
Controlling the Speed of Virtual Time for Malware Deactivation

Keisuke Okamura Yoshihiro Oyama
The University of Electro-Communications

Abstract

We propose a mostly OS-independent, VMM-
based method that deactivates malware at
the granularity of a process. Specifically, the
method slows malware processes extremely by
shortening the timer interrupt intervals and
modifying the system time value: the amount
of time that elapses from the boot. We imple-
mented a VMM based on the method, named
HyperSlow, and confirmed that it can slow a
particular process considerably.

1 Introduction

Infrastructure as a Service (IaaS) is an attrac-
tive hosting service of cloud computing. Users
of an IaaS service manage virtual machines
(VMs). An IaaS provider manages virtual ma-
chine monitors (VMMs) and physical machines.
Each VM running on a VMM is managed by
the service user to which the VM is assigned.
An OS running in a VM is called a guest OS.
The root privilege of the guest OS is held by
the service user, not by the IaaS provider.

Here we consider the case in which mal-
ware compromises a certain guest OS and in
which the guest OS administrator is unaware
of the compromise. The malware might con-

sume large amounts of computing resources in
the VM, thereby slowing other VMs running
on the same VMM. Alternatively, the mal-
ware might perform inappropriate communica-
tion with an external machine such as send-
ing spam e-mails. The VMM administrator
would hope to take action against the malware
to maintain the quality of the service and the
trust of the provider, even if the administrator
of the guest OS does not explicitly allow it.

In this case, existing systems can take only
coarse-grain actions such as stopping the whole
VM, assigning an extremely low priority to the
VM, or dropping all communication packets
sent from the VM. The granularity of all ac-
tions is a VM. Therefore, when at least one
action is taken, other good services managed
by the VM also stop.

To address the problem, a fine-grained mal-
ware prevention method that affects only a par-
ticular process is required. The method should
not assume a particular OS because OSes of
various kinds will run in a VM.

This paper describes a malware prevention
method by which a VMM mostly deactivates
the execution of a specific process running in
a VM. The method, which remarkably reduces
the execution speed of an arbitrary process run-
ning in a VM, achieves that reduction by short-
ening the intervals between virtual timer inter-
rupts and by emulating the pace of virtual time.
This method assumes only a few things about
the implementation of a guest OS. It depends
little on the implementation. Therefore, it is
applicable to OSes and OS versions of various
kinds.

1

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
APSys '12, July 23-24, 2012, Seoul, S. Korea
Copyright 2012 ACM 978-1-4503-1669-9/12/07... $15.00

We implemented a system that incorporates
the method by extending Xen 4.0.0. The sys-
tem is named HyperSlow. We implemented Hy-
perSlow for Linux and the x86 architecture. We
assume that an IaaS provider manages Domain
0 (dom0) and the hypervisor, although individ-
ual IaaS users (customers) manage their respec-
tive domains U (domU). Modifying a guest OS
kernel or running a daemon in a guest OS is
not necessary.

Indeed, although slowing a malware process
is a mild countermeasure, it is an effective mea-
sure that the VMM can take when killing or
stopping a process depends on the implemen-
tation of the guest OS and when the VMM
must minimize the effect on benign processes.
It should also be considered that no malware
detection method can achieve 100% accuracy.
Therefore, the malware detection might be a
false positive. We consider that remarkably
high accuracy of detection is necessary to ex-
ecute strong countermeasures without contact-
ing the guest OS user. We expect that an IaaS
provider uses the method as the first mild re-
sponse to minimize damage. While the method
is working, the IaaS provider contacts the guest
OS user and urges the user to take some action
such as killing the malware process.

2 CPU Management in Xen

The Xen hypervisor provides virtual CPUs
(VCPUs) to VMs by virtualizing the physical
CPUs. A guest OS recognizes VCPUs of its
VM and schedules processes on the VCPUs.

The domain scheduler in the hypervisor
maps VCPUs to physical CPUs (PCPUs) dy-
namically. The domain scheduler distributes
CPU time to each domain, whereas the process
scheduler in each guest OS kernel distributes
CPU time to each process.

Modern OSes such as Linux and Windows
schedule processes onto CPUs based on the
number of timer interrupts and/or the vari-
ables which indicate the amount of elapsed

time. The variables are often calculated using
the values of hardware clocks such as the time
stamp counter (TSC). The Xen hypervisor de-
livers virtual timer interrupts to VMs at a cer-
tain interval and provides the value of system
time (the amount of time that has elapsed since
the boot) to each domain. In the Xen source
code, the system time value is maintained by a
member in a structure representing the time in-
formation of a VCPU (system time in struct

vcpu time info).

Currently, the standard scheduler in Xen is
the credit scheduler, which works according to
two key parameters associated with each do-
main: weight and cap. They are specified by
the Xen administrator. The amount of CPU
time distributed to a domain, called credit, is
determined based on the respective weights of
all domains. The cap of a domain specifies the
maximum amount of PCPU time which the do-
main receives. The scheduler uses a fixed time
slice in PCPU scheduling. Each time the slice
elapses, the scheduler chooses a VCPU to which
PCPU is assigned during the next slice. Do-
mains that have not consumed all credits are
scheduled in a round-robin manner. Even if
other domains are idle, the hypervisor does not
provide PCPU time to a domain in which the
consumption of CPU time has reached its cap.

3 Proposed Method

3.1 Overview

We consider a case in which a malware pro-
cess is running in a domU (Fig. 1). We des-
ignate such a domain as a maldomain. Do-
mains without malware, which we call benign
domains, are also running on the same VMM.
Normal application processes are running in
the maldomain. The IaaS provider manages
the dom0 and hypervisor, whereas users man-
age their own domU.

The first class of malware we are con-
cerned with includes malware that monopolizes

2

��� �����	
���

Domain U

���
����

����
����

����
����

Domain U Domain U

benign domains

managed by the IaaS provider

benign processes

managed by each user

maldomain

Domain 0

Figure 1: Imaginary environment.

computing resource and executes a Denial-of-
Service (DoS) attack against other processes or
domains. Victim processes or domains under
this attack experience a slowdown of programs
because of the decrease in computing resource
assigned to them. The computing resource in-
cludes CPU time, physical memory, and net-
work bandwidth. The second class of malware
examined here includes malware that executes
network-based attacks (e.g., sending numerous
spam e-mails and sending a flood of requests to
Web servers).

The proposed method disturbs malware by
accelerating the speed of virtual time only while
a PCPU is assigned to a malware process. It
changes the timing of virtual timer interrupts
and the value of system time. It depends little
on the implementation of a guest OS because it
varies the speed of virtual hardware only. Un-
fortunately, the method cannot stop the execu-
tion of malware completely, in principle.

Generally, recognizing a process from the hy-
pervisor layer is not straightforward because
the representation of a process depends on the
OS implementation. However, a previous pa-
per [5] described a technique for recognizing a
process from a value in the page table regis-
ter (CR3 in x86 processors). We also use that
technique.

For this study, we do not assume a particular
malware detection method because detection is
mostly orthogonal to prevention. Several re-
ports in the relevant literature have proposed

security systems in which a program in a host
OS or a VMM detects malware by examining
the data or behavior of the guest OS [2, 3, 4].
We expect that such a system would be com-
bined with HyperSlow. For example, using
a technique proposed in the research of Ly-
cosid [4], the VMM administrator can find a
process that consumes CPU cycles intensively
in an almost OS-independent manner.

3.2 Timing Control

A process scheduler in an OS kernel usu-
ally performs process scheduling in response to
timer interrupts. The scheduler checks whether
the current process has consumed the entire
time slice. The scheduler performs a context
switch to another process if it has consumed.
The process scheduler in Linux calculates the
elapsed time using the number of timer inter-
rupts and the values of hardware clocks that
are acquired via the clocksource abstraction in
recent kernels.

We next explain the behavior of a process
scheduler with a sample case. Figure 2 (upper)
portrays the CPU usage in this case. Processes
A and B are running in the same domain and
one VCPU is assigned to the domain. We as-
sume that virtual timer interrupts are sent to
the domain at every t ms and that the pro-
cess scheduler in the guest kernel schedules the
processes sequentially at every 4t ms (i.e., the
time slice of processes is 4t ms). When a vir-
tual timer interrupt is sent, the process sched-
uler checks whether the time slice has elapsed
since the last scheduling. The scheduler obtains
the value of system time at every virtual timer
interrupt and calculates the (virtual) elapsed
time from the last scheduling.

Presuming that a security system finds a
malware process in a domain and notified our
system about it, the hypervisor then sets the
interval to 0.5t ms only while the malware pro-
cess is running. In addition, the hypervisor
modifies the value of (virtual) timer hardware

3

time

process A

process B

t ms

benign process

malware process

...
�����

������������
...

0.5t ms

Figure 2: Changes in scheduling caused by the
proposed method. Black areas represent the
time during which the corresponding process is
scheduled. Dashed lines represent the timing
of timer interrupts.

to create the illusion that t ms have elapsed
since the last timer interrupt. The change is
presented in Figure 2 (lower). Consequently,
the virtual time in the domain passes at twice
the original speed only while the malware pro-
cess is running. The guest OS kernel miscounts
the CPU time consumed by the malware pro-
cess and therefore performs a context switch in
2t ms (half of the original time slice).

The administrator of the hypervisor might
hope that the PCPU time deprived from the
malware is restored not only to the maldomain
but also in other domains. However, with a
special mechanism, the deprived PCPU time is
restored only to processes in the maldomain.
Therefore, HyperSlow deprives the PCPU time
of a maldomain by dynamically adjusting the
maldomain cap.

The proposed method entails a side effect. It
manipulates the virtual time. Therefore, the
current time recognized by the guest OS kernel
is later than the actual one. However, the side
effect is normalized by Xen rapidly. The origi-
nal Xen hypervisor periodically obtains a value
from the actual hardware clock and writes the
correct system time in the variable of system
time. As a result, the current time of a guest
OS gains temporarily and is then corrected.
The user of the proposed method must accept
that the current time returned by the guest

Domain 0 Maldomain

���
����

����
����

����
����

Xen

hypervisor
����������

���������
�����

����
�
���������

������
���
�����

deactivation�������	

������
���	

��	����
���	

Figure 3: Structure of HyperSlow.

kernel (e.g., result of gettimeofday) becomes
incorrect when malware deactivation is work-
ing. Investigating the side effects of timekeep-
ing subsystems such as ntpd and RADclock is
an important topic for future work [1, 6].

3.3 Implementation Details

Figure 3 shows the system structure, which
comprises the interface module and the virtual
timer interrupt raising (VTIR) module.

The interface module receives alerts from a
detection system. The alerts include the value
of the page table register in the context of the
malware process. The interface module trans-
mits the value to the VTIR module via the
shared memory between dom0 and the hyper-
visor. The interface module also determines
a new cap of the maldomain and notifies the
credit scheduler.

The VTIR module executes actual opera-
tions for slowing malware. The module short-
ens the interval between the virtual timer inter-
rupts delivered to the VCPU associated with
the maldomain. It further emulates the rate
of time passage by modifying the variable of
system time.

4 Experimental Results

4.1 Settings

We conducted experiments to confirm the prac-
ticality of the proposed method. We used an

4

Intel Core 2 Duo 2.53 GHz, 2 GB memory com-
puter. 512 MB memory was assigned to each
domain. We ran a paravirtualized version of
Debian lenny (Linux 2.6.26) in domU’s. The
physical and virtual timer interrupt intervals
were both 10 ms. The time slice of a domain
was 30 ms and the default time slice of pro-
cesses in a guest OS was 100 ms.

4.2 DoS Malware in an Ideal Setting

The first experiment was conducted in a set-
ting that is regarded as ideal for HyperSlow.
We executed one dom0 and one domU on the
same hypervisor. We ran three processes in the
domU: A, B, and M. The VCPUs of the domUs
were pinned to one PCPU. All processes at-
tempted to consume all CPU time. Processes A
and B were regarded as benign programs such
as scientific computations, although process M
was regarded as malware performing DoS at-
tacks against CPU resources.

All processes wrote a message to the stan-
dard output every time they completed a cer-
tain computation. We estimated the speed of
each process from the output.

HyperSlow attempted to change the speed of
process M to 1/1000 of the original speed. The
quantities of completed computation by pro-
cesses A, B, and M were, respectively, 301803,
305103, and 78. Process M became markedly
slower than process A or B. The slowing of the
malware was not 1/1000, but 1/3869. A likely
reason is that the overhead of OS noise, includ-
ing context switches, stood out because the ac-
tual time slice became extremely small.

4.3 DoS Malware in Virtual Hosting

We created an environment for hosting virtual
servers. Then we executed one benign domain,
one maldomain, and dom0 on the hypervisor.
Each domain had one VCPU. The benign do-
main and maldomain shared one PCPU. We
executed the Apache Web server in the benign
domain. Then we executed, in the maldomain,

Table 1: Benchmark result.
average response worst response

time (ms) time (ms)

Original 8.52 3008

Attacked 76.63 46987

Deactivated 11.92 9004

malware that attempts to consume all CPU
time.

We executed the ApacheBench benchmark
and sent requests to the Web server from an-
other physical machine connected with a giga-
bit ethernet switch. The benchmark requested
a 3068-byte file repeatedly. The number of re-
quests was 50,000 and the concurrency level
was 25. We compared the following cases:

Original Malware was not running.

Attacked Malware was running and Hyper-
Slow was not working.

Deactivated Malware was running and Hy-
perSlow was working against the malware.

HyperSlow in this experiment varied the timer
interrupt interval to 1/1000 and the speed of
timer hardware to 1000 times.

Table 1 shows the response time of the Web
server reported by the benchmark. When Hy-
perSlow was not running, marked performance
degradation was imposed on the response time.
In contrast, when HyperSlow was working, the
degradation was greatly reduced. Only 39.8%
overhead was imposed on the average response
time.

4.4 Spam-Mailing Malware

Finally, we created an environment in which
malware in a maldomain sends spam e-mails.
The malware accesses an external SMTP server
on a different machine. It then requests the
delivery of e-mails. The malware attempts to
send an e-mail message every five seconds.

First, we measured the malware behavior
when HyperSlow was not running. We con-
firmed that e-mails were sent every five seconds.

5

Then, we attempted to change the malware
speed to 1/1000 of the original speed. Subse-
quently six e-mails were sent during 60 s. Hy-
perSlow decreased the rate of mailing to half
of the original. Usually, few CPU resources are
consumed by spam-mailing malware, which is
I/O-intensive and/or sleeping most of the time.
Nevertheless, HyperSlow was able to slow such
a program to some degree.

5 Related Work

FoxyTechnique [7] is a VMM-based technique
that modifies the resource management policy
of a guest OS by changing the behavior of vir-
tual devices. Although their paper [7] describes
the idea of changing the rate of timer inter-
rupts, it shows no method of applying the tech-
nique to slow a process.

FoxyLargo [8] is a VMM-based mechanism
that controls the speed of a virtual CPU with
a fine granularity. FoxyLargo slows a whole vir-
tual machine and invariably changes the speed
of a particular process.

Many reports have been published about
VMM-based security systems. Previous stud-
ies [2, 3, 4] specifically examined the develop-
ment of malware detection, not malware pre-
vention. Lycosid [4] is a VMM-based security
system that is used to find hidden processes in-
cluding stealth malware. It introduces a tech-
nique that enables a VMM to increase the ex-
ecution time of specific processes by patching
the code of the processes. They do not present
an idea of applying timing control to the degra-
dation of malware execution.

6 Summary and Future Work

We have proposed a method and system for ex-
treme slowing of a malware process in a guest
OS by varying the behavior of virtual hard-
ware related to time management. Experimen-
tal results indicate that the method is useful

for preventing damage from CPU-DoS attacks
in VMM-based virtual hosting.

Future research might follow several paths.
The first is investigation of the side effects on
time management of a guest OS. The second is
to combine HyperSlow with malware detectors
proposed in other research. The third is evalu-
ation of the method using other environments.

Acknowledgment This research was sup-
ported in part by KAKENHI 23700032.

References

[1] T. Broomhead, L. Cremean, J. Ridoux, and
D. Veitch. Virtualize Everything but Time. In
Proc. of OSDI 2010, pp. 451–464, 2010.

[2] T. Garfinkel and M. Rosenblum. A Virtual Ma-
chine Introspection Based Architecture for In-
trusion Detection. In Proc. of NDSS 2003, 2003.

[3] X. Jiang, X. Wang, and D. Xu. Stealthy Mal-
ware Detection and Monitoring through VMM-
Based “Out-of-the-Box” Semantic View Recon-
struction. ACM Transactions on Information
and System Security, 13(2):12:1–12:28, 2010.

[4] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. VMM-based Hidden Process
Detection and Identification using Lycosid. In
Proc. of VEE ’08, pp. 91–100, 2008.

[5] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Antfarm: Tracking Processes
in a Virtual Machine Environment. In Proc.
of the 2006 USENIX Annual Technical Confer-
ence, pp. 1–14, 2006.

[6] VMware. Timekeeping in VMware Virtual
Machines. http://www.vmware.com/vmtn/

resources/238, 2011.

[7] H. Yamada and K. Kono. FoxyTechnique:
Tricking Operating System Policies with a Vir-
tual Machine Monitor. In Proc. of VEE 2007,
pp. 55–64, 2007.

[8] T. Yoshida, H. Yamada, and K. Kono. Foxy-
Largo: Slowing Down CPU Speed with a Vir-
tual Machine Monitor for Embedded Time-
Sensitive Software Testing. In Proc. of 2008
International Workshop on Virtualization Tech-
nology, 2008.

6

