
COMP9242
Advanced Operating Systems

S2/2012 Week 2:
Caches:
What every OS Designer Must Know

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

The Memory Wall

COMP9242 S2/2012 W02

Multicore offsets stagnant per-core performance with proliferation of cores
  Basic trend is unchanged

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Caching

  Cache is fast (1–5 cycle access time) memory sitting between fast registers
and slow RAM (10–100 cycles access time)

  Holds recently-used data or instructions to save memory accesses
  Matches slow RAM access time to CPU speed if high hit rate (> 90%)
  Is hardware maintained and (mostly) transparent to software
  Sizes range from few KiB to several MiB.
  Usually a hierarchy of caches (2–5 levels), on- and off-chip

Good overview of implications of caches for operating systems: [Schimmel 94]

Registers Cache Main
Memory

Disk

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Cache Organization

  Data transfer unit between registers and L1 cache: ≤ 1 word (1–16B)
  Cache line is transfer unit between cache and RAM (or slower cache)

•  typically 16–32 bytes, sometimes 128 bytes and more
  Line is also unit of storage allocation in cache
  Each line has associated control info:

•  valid bit
•  modified bit
•  tag

  Cache improves memory access by:
•  absorbing most reads (increases bandwidth, reduces latency)
•  making writes asynchronous (hides latency)
•  clustering reads and writes (hides latency)

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Cache Access

  Virtually indexed: looked up by virtual address
•  operates concurrently with address translation

  Physically indexed: looked up by physical address
•  requires result of address translation

CPU
Virtual
Address MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data Data Data

Physical
Address

Physical
Address

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Cache Indexing

  The tag is used to distinguish lines of set…
  Consists of high-order bits not used for indexing

t1

t s b

Address

t0

t2

Byte #

data tag

tag

Set #

1 Set

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Cache Indexing

  Address is hashed to produce index of line set.
  Associative lookup of line within set
  n lines per set: n-way set-associative cache.

•  typically n = 1 . . . 5, some embedded processors use 32–64
•  n = 1 is called direct mapped.
•  n = ∞ is called fully associative (unusual for I/D caches)

  Hashing must be simple (complex hardware is slow)
•  use least-significant bits of address

CPU
Registers

Main Memory Line 1

Line 2

Line 3

Line 4

Set 0

Set 1

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Cache Indexing: Direct Mapped

tag(25) index(3) byte(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

Index bits used
to select
unique line to
match

Tag used to check
whether lines contains
requested address

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10

Cache Indexing: 2-Way Associative

tag(26) index(2) byte(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

Index bits
used to
select set to
match within

Tag compared with
both lines within set
for match

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11 COMP9242 S2/2012 W02

Caching Index: Fully Associative

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

tag(28) byte(4)

Tag compared with all
lines for a match

Note: Lookup hardware for many tags
is large and slow ⇒ does not scale

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12 COMP9242 S2/2012 W02

Cache Mapping

  Different memory locations map to same cache line:

  Locations mapping to cache set # i are said to be of colour i
  n-way associative cache can hold n lines of the same colour

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

  Types of cache misses:
•  Compulsory miss: data cannot be in cache (of infinite size)

- first access (after flush)
•  Capacity miss: all cache entries are in use by other data
•  Conflict miss: set of the right colour is full

- miss that would not happen on fully-associative cache
•  Coherence miss: miss forced by hardware coherence protocol

- multiprocessors

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13 COMP9242 S2/2012 W02

Cache Replacement Policy

  Indexing (using address) points to specific line set.
  On miss: all lines of set valid ⇒ must replace existing line.
  Replacement strategy must be simple (hardware)

•  Dirty bit determines whether line needs to be written back
•  Typical policies:

- pseudo-LRU
- FIFO
- random
- toss clean

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14 COMP9242 S2/2012 W02

Cache Write Policy

  Treatment of store operations:
•  write back: Stores update cache only

memory is updated once dirty line is replaced (flushed)
 clusters writes
 memory is inconsistent with cache
 unsuitable for (most) multiprocessor designs

•  write through: Stores update cache and memory immediately
 memory is always consistent with cache
 increased memory/bus traffic

  On store to a line not presently in cache, use:
•  write allocate: allocate a cache line to the data and store

- typically requires reading line into cache first!
•  no allocate: store to memory and bypass cache

  Typical combinations:
•  write-back & write-allocate
•  write-through & no-allocate

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15 COMP9242 S2/2012 W02

Cache Addressing Schemes

  For simplicity, discussion so far assumed cache sees only one kind of
address: virtual or physical

  However, indexing and tagging can use different addresses
  Four possible addressing schemes:

•  virtually-indexed, virtually-tagged (VV) cache
•  virtually-indexed, physically-tagged (VP) cache
•  physically-indexed, virtually-tagged (PV) cache
•  physically-indexed, physically-tagged (PP) cache

  PV caches can only make sense with complex and unusual MMU designs
•  not considered here any further

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16 COMP9242 S2/2012 W02

Virtually-Indexed, Virtually-Tagged Cache

  Also called
•  virtually-addressed cache

  Also (incorrectly) called
•  virtual cache
•  virtual address cache

  Uses virtual addresses only

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

MMU

Physical Memory

•  can operate
concurrently with
MMU

•  still needs MMU
lookup to determine
access rights

  Used for on-core L1

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17 COMP9242 S2/2012 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

index(2) byte(4)

CPU

MMU

Physical Memory

tag(25)

Virtually-Indexed, Physically-Tagged Cache

  Virtual address for accessing line
  Physical address for tagging
  Needs address translation

completed for retrieving data
  Indexing concurrent with MMU,

 use MMU output for tag check
  Typically used for

on-core L1

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18 COMP9242 S2/2012 W02

Physically-Indexed, Physically-Tagged Cache

  Only uses physical addresses
  Needs address translation completed

before begin of access
  Typically used off-core
  Note: page offset is invariant under

virtual-address translation

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

Physical Memory

MMU

•  if index bits are subset
of offset, PP cache can
be accessed without
result of translation!

•  VP and PP cache
become the same in this
case

•  fast and suitable for on-
core use (esp. L1)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19 COMP9242 S2/2012 W02

Cache Issues

  Caches are managed by hardware transparent to software
•  OS doesn’t have to worry about them, right?

  Software-visible cache effects:
•  performance

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

•  homonyms:
- same name, different data
- can affect correctness!

•  synonyms:
- different name, same data
- can affect correctness!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20 COMP9242 S2/2012 W02

Virtually-Indexed Cache Issues

Homonyms — same name for different data:
  Problem: VA used for indexing is

 context dependent
•  same VA refers to different PAs
•  tag does not uniquely identify data!
•  wrong data is accessed!
•  an issue for most OS!

  Homonym prevention:
•  flush cache on context

switch
•  force non-overlapping

address-space layout
•  tag VA with address-space ID (ASID)

- makes VAs global
•  use physical tags

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

CPU

MMU

Physical Memory

tag(26) index(2) byte(4)

Slug has 32-
way 32 KiB
D-cache!

seL4 does
this!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21 COMP9242 S2/2012 W02

Virtually-Indexed Cache Issues

Synonyms (aliases) — multiple names
for same data:
  Several VAs map to the same PA

•  frames shared between processes
•  multiple mappings of frame within AS

  May access stale data:
•  same data cached in several lines
•  on write, one synonym

updated
•  read on other synonym

returns old value!
•  physical tags don’t help!
•  ASIDs don’t help

  Are synonyms a problem?
•  depends on page and

cache size
•  no problem for R/O data or I-caches

VD
VD Tag Tag

Word 3
Word 3

Word 2
Word 2

Word 1
Word 1

Word 0
Word 0

CPU

MMU

Physical Memory

VD

VD

Tag

Tag
Tag

Word 0

Word 0

Word 1

Word 1

Word 2

Word 2

Word 3

Word 3

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22 COMP9242 S2/2012 W02

Example: MIPS R4x00 Synonyms

  ASID-tagged, on-chip L1 VP cache
•  16 KiB cache with 32 B lines, 2-way set associative
•  4 KiB (base) page size
•  size/associativity = 16 KiB/2 = 8 KiB > page size

•  16 KiB / (32 B/line) = 512 lines = 256 sets ⇒ 8 index bits (12..5)
•  overlap of tag and index bits, but come from different addresses!

  Remember, location of data in cache determined by index
•  tag only confirms whether it’s a hit!
•  synonym problem iff VA12 ≠ VA′12
•  similar issues on other processors, eg. some ARM11

39

35

13 5 0
VA

Cache
index (8 bits)

tag (24 bits)
0 11

s b

PFN offset PA

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23 COMP9242 S2/2012 W02

Address Mismatch Problem: Aliasing

  Page aliased in different address spaces
•  AS1: VA12 = 1, AS2: VA12 = 0

  One alias gets modified
•  in a write-back cache, other alias sees stale data
•  lost-update problem

Physical Memory

Cache

write

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

2nd half of
cache

1st half of
cache

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24 COMP9242 S2/2012 W02

Address Mismatch Problem: Re-Mapping

  Unmap page with a dirty cache line
  Re-use (remap) frame for a different page (in same or different AS)
  Write to new page

•  without mismatch, new write will overwrite old (hits same cache line)
•  with mismatch, order can be reversed: “cache bomb”

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Physical Memory

Cache

write

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

DMA Consistency Problem

  DMA (normally) uses physical addresses and bypasses cache
•  CPU access inconsistent with device access
•  need to flush cache before device write
•  need to invalidate cache before device read

Physical
Memory

Cache

write

DMA

COMP9242 S2/2012 W02

You’ll have to
deal with this!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

Avoiding Synonym Problems

  Hardware synonym detection
  Flush cache on context switch

•  doesn’t help for aliasing within address space
  Detect synonyms and ensure

•  all read-only, OR
•  only one synonym mapped

  Restrict VM mapping so synonyms map to same cache set
•  e.g., R4x00: ensure that VA12 = PA12

COMP9242 S2/2012 W02

Note!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Summary: VV Caches

  Fastest (don’t rely on TLB for retrieving data)
  still need TLB lookup for protection
  or other mechanism to provide protection

  Suffer from synonyms and homonyms
  requires flushing on context switch

 makes context switches expensive
 may even be required on kernel→user switch

•  ... or guarantee of no synonyms and homonyms
  Require TLB lookup for write-back!
  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
  Used for I-caches on a number of architectures

•  Alpha, Pentium 4, ...

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Summary: Tagged VV Caches

  Add address-space identifier (ASID) as part of tag
  On access compare with CPU’s ASID register
  Removes homonyms

  potentially better context switching performance
  ASID recycling still requires cache flush

  Doesn’t solve synonym problem (but that’s less serious)
  Doesn’t solve write-back problem

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Summary: VP Caches

  Medium speed:
  lookup in parallel with address translation
  tag comparison after address translation

  No homonym problem
  Potential synonym problem
  Bigger tags (cannot leave off set-number bits)

  increases area, latency, power consumption
  Used on most modern architectures for L1 cache

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Summary: PP Caches

  Slowest
  requires result of address translation before lookup starts

  No synonym problem
  No homonym problem
  Easy to manage
  If small or highly associative (all index bits come from page offset) indexing

can be in parallel with address translation.
•  Potentially useful for L1 cache (used on Itanium, Intel Core i7)

  Cache can use bus snooping to receive/supply DMA data
  Usable as post-MMU cache with any architecture

For an in-depth coverage of caches see [Wiggins 03]

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

Write Buffer

  Store operations can take a long time to complete
•  e.g. if a cache line must be read or allocated

  Can avoid stalling the CPU by buffering writes
  Write buffer is a FIFO queue of incomplete stores

•  also called store buffer or write-behind buffer
  Can also read intermediate values out of buffer

•  to service load of a value that is still in write buffer
•  avoids unnecessary stalls of load operations

  Implies that memory contents are temporarily stale
•  on a multiprocessor, CPUs see different order of writes
•  “weak store order”, to be revisited in SMP context

CPU

Cache

…
Store A
…
Store B
…
Store A
…

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

Cache Hierarchy

  Hierarchy of caches to balance memory accesses:
•  small, fast, virtually indexed L1
•  large, slow, physically indexed L2–L5

  Each level reduces and clusters traffic.
  L1 typically split into instruction and data caches.

•  requirement of pipelining
  Low levels tend to be unified.
  Chip multiprocessors (multicores) often

 share on-chip L2, L3

CPU

I-Cache D-Cache

L2 Cache

L3 Cache

Memory

Write
Buffer

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

Translation Lookaside Buffer (TLB)

  TLB is a (VV) cache for
 page-table entries

  TLB can be:
•  hardware loaded,

transparent to OS, or
•  software loaded,

maintained by OS
  TLB can be:

•  split, instruction and data TLBs, or
•  unified

  Modern high-performance
 architectures use a hierarchy of TLBs:

•  top-level TLB is hardware-loaded from lower levels, typically split
•  transparent to OS

•  second level is hardware- or software-loaded

ASID VPN

VPN ASID PFN flags

flags PFN

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

TLB Issues: Associativity

  First TLB (VAX-11/780, [Clark, Emer 85]) was 2-way associative
  Most modern architectures have fully associative TLBs
  Exceptions:

•  Intel x86 (4-way)
•  IBM RS/6000 (2-way)

  Reasons:
•  modern architectures tend to support multiple page sizes (superpages)

- better utilises TLB entries
•  TLB lookup done without knowing the page’s base address
•  set-associativity loses speed advantage
•  superpage TLBs are fully-associative

  x86 uses separate L1 TLBs for each page size
•  1 each I-TLB and D-TLB for 4 KiB and 2/4 MiB (total 4 L1 TLBs)
•  unified L2 TLB
•  all 4-way associative

COMP9242 S2/2012 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35 COMP9242 S2/2012 W02

TLB Size (I-TLB + D-TLB)

Not much growth in 20 years!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36 COMP9242 S2/2012 W02

TLB Size (I-TLB + D-TLB)

TLB coverage
  Memory sizes are increasing
  Number of TLB entries are more-or-less constant
  Page sizes are steady (4 KiB, although larger on SPARC, Alpha)

•  total amount of RAM mapped by TLB is not changing much
•  fraction of RAM mapped by TLB is shrinking dramatically

  Modern architectures have very low TLB coverage
  Also, many 64-bit RISC architectures have software-loaded TLBs

•  General increase in TLB miss handling cost
  The TLB can become a performance bottleneck

