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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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The Memory Wall 
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Multicore offsets stagnant per-core performance with proliferation of cores 
  Basic trend is unchanged 
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Caching 

  Cache is fast (1–5 cycle access time) memory sitting between fast registers 
and slow RAM (10–100 cycles access time) 

  Holds recently-used data or instructions to save memory accesses 
  Matches slow RAM access time to CPU speed if high hit rate (> 90%) 
  Is hardware maintained and (mostly) transparent to software 
  Sizes range from few KiB to several MiB. 
  Usually a hierarchy of caches (2–5 levels), on- and off-chip 

Good overview of implications of caches for operating systems: [Schimmel 94] 

Registers Cache Main 
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Disk 
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Cache Organization 

  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B) 
  Cache line is transfer unit between cache and RAM (or slower cache) 

•  typically 16–32 bytes, sometimes 128 bytes and more 
  Line is also unit of storage allocation in cache 
  Each line has associated control info: 

•  valid bit 
•  modified bit 
•  tag 

  Cache improves memory access by: 
•  absorbing most reads (increases bandwidth, reduces latency) 
•  making writes asynchronous (hides latency) 
•  clustering reads and writes (hides latency) 
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Cache Access 

  Virtually indexed:  looked up by virtual address 
•  operates concurrently with address translation 

  Physically indexed: looked up by physical address 
•  requires result of address translation 
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Cache Indexing 

  The tag is used to distinguish lines of set… 
  Consists of high-order bits not used for indexing 
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Cache Indexing 

  Address is hashed to produce index of line set. 
  Associative lookup of line within set 
  n lines per set: n-way set-associative cache. 

•  typically n = 1 . . . 5, some embedded processors use 32–64 
•  n = 1 is called direct mapped. 
•  n = ∞ is called fully associative (unusual for I/D caches) 

  Hashing must be simple (complex hardware is slow) 
•  use least-significant bits of address 

CPU 
Registers 

Main Memory Line 1 

Line 2 

Line 3 

Line 4 

Set 0 

Set 1 

COMP9242 S2/2012 W02 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9 

Cache Indexing: Direct Mapped 

tag(25) index(3) byte(4) 
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Cache Indexing: 2-Way Associative 

tag(26) index(2) byte(4) 
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Caching Index: Fully Associative 
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©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12 COMP9242 S2/2012 W02 

Cache Mapping 

  Different memory locations map to same cache line: 

  Locations mapping to cache set # i are said to be of colour i 
  n-way associative cache can hold n lines of the same colour 

0 1 … n-1 … 

Cache 

RAM 

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1 

0 1 … n-1 

  Types of cache misses: 
•  Compulsory miss: data cannot be in cache (of infinite size) 

- first access (after flush) 
•  Capacity miss: all cache entries are in use by other data 
•  Conflict miss: set of the right colour is full 

- miss that would not happen on fully-associative cache 
•  Coherence miss: miss forced by hardware coherence protocol 

- multiprocessors 
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Cache Replacement Policy 

  Indexing (using address) points to specific line set. 
  On miss: all lines of set valid ⇒ must replace existing line. 
  Replacement strategy must be simple (hardware) 

•  Dirty bit determines whether line needs to be written back 
•  Typical policies: 

- pseudo-LRU 
- FIFO 
- random 
- toss clean 
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Cache Write Policy 

  Treatment of store operations: 
•  write back: Stores update cache only 

memory is updated once dirty line is replaced (flushed) 
 clusters writes 
 memory is inconsistent with cache 
 unsuitable for (most) multiprocessor designs 

•  write through: Stores update cache and memory immediately 
 memory is always consistent with cache 
 increased memory/bus traffic 

  On store to a line not presently in cache, use: 
•  write allocate: allocate a cache line to the data and store 

- typically requires reading line into cache first! 
•  no allocate: store to memory and bypass cache 

  Typical combinations: 
•  write-back & write-allocate 
•  write-through & no-allocate 
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Cache Addressing Schemes 

  For simplicity, discussion so far assumed cache sees only one kind of 
address: virtual or physical 

  However, indexing and tagging can use different addresses 
  Four possible addressing schemes: 

•  virtually-indexed, virtually-tagged (VV) cache 
•  virtually-indexed, physically-tagged (VP) cache 
•  physically-indexed, virtually-tagged (PV) cache 
•  physically-indexed, physically-tagged (PP) cache 

  PV caches can only make sense with complex and unusual MMU designs 
•  not considered here any further 
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Virtually-Indexed, Virtually-Tagged Cache  

  Also called 
•  virtually-addressed cache 

  Also (incorrectly) called 
•  virtual cache 
•  virtual address cache 

  Uses virtual addresses only 
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Physical Memory 

•  can operate 
concurrently with 
MMU 

•  still needs MMU 
lookup to determine 
access rights 

  Used for on-core L1 
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VD 
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tag(25) 

Virtually-Indexed, Physically-Tagged Cache 

  Virtual address for accessing line 
  Physical address for tagging 
  Needs address translation 

completed for retrieving data 
  Indexing concurrent with MMU,  

 use MMU output for tag check 
  Typically used for  

on-core L1 
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Physically-Indexed, Physically-Tagged Cache 

  Only uses physical addresses 
  Needs address translation completed 

before begin of access 
  Typically used off-core 
  Note: page offset is invariant under 

virtual-address translation 
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•  if index bits are subset 
of offset, PP cache can 
be accessed without 
result of translation! 

•  VP and PP cache 
become the same in this 
case 

•  fast and suitable for on-
core use (esp. L1) 
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Cache Issues 

  Caches are managed by hardware transparent to software 
•  OS doesn’t have to worry about them, right?   

  Software-visible cache effects: 
•  performance 

Wrong! 
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•  homonyms:  
- same name, different data 
- can affect correctness! 

•  synonyms: 
- different name, same data 
- can affect correctness! 
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Virtually-Indexed Cache Issues 

Homonyms — same name for different data: 
  Problem: VA used for indexing is 

 context dependent 
•  same VA refers to different PAs 
•  tag does not uniquely identify data! 
•  wrong data is accessed! 
•  an issue for most OS! 

  Homonym prevention: 
•  flush cache on context  

switch 
•  force non-overlapping 

address-space layout 
•  tag VA with address-space ID (ASID) 

- makes VAs global 
•  use physical tags 
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way 32 KiB 
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seL4 does 
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Virtually-Indexed Cache Issues 

Synonyms (aliases) — multiple names  
for same data: 
  Several VAs map to the same PA 

•  frames shared between processes 
•  multiple mappings of frame within AS 

  May access stale data: 
•  same data cached in several lines 
•  on write, one synonym 

updated 
•  read on other synonym  

returns old value! 
•  physical tags don’t help! 
•  ASIDs don’t help 

  Are synonyms a problem? 
•  depends on page and  

cache size 
•  no problem for R/O data or I-caches 
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Example: MIPS R4x00 Synonyms  

  ASID-tagged, on-chip L1 VP cache 
•  16 KiB cache with 32 B lines, 2-way set associative 
•  4 KiB (base) page size 
•  size/associativity = 16 KiB/2 = 8 KiB > page size 

•  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5) 
•  overlap of tag and index bits, but come from different addresses! 

  Remember, location of data in cache determined by index 
•  tag only confirms whether it’s a hit! 
•  synonym problem iff VA12 ≠ VA′12 
•  similar issues on other processors, eg. some ARM11 
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Address Mismatch Problem: Aliasing 

  Page aliased in different address spaces 
•  AS1: VA12 = 1, AS2: VA12 = 0 

  One alias gets modified 
•  in a write-back cache, other alias sees stale data 
•  lost-update problem 

Physical Memory 

Cache 

write 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 

2nd half of 
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1st half of 
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Address Mismatch Problem: Re-Mapping 

  Unmap page with a dirty cache line 
  Re-use (remap) frame for a different page (in same or different AS) 
  Write to new page 

•  without mismatch, new write will overwrite old (hits same cache line) 
•  with mismatch, order can be reversed: “cache bomb” 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 

Physical Memory 

Cache 

write 
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DMA Consistency Problem 

  DMA (normally) uses physical addresses and bypasses cache 
•  CPU access inconsistent with device access 
•  need to flush cache before device write 
•  need to invalidate cache before device read 

Physical 
Memory 

Cache 

write 

DMA 
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You’ll have to 
deal with this! 
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Avoiding Synonym Problems 

  Hardware synonym detection 
  Flush cache on context switch 

•  doesn’t help for aliasing within address space 
  Detect synonyms and ensure 

•  all read-only, OR 
•  only one synonym mapped 

  Restrict VM mapping so synonyms map to same cache set 
•  e.g., R4x00: ensure that VA12 = PA12 
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Summary: VV Caches 

  Fastest (don’t rely on TLB for retrieving data) 
  still need TLB lookup for protection 
  or other mechanism to provide protection 

  Suffer from synonyms and homonyms 
  requires flushing on context switch 

 makes context switches expensive 
 may even be required on kernel→user switch 

•  ... or guarantee of no synonyms and homonyms 
  Require TLB lookup for write-back! 
  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale 
  Used for I-caches on a number of architectures 

•  Alpha, Pentium 4, ... 
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Summary: Tagged VV Caches 

  Add address-space identifier (ASID) as part of tag 
  On access compare with CPU’s ASID register 
  Removes homonyms 

  potentially better context switching performance 
  ASID recycling still requires cache flush 

  Doesn’t solve synonym problem (but that’s less serious) 
  Doesn’t solve write-back problem 
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Summary: VP Caches 

  Medium speed: 
  lookup in parallel with address translation 
  tag comparison after address translation 

  No homonym problem 
  Potential synonym problem 
  Bigger tags (cannot leave off set-number bits) 

  increases area, latency, power consumption 
  Used on most modern architectures for L1 cache 
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Summary: PP Caches 

  Slowest 
  requires result of address translation before lookup starts 

  No synonym problem 
  No homonym problem 
  Easy to manage 
  If small or highly associative (all index bits come from page offset) indexing 

can be in parallel with address translation. 
•  Potentially useful for L1 cache (used on Itanium, Intel Core i7) 

  Cache can use bus snooping to receive/supply DMA data 
  Usable as post-MMU cache with any architecture 

For an in-depth coverage of caches see [Wiggins 03] 
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Write Buffer 

  Store operations can take a long time to complete 
•  e.g. if a cache line must be read or allocated 

  Can avoid stalling the CPU by buffering writes 
  Write buffer is a FIFO queue of incomplete stores 

•  also called store buffer or write-behind buffer 
  Can also read intermediate values out of buffer 

•  to service load of a value that is still in write buffer 
•  avoids unnecessary stalls of load operations 

  Implies that memory contents are temporarily stale 
•  on a multiprocessor, CPUs see different order of writes 
•  “weak store order”, to be revisited in SMP context 

CPU 

Cache 

… 
Store A 
… 
Store B 
… 
Store A 
… 
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Cache Hierarchy 

  Hierarchy of caches to balance memory accesses: 
•  small, fast, virtually indexed L1 
•  large, slow, physically indexed L2–L5 

  Each level reduces and clusters traffic. 
  L1 typically split into instruction and data caches. 

•  requirement of pipelining 
  Low levels tend to be unified. 
  Chip multiprocessors (multicores) often 

 share on-chip L2, L3 

CPU 

I-Cache D-Cache 

L2 Cache 

L3 Cache 

Memory 

Write 
Buffer 
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Translation Lookaside Buffer (TLB) 

  TLB is a (VV) cache for  
 page-table entries 

  TLB can be: 
•  hardware loaded,  

transparent to OS, or 
•  software loaded,  

maintained by OS 
  TLB can be: 

•  split, instruction and data TLBs, or 
•  unified 

  Modern high-performance  
 architectures use a hierarchy of TLBs: 

•  top-level TLB is hardware-loaded from lower levels, typically split 
•  transparent to OS 

•  second level is hardware- or software-loaded 

ASID VPN 

VPN ASID PFN flags 

flags PFN 
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TLB Issues: Associativity 

  First TLB (VAX-11/780, [Clark, Emer 85]) was 2-way associative 
  Most modern architectures have fully associative TLBs 
  Exceptions: 

•  Intel x86 (4-way) 
•  IBM RS/6000 (2-way) 

  Reasons: 
•  modern architectures tend to support multiple page sizes (superpages) 

- better utilises TLB entries 
•  TLB lookup done without knowing the page’s base address 
•  set-associativity loses speed advantage 
•  superpage TLBs are fully-associative 

  x86 uses separate L1 TLBs for each page size 
•  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (total 4 L1 TLBs) 
•  unified L2 TLB 
•  all 4-way associative 
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TLB Size (I-TLB + D-TLB) 

Not much growth in 20 years! 
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TLB Size (I-TLB + D-TLB) 

TLB coverage 
  Memory sizes are increasing 
  Number of TLB entries are more-or-less constant 
  Page sizes are steady (4 KiB, although larger on SPARC, Alpha) 

•  total amount of RAM mapped by TLB is not changing much 
•  fraction of RAM mapped by TLB is shrinking dramatically 

  Modern architectures have very low TLB coverage 
  Also, many 64-bit RISC architectures have software-loaded TLBs 

•  General increase in TLB miss handling cost 
  The TLB can become a performance bottleneck 


