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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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Virtual Machine (VM) 

“A VM is an efficient, isolated duplicate of a real machine” 
  Duplicate: VM should behave identically to the real machine 

•  Programs cannot distinguish between execution on real or virtual hardware 
•  Except for: 

-  Fewer resources available (and potentially different between executions) 
-  Some timing differences (when dealing with devices) 

  Isolated: Several VMs execute without interfering with each other 
  Efficient: VM should execute at speed close to that of real hardware 

•  Requires that most instruction are executed directly by real hardware 

Hypervisor aka virtual-machine monitor: Software implementing the VM 
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Why Virtual Machines? 

•  Historically used for easier sharing of expensive mainframes 
–  Run several (even different) OSes on same machine 

•  called guest operating system 
–  Each on a subset of physical resources 
–  Can run single-user single-tasked OS  

in time-sharing mode 
•  legacy support 

•  Gone out of fashion in 80’s 
–  Time-sharing OSes common-place 
–  Hardware too cheap to worry... 
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Why Virtual Machines? 

•  Renaissance in recent years for improved isolation 
•  Server/desktop virtual machines 

–  Improved QoS and security 
–  Uniform view of hardware 
–  Complete encapsulation 

•  replication 
•  migration 
•  checkpointing 
•  debugging 

–  Different concurrent OSes 
•  eg Linux + Windows 

–  Total mediation 
•  Would be mostly unnecessary 

–  … if OSes were doing their job! 
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Why Virtual Machines? 

•  Embedded systems: integration of heterogenous environments 
–  RTOS for critical real-time functionality 
–  Standard OS for GUIs, networking etc 

•  Alternative to physical separation 
–  low-overhead communication 
–  cost reduction 
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Hypervisor 

•  Program that runs on real hardware to implement the virtual machine 
•  Controls resources 

–  Partitions hardware 
–  Schedules guests 

•  “world switch” 
–  Mediates access to shared resources 

•  e.g. console 
•  Implications 

–  Hypervisor executes in privileged mode 
–  Guest software executes in unprivileged mode 
–  Privileged instructions in guest cause a trap into hypervisor 
–  Hypervisor interprets/emulates them 
–  Can have extra instructions for hypercalls 
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Native vs. Hosted VMM 

  Hosted VMM can run besides native 
apps 

•  Sandbox untrusted apps 
•  Convenient for running 

alternative OS on desktop 

Native/Classic/ 
Bare-metal/Type-I 

Hosted/Type-II 

Guest OS 

Hypervisor 

Hardware 

App 
Guest OS 

Hypervisor 

Host OS 

Hardware 

App 

  Less efficient 
•  Twice number of mode switches 
•  Twice number of context switches 
•  Host not optimised for exception 

forwarding 
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Virtualization Mechanics: Instruction Emulation 

  Traditional “trap and emulate” approach: 
•  guest attempts to access physical resource 
•  hardware raises exception (trap), invoking hypervisor's exception handler 
•  hypervisor emulates result, based on access to virtual resource 

  Most instructions do not trap 
•  makes efficient virtualization possible 
•  requires that VM ISA is (almost) same as physical processor ISA 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
mv   CPU_ASID, r1 
ld   sp, (r1,kern_stk) 

lda  r1, vm_reg_ctxt 
ld   r2, (r1,ofs_r0) 
sto  r2, (r1,ofs_ASID) 

Guest 

Exception 

Hypervisor 
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Trap-and-Emulate Requirements 

Definitions: 
  Privileged instruction: executes in privileged mode, traps in user mode 

•  Note: trap is required, NO-OP is insufficient! 
  Privileged state: determines resource allocation 

•  Includes privilege mode, addressing context, exception vectors, … 
  Sensitive instruction: control-sensitive or behaviour-sensitive 

•  control sensitive: changes privileged state 
•  behaviour sensitive: exposes privileged state 

- includes instructions which are NO-OPs in user but not privileged mode 
  Innocuous instruction: not sensitive 

Note:  
•  Some instructions are inherently sensitive 

- e.g. TLB load 
•  Others are sensitive in some context 

- e.g. store to page table 
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Trap-and-Emulate Architectural Requirements 

Trap-and-emulate virtualizable if all sensitive instructions are privileged 
  Can then achieve accurate, efficient guest execution 

•  by simply running guest binary on hypervisor 
  VMM controls resources 
  Virtualized execution is indistinguishable from native, except: 

•  Resources more limited (running on smaller machine) 
•  Timing is different (if there is an observable time source) 

  Recursively virtualizable machine: 
•  VMM can be built without any timing dependence 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
mv   CPU_ASID, r1 
ld   sp, (r1,kern_stk) 

lda  r1, vm_reg_ctxt 
ld   r2, (r1,ofs_r0) 
sto  r2, (r1,ofs_ASID) 

Guest 

Exception 

Hypervisor 
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Impure Virtualization 

  Used for two reasons: 
•  Architecture not trap-and-emulate virtualizable 
•  Reduce virtualization overheads 

  Change the guest OS, replacing sensitive instructions 
•  by trapping code (hypercalls) 
•  by in-line emulation code 

  Two standard approaches: 
•  binary translation: modifies binary 
•  para-virtualization: changes ISA 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
mv   CPU_ASID, r1 
ld   sp, (r1,kern_stk) 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
trap 
ld   sp, (r1,kern_stk) 

ld   r0, curr_thrd 
ld   r1, (r0,ASID) 
jmp  fixup_15 
ld   sp, (r1,kern_stk) 
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Binary Translation 

  Locate sensitive instructions in guest binary and replace on-the-fly by 
emulation code or hypercall  

•  pioneered by VMware 
•  can also detect combinations of sensitive instructions and replace by single 

emulation 
•  doesn’t require source, uses unmodified native binary 

- in this respect appears like pure virtualization! 
•  very tricky to get right (especially on x86!) 

•  “heroic effort” [Orran Krieger, then IBM later VMware ;-) ] 
•  needs to make some assumptions on sane behaviour of guest 
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Para-Virtualization 

  New name, old technique 
•  Mach Unix server [Golub et al, 90], L4Linux [Härtig et al, 97], 

Disco [Bugnion et al, 97] 
•  Name coined by Denali [Whitaker et al, 02], popularised by 

Xen [Barham et al, 03] 
  Idea: manually port the guest OS to modified ISA 

•  Augment by explicit hypervisor calls (hypercalls) 
- Use more high-level API to reduce the number of traps 
- Remove un-virtualizable instructions 
- Remove “messy” ISA features which complicate virtualization 

•  Generally out-performs pure virtualization and binary-rewriting 
  Drawbacks: 

•  Significant engineering effort 
•  Needs to be repeated for each guest-ISA-hypervisor combination 
•  Para-virtualized guest needs to be kept in sync with native guest 
•  Requires source 

Guest 

Hypervisor 

Hardware 
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Virtualization Overheads 

  VMM needs to maintain virtualized privileged machine state 
•  processor status 
•  addressing context 
•  device state... 

  VMM needs to emulate privileged instructions 
•  translate between virtual and real privileged state 
•  e.g. guest ↔ real page tables 

  Virtualization traps are be expensive on modern hardware 
•  can be 100s of cycles (1150 cycles round-trip on latest Intel x86 processors) 

  Some OS operations involve frequent traps 
•  STI/CLI for mutual exclusion 
•  frequent page table updates during fork()... 
•  MIPS KSEG address used for physical addressing in kernel 
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Virtualization Techniques 

  Impure virtualization methods enable new optimisations 
•  due to the ability to control the ISA 

  E.g. maintain some virtual machine state inside VMM: 
•  e.g. interrupt-enable bit (in virtual PSR) 
•  requires changing guest's idea of where this bit lives 
•  hypervisor knows about VMM-local virtual state and can act accordingly 

- e.g. queue virtual interrupt until guest enables in virtual PSR 

psid Trap 
0 

1 

VPSR 
0 

0 

PSR 
mov  r1,#VPSR 
ldr  r0,[r1] 
orr  r0,r0,#VPSR_ID 
sto  r0,[r1] 
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Virtualization Techniques 

  E.g. lazy update of virtual machine state 
•  virtual state is kept inside hypervisor 
•  keep copy of virtual state inside VM 
•  allow temporary inconsistency between local copy and real VM state  
•  synchronise state on next forced hypervisor invocation 

- actual trap 
- explicit hypercall when physical state must be updated 

•  Example:guest enables FPU 
- no need to invoke hypervisor at this point 
- hypervsior syncs state on virtual kernel exit 

psid Trap 
0 

1 

VPSR 
0 

0 

PSR 
mov  r1,#VPSR 
ldr  r0,[r1] 
orr  r0,r0,#VPSR_ID 
sto  r0,[r1] 
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Virtualization and Address Translation 
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Page 
Table 

Virtual 
Page 
Table 

Virtual Memory 

Two levels of address 
translation! 

Must implement with single MMU translation! 
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Virtualization Mechanics: Shadow Page Table 
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Virt PT ptr 
(Software) 

data 

ld r0, adr 

Guest 
virtual 
address 

Guest 
physical 
address 

Physical 
address 

PT ptr 
(Hardware) 

User 
(Virtual) 
guest page 
table 

Hypervisor's 
guest 
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Guest OS 

Hypervisor 
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Virtualization Mechanics: Shadow Page Table 
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Hypervisor must shadow (virtualize)  
all PT updates by guest: 
•  trap guest writes to guest PT 
•  translate guest PA in guest (virtual) 

PTE using guest memory map 
•  insert translated PTE in shadow PT 

Virt PT ptr 

data 

ld r0, adr 

Guest 
virtual 
address 

Guest 
physical 
address 

Physical 
address 

PT ptr 

User 

Guest OS 

Hypervisor 

Memory 

Shadow PT has TLB semantics 
(i.e. weak consistency) ⇒ 
Update at synchronisation points: 
•  page faults 
•  TLB flushes 

Used by VMware 
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Virtualization Mechanics: Real Guest PT 

•  On guest PT access must 
translate (virtualize) PTEs 
–  store: translate guest “PTE” to 

real PTE 
–  load: translate real PTE to 

guest “PTE” 
•  Each guest PT access traps! 

–  including reads 
–  high overhead 
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Virtualization Mechanics: Optimised Guest PT 

•  Guest translates PTEs itself when 
reading from PT 
–  supported by Linux PT-access 

wrappers 
•  Guest batches PT updates using 

hypercalls 
–  reduced overhead 
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Virtualization Mechanics: 3 Device Models 
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Virtualization Mechanics: Emulated Device 
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Hypervisor 

VM1 

OS 

Device 
Driver 

Apps Apps Apps 

Device 

Emu-
lation 

Device 
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accesses 

•  Each device access must be 
trapped and emulated 
–  unmodified native driver 
–  high overhead! 
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Virtualization Mechanics: Split Driver (Xen speak) 
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Hypervisor 
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Virtual 
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device interface 
–  small number of 

hypercalls 
–  new (but very 

simple) driver 
–  low overhead 
–  must port drivers to 

hypervisor 

“Para-
virtualized 

driver” 



© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27 

Virtualization Mechanics: Driver OS (Xen Dom0) 
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Virtualization Mechanics: Pass-Through Driver 
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Hypervisor 
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Non-Virtualizable Architectures 

  x86: lots of non-virtualizable features 
•  e.g. sensitive PUSH of PSW is not privileged 
•  segment and interrupt descriptor tables in virtual memory 
•  segment description expose privileged level 

  Itanium: mostly virtualizable, but 
•  interrupt vector table in virtual memory 
•  THASH instruction exposes hardware page tables address 

  MIPS: mostly virtualizable, but 
•  kernel registers k0, k1 (needed to save/restore state) user-accessible 
•  performance issue with virtualizing KSEG addresses 

  ARM: mostly virtualizable, but 
•  some instructions undefined in user mode (banked registers, CPSR) 
•  PC is a GPR, exception return in MOVS to PC, doesn’t trap 

  Most others have problems too 
  Modern trend are virtualization extensions to ISA 

•  x86, Itanium since ~2006 (VT-x, VT-i) 
  Case study: ARM 

•  announced ‘10, samples ‘11, products ‘12 
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ARM Virtualization Extensions (1) 

Hyp mode 

•  New privilege level 
–  Strictly higher than kernel 
–  Virtualizes or traps all 

sensitive instructions 
–  Only available in ARM 

TrustZone “non-secure” mode 
•  Note: different from x86 

–  VT-x “root” mode is orthogonal 
to x86 protection rings 

“Secure”  
world 

“Non-Secure”  
world 

Monitor mode 

Kernel modes 

Hyp mode 

User mode 

Kernel modes 

User mode 
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ARM Virtualization Extensions (2) 

Configurable Traps 

Kernel mode 

User mode 

Native syscall 

Kernel mode 

Hyp mode 

User mode 

Virtual syscall 

Kernel mode 

Hyp mode 

User mode 

Virtual syscall 
Trap to guest 

Can configure traps to 
go directly to guest OS 
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ARM Virtualization Extensions (3) 

Emulation 
1)  Load faulting instruction 

•  Compulsory L1-D miss! 
2)  Decode instruction 

•  Complex logic 
3)  Emulate instruction 

•  Usually straightforward 
mv CPU_ASID,r1 IR 

ld r1,(r0,ASID) 
mv CPU_ASID,r1 
ld sp,(r1,kern_stk) 

L1 I- 
Cache 

 ld r1,(r0,ASID) 
 mv CPU_ASID,r1 
 ld sp,(r1,kern_stk) 

L2 
Cache 

... 

... 

... 

L1 D- 
Cache 

... R2 

... 
mv CPU_ASID,r1 
... 

mv CPU_ASID,r1 
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ARM Virtualization Extensions (3) 

Emulation Support 
–  HW decodes instruction 

•  No L1 miss 
•  No software decode 

–  SW emulates instruction 
•  Usually straightforward 

mv CPU_ASID,r1 IR 

ld r1,(r0,ASID) 
mv CPU_ASID,r1 
ld sp,(r1,kern_stk) 

L1 I- 
Cache 

 ld r1,(r0,ASID) 
 mv CPU_ASID,r1 
 ld sp,(r1,kern_stk) 

L2 
Cache 

... 

... 

... 

L1 D- 
Cache 

r1 R3 

mv R2 
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ARM Virtualization Extensions (4) 

2-stage translation 

–  Hardware PT walker traverses 
both PTs 

–  Loads combined (guest-virtual to 
physical) mapping into TLB 

1st PT ptr 
(Hardware) 

data 

ld r0, adr 

Guest 
virtual 
address 

Guest 
physical 
address 

Physical 
address 

2nd PT ptr 
(Hardware) 

User 
(Virtual) 
guest page 
table 

Hypervisor's 
guest 
memory map Guest OS 

Hypervisor 

Memory 
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ARM Virtualization Extensions (4) 

2-stage translation cost 
–  On page fault walk twice 

number of page tables! 
–  Can have a page miss on each 
–  O(n2) misses in worst case for 

n-level PT 
–  Worst-case cost is massively 

worse than for single-level 
translation! 1st PT ptr 

(Hardware) 

data 

ld r0, adr 

Guest 
virtual 
address 

Guest 
physical 
address 

Physical 
address 

2nd PT ptr 
(Hardware) 

User 

Guest OS 

Hypervisor 

Memory 
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ARM Virtualization Extensions (5) 

Virtual Interrupts 

•  ARM has 2-part IRQ controller 
–  Global “distributor” 
–  Per-CPU “interface” 

•  New H/W “virt. CPU interface” 
–  Mapped to guest 
–  Used by HV to forward IRQ 
–  Used by guest to acknowledge 

•  Halves hypervisor entries for 
interrupt virtualization 

Distributor 

CPU Interface 

Hypervisor 

Guest 

Virt. CPU Interf 
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Hypervisor Size 

Hypervisor ISA Type Kernel User 
OKL4 ARMv7 para-virtualization 9.8 kLOC 0 
Prototype ARMv7 pure virtualization 6 kLOC 0 
Nova x86 pure virtualization 9 kLOC 27 kLOC 

•  Size (& complexity) reduced about 40% wrt to para-virtualization 
•  Much smaller than x86 pure-virtualization hypervisor 

–  Mostly due to greatly reduced need for instruction emulation 

COMP9242 S2/2012 W04 
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Overheads (Estimated) 

Operation 
Pure virtualization Para-virtualiz. 

Instruct Cycles (est) Cycles (approx) 
Guest system call 0 0 300 
Hypervisor entry + exit 120 650 150 
IRQ entry + exit 270 900 300–400? 
Page fault 356 1500 700 
Device emul. 249 1040 N/A 
Device emul. (accel.) 176 740 N/A 
World switch 2824 7555 200 

•  No overhead on regular (virtual) syscall – unlike para-virtualization 
•  Invoking hypervisor 500–1200 cycles (0.6–1.5 µs) more than para 
•  World switch in ~10 µs compared to 0.25 µs for para 
⇒ Trade-offs differ 

COMP9242 S2/2012 W04 
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•  Both contain all code executing at highest privilege level 
–  Although hypervisor may contain user-mode code as well 

•  privileged part usually called “hypervisor” 
•  user-mode part often called “VMM” 

•  Both need to abstract hardware resources 
–  Hypervisor: abstraction closely models hardware 
–  Microkernel: abstraction designed to support wide range of systems 

•  What must be abstracted? 
–  Memory 
–  CPU 
–  I/O 
–  Communication 

Hypervisors vs Microkernels 

Difference to 
traditional 

terminology! 
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Resource Hypervisor Microkernel 

Memory Virtual MMU (vMMU) Address space 

CPU Virtual CPU (vCPU) Thread or  
scheduler activation 

I/O •  Simplified virtual 
  device 
•  Driver in hypervisor 
•  Virtual IRQ (vIRQ) 

•  IPC interface to 
  user-mode driver 
•  Interrupt IPC 

Communication Virtual NIC, with 
driver and network 
stack 

High-performance  
message-passing IPC 

What’s the difference? Just page 
tables in 
disguise 

Just 
kernel-

scheduled 
activities 

Modelled on HW, 
Re-uses SW 

Minimal 
overhead, 

Custom API 

Real 
Difference? 
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•  Communication is critical for I/O 
–  Microkernel IPC is highly optimised 
–  Hypervisor inter-VM communication is frequently a bottleneck 

Closer Look at I/O and Communication 

Apps Apps Apps 

Microkernel 

Server Device 
Driver 

IPC 
Hypervisor 

Device 
Driver 
VM 

OS 

Device 
Driver 

VM1 

OS 

Virtual 
Driver 

Apps Apps Apps 

Virtual NW 
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•  Fundamentally, both provide similar abstractions 
•  Optimised for different use cases 

–  Hypervisor designed for virtual machines 
•  API is hardware-like to ease guest ports 

–  Microkernel designed for multi-server systems 
•  seems to provide more OS-like abstractions 

Hypervisors vs Microkernels: Summary 

COMP9242 S2/2012 W04 
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Hypervisors vs Microkernels: Drawbacks 

Hypervisors: 

•  Communication is Achilles heel 
–  more important than expected 

•  critical for I/O 
–  plenty improvement attempts 

in Xen 

•  Most hypervisors have big 
TCBs 
–  infeasible to achieve high 

assurance of security/safety 
–  in contrast, microkernel 

implementations can be 
proved correct 

Microkernels: 

•  Not ideal for virtualization 
–  API not very effective 

•  L4 virtualization performance 
close to hypervisor 

•  effort much higher 
–  Virtualization needed for 

legacy 
•  L4 model uses kernel-

scheduled threads for more 
than exploiting parallelism 
–  Kernel imposes policy 
–  Alternatives exist, eg. K42 

uses scheduler activations 
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More on this later! 


