
COMP9242
Advanced Operating Systems

S2/2012 Week 4:
Virtualization

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

Virtual Machine (VM)

“A VM is an efficient, isolated duplicate of a real machine”
  Duplicate: VM should behave identically to the real machine

•  Programs cannot distinguish between execution on real or virtual hardware
•  Except for:

-  Fewer resources available (and potentially different between executions)
-  Some timing differences (when dealing with devices)

  Isolated: Several VMs execute without interfering with each other
  Efficient: VM should execute at speed close to that of real hardware

•  Requires that most instruction are executed directly by real hardware

Hypervisor aka virtual-machine monitor: Software implementing the VM

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4 COMP9242 S2/2012 W04

Types of Virtualization

VM

OS

Pro-
cess

Processor

Hypervisor

VM

OS

Pro-
cess

Platform VM or System VM

Operating System

Processor

Virtualiz. Layer

VM
Pro-
cess

VM
Pro-
cess

OS-level VM

Operating System

Processor

Process
Java
Program

Java VM

Process VM

Operating System

Pro-
cess

Processor

Pro-
cess

Type-2
“Hosted”

Processor

VM

OS

Pro-
cess

Hypervisor

VM

OS

Pro-
cess

Operating System

Type-1
“Native”

Plus anything else you
want to sound cool!

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Why Virtual Machines?

•  Historically used for easier sharing of expensive mainframes
–  Run several (even different) OSes on same machine

•  called guest operating system
–  Each on a subset of physical resources
–  Can run single-user single-tasked OS

in time-sharing mode
•  legacy support

•  Gone out of fashion in 80’s
–  Time-sharing OSes common-place
–  Hardware too cheap to worry...

COMP9242 S2/2012 W04

Hypervisor

RAM

VM1

Guest
OS

Apps

Virt RAM

VM2

Guest
OS

Apps

Virt RAM

Mem. region Mem. region

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Why Virtual Machines?

•  Renaissance in recent years for improved isolation
•  Server/desktop virtual machines

–  Improved QoS and security
–  Uniform view of hardware
–  Complete encapsulation

•  replication
•  migration
•  checkpointing
•  debugging

–  Different concurrent OSes
•  eg Linux + Windows

–  Total mediation
•  Would be mostly unnecessary

–  … if OSes were doing their job!

COMP9242 S2/2012 W04

Hypervisor

RAM

VM1

Guest
OS

Apps

Virt RAM

VM2

Guest
OS

Apps

Virt RAM

Mem. region Mem. region

Gernot prediction of 2004:
2014 OS textbooks will be
identical to 2004 version

except for
s/process/VM/g

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Why Virtual Machines?

•  Embedded systems: integration of heterogenous environments
–  RTOS for critical real-time functionality
–  Standard OS for GUIs, networking etc

•  Alternative to physical separation
–  low-overhead communication
–  cost reduction

COMP9242 S2/2012 W04

Hypervisor

RAM

VM1

High-
level
OS

Apps

Virt RAM

VM2

RTOS

Critical
SW

Virt RAM

Mem. region Mem. region

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Hypervisor

•  Program that runs on real hardware to implement the virtual machine
•  Controls resources

–  Partitions hardware
–  Schedules guests

•  “world switch”
–  Mediates access to shared resources

•  e.g. console
•  Implications

–  Hypervisor executes in privileged mode
–  Guest software executes in unprivileged mode
–  Privileged instructions in guest cause a trap into hypervisor
–  Hypervisor interprets/emulates them
–  Can have extra instructions for hypercalls

COMP9242 S2/2012 W04

OS

Hardware

Guest OS

Hardware

Hypervisor

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9 COMP9242 S2/2012 W04

Native vs. Hosted VMM

  Hosted VMM can run besides native
apps

•  Sandbox untrusted apps
•  Convenient for running

alternative OS on desktop

Native/Classic/
Bare-metal/Type-I

Hosted/Type-II

Guest OS

Hypervisor

Hardware

App
Guest OS

Hypervisor

Host OS

Hardware

App

  Less efficient
•  Twice number of mode switches
•  Twice number of context switches
•  Host not optimised for exception

forwarding

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10 COMP9242 S2/2012 W04

Virtualization Mechanics: Instruction Emulation

  Traditional “trap and emulate” approach:
•  guest attempts to access physical resource
•  hardware raises exception (trap), invoking hypervisor's exception handler
•  hypervisor emulates result, based on access to virtual resource

  Most instructions do not trap
•  makes efficient virtualization possible
•  requires that VM ISA is (almost) same as physical processor ISA

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

lda r1, vm_reg_ctxt
ld r2, (r1,ofs_r0)
sto r2, (r1,ofs_ASID)

Guest

Exception

Hypervisor

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11 COMP9242 S2/2012 W04

Trap-and-Emulate Requirements

Definitions:
  Privileged instruction: executes in privileged mode, traps in user mode

•  Note: trap is required, NO-OP is insufficient!
  Privileged state: determines resource allocation

•  Includes privilege mode, addressing context, exception vectors, …
  Sensitive instruction: control-sensitive or behaviour-sensitive

•  control sensitive: changes privileged state
•  behaviour sensitive: exposes privileged state

- includes instructions which are NO-OPs in user but not privileged mode
  Innocuous instruction: not sensitive

Note:
•  Some instructions are inherently sensitive

- e.g. TLB load
•  Others are sensitive in some context

- e.g. store to page table

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12 COMP9242 S2/2012 W04

Trap-and-Emulate Architectural Requirements

Trap-and-emulate virtualizable if all sensitive instructions are privileged
  Can then achieve accurate, efficient guest execution

•  by simply running guest binary on hypervisor
  VMM controls resources
  Virtualized execution is indistinguishable from native, except:

•  Resources more limited (running on smaller machine)
•  Timing is different (if there is an observable time source)

  Recursively virtualizable machine:
•  VMM can be built without any timing dependence

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

lda r1, vm_reg_ctxt
ld r2, (r1,ofs_r0)
sto r2, (r1,ofs_ASID)

Guest

Exception

Hypervisor

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13 COMP9242 S2/2012 W04

Impure Virtualization

  Used for two reasons:
•  Architecture not trap-and-emulate virtualizable
•  Reduce virtualization overheads

  Change the guest OS, replacing sensitive instructions
•  by trapping code (hypercalls)
•  by in-line emulation code

  Two standard approaches:
•  binary translation: modifies binary
•  para-virtualization: changes ISA

ld r0, curr_thrd
ld r1, (r0,ASID)
mv CPU_ASID, r1
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
trap
ld sp, (r1,kern_stk)

ld r0, curr_thrd
ld r1, (r0,ASID)
jmp fixup_15
ld sp, (r1,kern_stk)

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14 COMP9242 S2/2012 W04

Binary Translation

  Locate sensitive instructions in guest binary and replace on-the-fly by
emulation code or hypercall

•  pioneered by VMware
•  can also detect combinations of sensitive instructions and replace by single

emulation
•  doesn’t require source, uses unmodified native binary

- in this respect appears like pure virtualization!
•  very tricky to get right (especially on x86!)

•  “heroic effort” [Orran Krieger, then IBM later VMware ;-)]
•  needs to make some assumptions on sane behaviour of guest

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15 COMP9242 S2/2012 W04

Para-Virtualization

  New name, old technique
•  Mach Unix server [Golub et al, 90], L4Linux [Härtig et al, 97],

Disco [Bugnion et al, 97]
•  Name coined by Denali [Whitaker et al, 02], popularised by

Xen [Barham et al, 03]
  Idea: manually port the guest OS to modified ISA

•  Augment by explicit hypervisor calls (hypercalls)
- Use more high-level API to reduce the number of traps
- Remove un-virtualizable instructions
- Remove “messy” ISA features which complicate virtualization

•  Generally out-performs pure virtualization and binary-rewriting
  Drawbacks:

•  Significant engineering effort
•  Needs to be repeated for each guest-ISA-hypervisor combination
•  Para-virtualized guest needs to be kept in sync with native guest
•  Requires source

Guest

Hypervisor

Hardware

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16 COMP9242 S2/2012 W04

Virtualization Overheads

  VMM needs to maintain virtualized privileged machine state
•  processor status
•  addressing context
•  device state...

  VMM needs to emulate privileged instructions
•  translate between virtual and real privileged state
•  e.g. guest ↔ real page tables

  Virtualization traps are be expensive on modern hardware
•  can be 100s of cycles (1150 cycles round-trip on latest Intel x86 processors)

  Some OS operations involve frequent traps
•  STI/CLI for mutual exclusion
•  frequent page table updates during fork()...
•  MIPS KSEG address used for physical addressing in kernel

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17 COMP9242 S2/2012 W04

Virtualization Techniques

  Impure virtualization methods enable new optimisations
•  due to the ability to control the ISA

  E.g. maintain some virtual machine state inside VMM:
•  e.g. interrupt-enable bit (in virtual PSR)
•  requires changing guest's idea of where this bit lives
•  hypervisor knows about VMM-local virtual state and can act accordingly

- e.g. queue virtual interrupt until guest enables in virtual PSR

psid Trap
0

1

VPSR
0

0

PSR
mov r1,#VPSR
ldr r0,[r1]
orr r0,r0,#VPSR_ID
sto r0,[r1]

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18 COMP9242 S2/2012 W04

Virtualization Techniques

  E.g. lazy update of virtual machine state
•  virtual state is kept inside hypervisor
•  keep copy of virtual state inside VM
•  allow temporary inconsistency between local copy and real VM state
•  synchronise state on next forced hypervisor invocation

- actual trap
- explicit hypercall when physical state must be updated

•  Example:guest enables FPU
- no need to invoke hypervisor at this point
- hypervsior syncs state on virtual kernel exit

psid Trap
0

1

VPSR
0

0

PSR
mov r1,#VPSR
ldr r0,[r1]
orr r0,r0,#VPSR_ID
sto r0,[r1]

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19

Virtualization and Address Translation

COMP9242 S2/2012 W04

Virtual Memory Virtual Memory

Physical Memory

Page
Table

Page
Table

Guest Physical Memory

Page
Table

Virtual
Page
Table

Virtual
Page
Table

Virtual Memory

Guest Physical Memory

Page
Table

Virtual
Page
Table

Virtual Memory

Two levels of address
translation!

Must implement with single MMU translation!

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20

Virtualization Mechanics: Shadow Page Table

COMP9242 S2/2012 W04

Virt PT ptr
(Software)

data

ld r0, adr

Guest
virtual
address

Guest
physical
address

Physical
address

PT ptr
(Hardware)

User
(Virtual)
guest page
table

Hypervisor's
guest
memory map

Shadow (real) guest
page table, translations
cached in TLB

Guest OS

Hypervisor

Memory

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Virtualization Mechanics: Shadow Page Table

COMP9242 S2/2012 W04

Hypervisor must shadow (virtualize)
all PT updates by guest:
•  trap guest writes to guest PT
•  translate guest PA in guest (virtual)

PTE using guest memory map
•  insert translated PTE in shadow PT

Virt PT ptr

data

ld r0, adr

Guest
virtual
address

Guest
physical
address

Physical
address

PT ptr

User

Guest OS

Hypervisor

Memory

Shadow PT has TLB semantics
(i.e. weak consistency) ⇒
Update at synchronisation points:
•  page faults
•  TLB flushes

Used by VMware

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22

Virtualization Mechanics: Real Guest PT

•  On guest PT access must
translate (virtualize) PTEs
–  store: translate guest “PTE” to

real PTE
–  load: translate real PTE to

guest “PTE”
•  Each guest PT access traps!

–  including reads
–  high overhead

COMP9242 S2/2012 W04

data

ld r0, adr

Guest
virtual
address

Physical
address

Guest PT

User

Guest OS

Hypervisor

Memory

HV PT

Hypervisor
maintains guest PT

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Virtualization Mechanics: Optimised Guest PT

•  Guest translates PTEs itself when
reading from PT
–  supported by Linux PT-access

wrappers
•  Guest batches PT updates using

hypercalls
–  reduced overhead

COMP9242 S2/2012 W04

data

ld r0, adr

Guest
virtual
address

Physical
address

Guest PT

User

Guest OS

Hypervisor

Memory

HV PT

Para-virtualized
guest “knows” it is

virtualized

Used by
original Xen

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24

Virtualization Mechanics: 3 Device Models

COMP9242 S2/2012 W04

Hypervisor

Device
Driver

VM1

OS

Virtual
Driver

Apps Apps Apps

Device

Hypervisor

VM1

OS

Device
Driver

Apps Apps Apps

Device

Emu-
lation

Hypervisor

VM1

OS

Device
Driver

Apps Apps Apps

Device

Emulated Pass-
through Split

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

Virtualization Mechanics: Emulated Device

COMP9242 S2/2012 W04

Hypervisor

VM1

OS

Device
Driver

Apps Apps Apps

Device

Emu-
lation

Device
register

accesses

•  Each device access must be
trapped and emulated
–  unmodified native driver
–  high overhead!

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

Virtualization Mechanics: Split Driver (Xen speak)

COMP9242 S2/2012 W04

Hypervisor

Device
Driver

VM1

OS

Virtual
Driver

Apps Apps Apps

Device

Virtual
device

Simple
interface

•  Simplified, high-level
device interface
–  small number of

hypercalls
–  new (but very

simple) driver
–  low overhead
–  must port drivers to

hypervisor

“Para-
virtualized

driver”

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Virtualization Mechanics: Driver OS (Xen Dom0)

COMP9242 S2/2012 W04

Hypervisor

Device
Driver
VM

OS

Device
Drivers

VM1

OS

Virtual
Driver

Apps Apps Apps

Virtual NW

•  Leverage Driver-OS
native drivers
–  no driver porting
–  must trust complete

Driver OS guest!

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Virtualization Mechanics: Pass-Through Driver

COMP9242 S2/2012 W04

Hypervisor

VM1

OS

Device
Driver

Apps Apps Apps

Device

Direct device
access by

guest

•  Unmodified native
driver

•  Must trust driver
(and guest)
–  unless have

hardware support
(IO MMU)

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Non-Virtualizable Architectures

  x86: lots of non-virtualizable features
•  e.g. sensitive PUSH of PSW is not privileged
•  segment and interrupt descriptor tables in virtual memory
•  segment description expose privileged level

  Itanium: mostly virtualizable, but
•  interrupt vector table in virtual memory
•  THASH instruction exposes hardware page tables address

  MIPS: mostly virtualizable, but
•  kernel registers k0, k1 (needed to save/restore state) user-accessible
•  performance issue with virtualizing KSEG addresses

  ARM: mostly virtualizable, but
•  some instructions undefined in user mode (banked registers, CPSR)
•  PC is a GPR, exception return in MOVS to PC, doesn’t trap

  Most others have problems too
  Modern trend are virtualization extensions to ISA

•  x86, Itanium since ~2006 (VT-x, VT-i)
  Case study: ARM

•  announced ‘10, samples ‘11, products ‘12

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

ARM Virtualization Extensions (1)

Hyp mode

•  New privilege level
–  Strictly higher than kernel
–  Virtualizes or traps all

sensitive instructions
–  Only available in ARM

TrustZone “non-secure” mode
•  Note: different from x86

–  VT-x “root” mode is orthogonal
to x86 protection rings

“Secure”
world

“Non-Secure”
world

Monitor mode

Kernel modes

Hyp mode

User mode

Kernel modes

User mode

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

ARM Virtualization Extensions (2)

Configurable Traps

Kernel mode

User mode

Native syscall

Kernel mode

Hyp mode

User mode

Virtual syscall

Kernel mode

Hyp mode

User mode

Virtual syscall
Trap to guest

Can configure traps to
go directly to guest OS

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

ARM Virtualization Extensions (3)

Emulation
1)  Load faulting instruction

•  Compulsory L1-D miss!
2)  Decode instruction

•  Complex logic
3)  Emulate instruction

•  Usually straightforward
mv CPU_ASID,r1 IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

 ld r1,(r0,ASID)
 mv CPU_ASID,r1
 ld sp,(r1,kern_stk)

L2
Cache

...

...

...

L1 D-
Cache

... R2

...
mv CPU_ASID,r1
...

mv CPU_ASID,r1

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

ARM Virtualization Extensions (3)

Emulation Support
–  HW decodes instruction

•  No L1 miss
•  No software decode

–  SW emulates instruction
•  Usually straightforward

mv CPU_ASID,r1 IR

ld r1,(r0,ASID)
mv CPU_ASID,r1
ld sp,(r1,kern_stk)

L1 I-
Cache

 ld r1,(r0,ASID)
 mv CPU_ASID,r1
 ld sp,(r1,kern_stk)

L2
Cache

...

...

...

L1 D-
Cache

r1 R3

mv R2

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

ARM Virtualization Extensions (4)

2-stage translation

–  Hardware PT walker traverses
both PTs

–  Loads combined (guest-virtual to
physical) mapping into TLB

1st PT ptr
(Hardware)

data

ld r0, adr

Guest
virtual
address

Guest
physical
address

Physical
address

2nd PT ptr
(Hardware)

User
(Virtual)
guest page
table

Hypervisor's
guest
memory map Guest OS

Hypervisor

Memory

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35

ARM Virtualization Extensions (4)

2-stage translation cost
–  On page fault walk twice

number of page tables!
–  Can have a page miss on each
–  O(n2) misses in worst case for

n-level PT
–  Worst-case cost is massively

worse than for single-level
translation! 1st PT ptr

(Hardware)

data

ld r0, adr

Guest
virtual
address

Guest
physical
address

Physical
address

2nd PT ptr
(Hardware)

User

Guest OS

Hypervisor

Memory

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36

ARM Virtualization Extensions (5)

Virtual Interrupts

•  ARM has 2-part IRQ controller
–  Global “distributor”
–  Per-CPU “interface”

•  New H/W “virt. CPU interface”
–  Mapped to guest
–  Used by HV to forward IRQ
–  Used by guest to acknowledge

•  Halves hypervisor entries for
interrupt virtualization

Distributor

CPU Interface

Hypervisor

Guest

Virt. CPU Interf

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 37

Hypervisor Size

Hypervisor ISA Type Kernel User
OKL4 ARMv7 para-virtualization 9.8 kLOC 0
Prototype ARMv7 pure virtualization 6 kLOC 0
Nova x86 pure virtualization 9 kLOC 27 kLOC

•  Size (& complexity) reduced about 40% wrt to para-virtualization
•  Much smaller than x86 pure-virtualization hypervisor

–  Mostly due to greatly reduced need for instruction emulation

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 38

Overheads (Estimated)

Operation
Pure virtualization Para-virtualiz.

Instruct Cycles (est) Cycles (approx)
Guest system call 0 0 300
Hypervisor entry + exit 120 650 150
IRQ entry + exit 270 900 300–400?
Page fault 356 1500 700
Device emul. 249 1040 N/A
Device emul. (accel.) 176 740 N/A
World switch 2824 7555 200

•  No overhead on regular (virtual) syscall – unlike para-virtualization
•  Invoking hypervisor 500–1200 cycles (0.6–1.5 µs) more than para
•  World switch in ~10 µs compared to 0.25 µs for para
⇒ Trade-offs differ

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 39 COMP9242 S2/2012 W04

•  Both contain all code executing at highest privilege level
–  Although hypervisor may contain user-mode code as well

•  privileged part usually called “hypervisor”
•  user-mode part often called “VMM”

•  Both need to abstract hardware resources
–  Hypervisor: abstraction closely models hardware
–  Microkernel: abstraction designed to support wide range of systems

•  What must be abstracted?
–  Memory
–  CPU
–  I/O
–  Communication

Hypervisors vs Microkernels

Difference to
traditional

terminology!

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 40

Resource Hypervisor Microkernel

Memory Virtual MMU (vMMU) Address space

CPU Virtual CPU (vCPU) Thread or
scheduler activation

I/O •  Simplified virtual
 device
•  Driver in hypervisor
•  Virtual IRQ (vIRQ)

•  IPC interface to
 user-mode driver
•  Interrupt IPC

Communication Virtual NIC, with
driver and network
stack

High-performance
message-passing IPC

What’s the difference? Just page
tables in
disguise

Just
kernel-

scheduled
activities

Modelled on HW,
Re-uses SW

Minimal
overhead,

Custom API

Real
Difference?

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 41

•  Communication is critical for I/O
–  Microkernel IPC is highly optimised
–  Hypervisor inter-VM communication is frequently a bottleneck

Closer Look at I/O and Communication

Apps Apps Apps

Microkernel

Server Device
Driver

IPC
Hypervisor

Device
Driver
VM

OS

Device
Driver

VM1

OS

Virtual
Driver

Apps Apps Apps

Virtual NW

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 42

•  Fundamentally, both provide similar abstractions
•  Optimised for different use cases

–  Hypervisor designed for virtual machines
•  API is hardware-like to ease guest ports

–  Microkernel designed for multi-server systems
•  seems to provide more OS-like abstractions

Hypervisors vs Microkernels: Summary

COMP9242 S2/2012 W04

© 2012 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 43

Hypervisors vs Microkernels: Drawbacks

Hypervisors:

•  Communication is Achilles heel
–  more important than expected

•  critical for I/O
–  plenty improvement attempts

in Xen

•  Most hypervisors have big
TCBs
–  infeasible to achieve high

assurance of security/safety
–  in contrast, microkernel

implementations can be
proved correct

Microkernels:

•  Not ideal for virtualization
–  API not very effective

•  L4 virtualization performance
close to hypervisor

•  effort much higher
–  Virtualization needed for

legacy
•  L4 model uses kernel-

scheduled threads for more
than exploiting parallelism
–  Kernel imposes policy
–  Alternatives exist, eg. K42

uses scheduler activations

COMP9242 S2/2012 W04

More on this later!

