
complement each � by an additional table P � where Pv

corresponds to �v and holds either the physical address
of v or �� Mapping and granting then include

P �

v�
�� Pv

and each replacement �v � � invoked by a �ush oper�
ation includes

Pv �� � �

Pv can always be used instead of evaluating ��v�� In
fact� P is equivalent to a hardware page table� ��kernel
address spaces can be implemented straightforward by
means of the hardware�address�translation facilities�

The recommended implementation of � is to use one
mapping tree per physical page frame which describes
all actual mappings of the frame� Each node contains
�P� v�� where v is the according virtual page in the ad�
dress space which is implemented by the page table P �

Assume that a grant�� map� or �ush�operation deals
with a page v in address space � to which the page
table P is associated� In a �rst step� the operation se�
lects the according tree by Pv� the physical page� In the
next step� it selects the node of the tree that contains
�P� v�� �This selection can be done by parsing the tree
or in a single step� if Pv is extended by a link to the
node�� Granting then simply replaces the values stored
in the node and map creates a new child node for stor�
ing �P �� v��� Flush lets the selected node una�ected but
parses and erases the complete subtree� where P �

v
�� �

is executed for each node �P �� v�� in the subtree�

��

References
Assenmacher� H�� Breitbach� T�� Buhler� P�� H�ubsch� V�� and

Schwarz� R� ��� The Panda system architecture � a pico�
kernel approach� In �th Workshop on Future Trends of Dis�
tributed Computing Systems� Lisboa� Portugal� pp� �
���
	�

Bernabeu�Auban� J� M�� Hutto� P� W�� and Khalidi� Y� A� ����
The architecture of the Ra kernel� Tech� Rep� GIT�ICS��
���
�Jan��� Georgia Institute of Technology� Atlanta� GA�

Bershad� B� N�� Anderson� T� E�� Lazowska� E� D�� and Levy� H� M�
��� Lightweight remote procedure call� In ��th ACM Sympo�
sium on Operating System Principles �SOSP�� Lich�eld Park�
AR� pp� ��������

Bershad� B� N�� Chambers� C�� Eggers� S�� Maeda� C�� McNamee�
D�� Pardyak� P�� Savage� S�� and Sirer� E� G� ��� Spin � an
extensible microkernel for application�speci�c operating sys�
tem services� In �th SIGOPS European Workshop� Schlo�
Dagstuhl� Germany� pp� 	��
��

Bershad� B� N�� Savage� S�� Pardyak� P�� Sirer� E� G�� Fiuczynski�
M�� Becker� D�� Eggers� S�� and Chambers� C� ��� Extensi�
bility� safety and performance in the Spin operating system�
In ��th ACM Symposium on Operating System Principles
�SOSP�� Copper Mountain Resort� CO� pp� xx�xx�

Brinch Hansen� P� �
�� The nucleus of a multiprogramming sys�
tem� Commun� ACM �	
 � �April�� ��������

Bryce� C� and Muller� G� ��� Matching micro�kernels to modern
applications using �ne�grained memory protection� In IEEE
Symposium on Parallel Distributed Systems� San Antonio�
TX�

Cao� P�� Felten� E� W�� and Li� K� ��� Implementation and per�
formance of application�controlled �le caching� In �st USENIX
Symposium on Operating Systems Design and Implementa�
tion �OSDI�� Monterey� CA� pp� �	���
��

Chen� J� B� and Bershad� B� N� ��� The impact of operat�
ing system structure on memory system performance� In ��th
ACM Symposium on Operating System Principles �SOSP��
Asheville� NC� pp� ��������

Cheriton� D� R� and Duda� K� J� ��� A caching model of oper�
ating system kernel functionality� In �st USENIX Symposium
on Operating Systems Design and Implementation �OSDI��
Monterey� CA� pp� �
����

Digital Equipment Corp� ��� DECChip ������AA Risc Micro�
processor Data Sheet� Digital Equipment Corp�

Draves� R� P�� Bershad� B� N�� Rashid� R� F�� and Dean� R� W� ���
Using continuations to implement thread management and
communication in operating systems� In �	th ACM Sympo�
sium on Operating System Principles �SOSP�� Paci�c Grove�
CA� pp� ������	�

Engler� D�� Kaashoek� M� F�� and O�Toole� J� ��� The operat�
ing system kernel as a secure programmable machine� In �th
SIGOPS European Workshop� Schlo� Dagstuhl� Germany� pp�
	��	
�

Engler� D�� Kaashoek� M� F�� and O�Toole� J� ��� Exokernel�
an operating system architecture for application�level resource
management� In ��th ACM Symposium on Operating System
Principles �SOSP�� Copper Mountain Resort� CO� pp� xx�xx�

Ford� B� ��� private communication�

Ford� B� and Lepreau� J� ��� Evolving Mach ��� to a migrating
thread model� In Usenix Winter Conference� CA� pp�
�����

Gasser� M�� Goldstein� A�� Kaufmann� C�� and Lampson� B� ���
The Digital distributed system security architecture� In ��th
National Computer Security Conference �NIST�NCSC�� Bal�
timore� pp� �������

Hamilton� G� and Kougiouris� P� ��� The Spring nucleus� A mi�
crokernel for objects� In Summer Usenix Conference� Cincin�
nati� OH� pp� ��
��	��

H�artig� H�� Kowalski� O�� and K�uhnhauser� W� ��� The Birlix
security architecture� Journal of Computer Security �
 �� ��
���

Hildebrand� D� ��� An architectural overview of QNX� In �st
Usenix Workshop on Micro�kernels and Other Kernel Archi�
tectures� Seattle� WA� pp� ������	�

Hill� M� D� and Smith� A� J� ��� Evaluating associativity in
CPU caches� IEEE Transactions on Computers 	
 �� �Dec���
�	����	���

Intel Corp� ��� i�� Microprocessor Programmer�s Reference
Manual� Intel Corp�

Intel Corp� ��� Pentium Processor User�s Manual
 Volume 	�
Architecture and Programming Manual� Intel Corp�

Kane� G� and Heinrich� J� ��� MIPS Risc Architecture� Prentice
Hall�

Kessler� R� and Hill� M� D� ��� Page placement algorithms for
large real�indexed caches� ACM Transactions on Computer
Systems ��
 � �Nov��� ������

Khalidi� Y� A� and Nelson� M� N� ��� Extensible �le systems in
Spring� In ��th ACM Symposium on Operating System Prin�
ciples �SOSP�� Asheville� NC� pp� �����

K�uhnhauser� W� E� ��� A paradigm for user�de�ned security poli�
cies� In Proceedings of the ��th IEEE Symposium on Reliable
Distributed Systems� Bad Neuenahr� Germany�

Lee� C� H�� Chen� M� C�� and Chang� R� C� ��� HiPEC� high
performance external virtual memory caching� In �st USENIX
Symposium on Operating Systems Design and Implementa�
tion �OSDI�� Monterey� CA� pp� �����	��

Liedtke� J� ��� Clans � chiefs� In ��� GI�ITG�Fachtagung Ar�
chitektur von Rechensystemen� Kiel� pp� ������� Springer�

Liedtke� J� ��� Improving IPC by kernel design� In ��th
ACM Symposium on Operating System Principles �SOSP��
Asheville� NC� pp� �
������

Liedtke� J� ��� Improved address�space switching on Pentium
processors by transparently multiplexing user address spaces�
Arbeitspapiere der GMD No� �� �Sept��� GMD � German
National Research Center for Information Technology� Sankt
Augustin�

Major� D�� Minshall� G�� and Powell� K� ��� An overview of the
NetWare operating system� InWinter Usenix Conference� San
Francisco� CA�

Mogul� J� C� and Borg� A� ��� The e�ect of context switches on
cache performance� In �th International Conference on Archi�
tectural Support for Programming Languages and Operating
Systems �ASPLOS�� Santa Clara� CA� pp�
�����

Motorola Inc� ��� PowerPC ��� RISC Microprocessor User�s
Manual� Motorola Inc�

Nagle� D�� Uhlig� R�� Mudge� T�� and Sechrest� S� ��� Optimal
allocation of on�chip memory for multiple�API operating sys�
tems� In ��th Annual International Symposium on Computer
Architecture �ISCA�� Chicago� IL� pp� �����	�

Ousterhout� J� K� ��� Why aren�t operating systems getting
faster as fast as hardware� In Usenix Summer Conference�
Anaheim� CA� pp� ��
���	�

Pu� C�� Massalin� H�� and Ioannidis� J� ���� The Synthesis kernel�
Computing Systems �
 � �Jan��� ������

Romer� T� H�� Lee� D� L�� Bershad� B� N�� and Chen� B� ���
Dynamic page mapping policies for cache con�ict resolution on
standard hardware� In �st USENIX Symposium on Operating
Systems Design and Implementation �OSDI�� Monterey� CA�
pp� �����		�

Rozier� M�� Abrossimov� A�� Armand� F�� Boule� I�� Gien� M��
Guillemont� M�� Herrmann� F�� Kaiser� C�� Langlois� S��
Leonard� P�� and Neuhauser� W� ���� Chorus distributed op�
erating system� Computing Systems �
 �� �����
��

Schr�oder�Preikschat� W� ��� The Logical Design of Parallel Op�
erating Systems� Prentice Hall�

Schroeder� M� D� and Burroughs� M� ��� Performance of the
Fire�y RPC� In ��th ACM Symposium on Operating System
Principles �SOSP�� Lich�eld Park� AR� pp� �����

van Renesse� R�� van Staveren� H�� and Tanenbaum� A� S� ����
Performance of the world�s fastest distributed operating sys�
tem� Operating Systems Review ��
 � �Oct��� ������

Wulf� W�� Cohen� E�� Corwin� W�� Jones� A�� Levin� R�� Pierson� C��
and Pollack� F� �
�� Hydra� The kernel of a multiprocessing
operating system� Commun� ACM ��
 	 �July�� ��
�����

Yokote� Y� ��� Kernel�structuring for object�oriented operating
systems� The Apertos approach� In International Symposium
on Object Technologies for Advanced Software� Springer�

��

