
COMP9242
Advanced Operating Systems

S2/2011 Week 11:
Local Systems Research

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW/NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 3 COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 4

What’s Next?

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Trust Without Trustworthiness

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Core Issue: Complexity

•  Massive functionality ! huge software stacks
–  Expensive recalls of CE devices

•  Increasing usability requirements
–  Wearable or implanted medical devices
–  Patient-operated
–  GUIs next to life-critical functionality

•  On-going integration of critical and entertainment functions
–  Automotive infotainment and engine control

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Our Vision: Trustworthy Systems

We will change industry’s approach to the design and implementation
of critical systems, resulting in true trustworthiness.

Trustworthy means highly
dependable, with hard
guarantees on security,
safety or reliability.

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Dealing With Complexity

•  Complexity of critical devices will continue to grow
–  Critical systems with millions of lines of code (LOC)

•  We need to learn to ensure dependability despite complexity
–  Need to guarantee dependability

•  Correctness guarantees for MLOCs unfeasible

•  Key to solution: isolation
–  … with controlled

communication

COMP9242 S2/2011 W11

 Complex
 GUIs etc

 Simple
 Control

Critical Non-critical

Isolation

Controlled communication

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Isolation: Physical

Dedicated CPUs for critical tasks

Cost: Space, costly interconnects, poor use of hardware

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 10

Isolation: Logical

•  Protect critical components by
sandboxing complex components

•  Provide tightly-controlled
communication channels

•  Trustworthy microkernel
provides general mechanisms
to enforce isolation

•  Policy layer defines access rights
•  Microkernel becomes core of

trusted computing base
–  System trustworthiness

only as good as microkernel!

COMP9242 S2/2011 W11

 Hardware

 Microkernel

 Linux
 Server

Legacy App.
Legacy App.

 Legacy
 Apps

 Trusted
 Service

 Sensitive
 App

Trusted Untrusted

 Policy Layer

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 11

Isolation Requirements

To guarantee dependability, following must be guaranteed:
•  Isolation infrastructure impact must be specified

–  To allow reason about operation of isolated critical instances
•  Isolation infrastructure must behave as specified

–  Functional correctness
–  Bounded and know worst-case latencies

•  Isolation infrastructure must provide actual isolation
–  Integrity guarantees
–  Temporal isolation

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 12

Dependability Requirements

COMP9242 S2/2011 W11

Unambiguous
Specification

Implementation

Functional
Correctness Timeliness

System

Confidentiality Integrity

Security Safety

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 13

NICTA Trustworthy Systems Agenda

1.  Dependable microkernel (seL4) as a rock-solid base
–  Formal specification of functionality
–  Proof of functional correctness of implementation
–  Proof of safety/security properties
–  Timeliness guarantees

2.  Lift microkernel guarantees to whole system
–  Use kernel correctness and integrity to guarantee critical functionality
–  Ensure correctness of balance of trusted computing base
–  Prove dependability properties of complete system

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 14

seL4: Designing and Formalising

High-Performance
C implementation

Design &
Specify

Formal
Model

Safety
Theorem

Pr
oo

f

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 15

Two Mentalities

Formal Methods Practitioners
vs

Kernel Developers

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 16

Standard Kernel Design

Kernel Hacker View

Design &
Specify

High-Performance
C implementation

White-
board

Safety
Theorem

Formal
Model

 Step 2

Prototype on
Real Hardware

Pr
oo

f

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 17

Formal Design

Design &
Specify

Formal
Model

Safety
Theorem

Design in
Theorem Prover

Formal Methods View

High-Performance
C implementation

Step 2

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 18

Iterative Design and Formalisation

Design &
Specify

Formal
Model

High-Performance
C implementation

Safety
Theorem

Haskell
Prototype Proof

•  Prototype kernel
 executes native binaries on simulator

•  Exposes usability issues early

•  Tight formal design integration

Inspired by existing code

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 19

Kernel Design for Verification

•  Main objective: minimise complexity
–  global invariants must be proven for each state change
–  must prove pre- and post-conditions for statements/blocks
–  effort determined by complexity of conditions and state change

•  … without sacrificing performance
•  Affects design in many ways

–  global variables, side effects
–  kernel memory management
–  concurrency and non-determinism
–  I/O

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 20

Global Variables

•  Not a difficulty per se, but
potential source of complexity

•  Eg: scheduler queue as
doubly-linked list
–  Show that

•  all pointers are to valid nodes
•  front- and back-pointers

are consistent
•  nodes point to TCBs

•  Requires proof that any pointer operation maintains invariants
•  Challenge is temporary violation

–  eg adding a node
–  Requires ensuring atomicity

TCB TCB TCB

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 21

Kernel Memory

•  seL4 kernel memory management
model pushes policy to userland
–  aids verification
–  need to ensure strict hierarchy
–  capability derivation tree

•  Challenge is re-use
–  most difficult part

of verification!
–  use derivation tree to

detect all references
–  global data structure that

requires invariants in all parts
of the system

supervisory OS

Microkernel

App1 App2
....

TCB CT untyped
object3

untyped
object n TCB .. CT

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 22

Concurrency

•  Proofs about concurrent programs are inherently hard!
•  seL4 strictly limits concurrency to the bare minimum

–  Single processor
•  multicore via big kernel lock or multikernel approach

–  User-level device drivers
–  Non-preemptible, event-based

•  single kernel stack
–  Interrupt points to limit real-time latencies

•  poll interrupt status
•  insert new kernel event (ahead of user)
•  return to user boundary and re-enter kernel
•  allows maintaining all invariants

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 23

Concurrency

Preempting object destruction:
•  Keep one cap as zombie during object cleanup

–  only retained to reference partially cleaned-up object
–  stores state of cleanup, maintaining invariants
–  attempt by preemptor to remove zombie can just execute

Exceptions in kernel:
•  Prevent memory exceptions

–  ensure kernel page tables are complete
–  map into every address space

•  Disallow other exceptions
–  verification is its own friend !

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 24

I/O

•  Mostly a non-issue
–  user-level drivers

•  IOMMU support for DMA security
–  non-preemptible kernel

•  Exception is timer tick
–  essentially a source of interrupts
–  handled in-kernel as separate event
–  no real complication

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 25

Lessons for Kernel Design

•  Need to reduce complexity forced simple and clean design
–  beneficial even with traditional validation
–  does not necessarily impact performance

•  Some design decision beneficial for other reasons too
–  single kernel stack for memory footprint
–  interrupt handling by polling has performance advantages

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 26

capDL Model (4,800) Initial
protection
state

Abstract Model (4,900) Manual Spec
(Isabelle/HOL)

22,000 lop

117,000 lop

50,000 lop

Executable Model (13,000) Haskell (5,700)

Integrity (1,000)

Confidentiality (???)

C Code (8,700) High Performance
Implementation Asm Code (320) Sane initial state

Hardware Hardware model

Multicore

Kernel Functional Verification

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 27

capDL Model (4,800) Initial
protection
state

Abstract Model (4,900) Manual Spec
(Isabelle/HOL)

22,000 lop

117,000 lop

50,000 lop

Executable Model (13,000) Haskell (5,700)

Integrity (1,000)

Confidentiality (???)

C Code (8,700) High Performance
Implementation Asm Code (320) Sane initial state

Hardware Hardware model

Multicore

Kernel Functional Verification

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Binary Code Verification (In Progress)

COMP9242 S2/2011 W11

C source

Formal C
semantics Abstract

compiler

Abstract
machine code

Executable
binary

Formal
ISA spec

Abstract executable
of real machine

Abstract
machine code

Abstracted
C code

Code
simplifier

Equivalence
checker

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Formal Verification Summary

Kinds of properties proved
•  Behaviour of C code is fully captured by abstract model
•  Behaviour of C code is fully captured by executable model

–  Can prove many interesting properties on higher-level models
•  Kernel never fails, behaviour is always well-defined

–  assertions never fail
–  will never de-reference null pointer
–  cannot be subverted by misformed input

•  All syscalls terminate, reclaiming memory is safe, ...
•  Well typed references, aligned objects, kernel always mapped…
•  Access control is decidable

Effort:
•  Average 6 people over 5.5 years
•  Only 50–100% more than comparable (low-assurance) projects

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Verification vs Certification

Common Criteria: Military-Strength Security

Evaluation
Level Requirements Functional

Specification
Top Down

Design
Imple-

mentation Cost

EAL1 Informal

EAL2 Informal Informal

EAL3 Informal Informal

EAL4 Informal Informal Informal

EAL5 Semi-formal Semi-formal Informal

EAL6 Formal Semi-formal Semi-formal Informal 1K/LoC

EAL7 Formal Formal Formal Informal

seL4 Formal Formal Formal Formal 0.6K/LoC

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 31

Kernel Worst-Case Execution Time

Issues for WCET analysis of seL4:
•  Need knowledge of worst-case interrupt-latency

–  Longest non-preemptible path + IRQ delivery cost
–  seL4 runs with interrupts disabled

•  System calls in well-designed microkernel are short!
•  Strategic preemption points in long-running operations
•  Optimal average-case performance with reasonable worst-case

•  Applications also need to know cost of system calls
–  Need WCET analysis of all possible code paths

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 32

Kernel Worst-Case Execution Time

Challenges for WCET analysis of OS kernels in general:
•  Kernel code notoriously unstructured
•  Low-level system-specific instructions
•  Context-switching
•  Assembly code

seL4-specific advantages:
•  (Relatively) structured design (evolved from Haskell prototype)
•  Event-based kernel (single kernel stack)
•  Small (as far as operating systems go!)
•  No function pointers in C
•  Preemption points are explicit and preserve code structure
•  Memory allocation performed in userspace

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 33

WCET analysis process

COMP9242 S2/2011 W11

CFG extractor

seL4 binary

Path Analysis, Arch.
modeling

Loop bounds

ILP
equations

CPLEX

WCET
Upper bound

Observed
execution time

Hardware platform CFG

Worst-case
scenarios

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 34

Evaluation platform

•  OMAP3-based BeagleBoard-xM
–  ARM Cortex-A8 @ 800 MHz
–  128 MB memory
–  32KB 4-way set-associative L1 instruction cache

•  random replacement " pessimistic model
–  Disabled L2 cache

•  Cache analysis does not (yet) scale
•  Fairly accurate (but sound) model

–  dual-issue pipeline (simplified)
–  no branch prediction

COMP9242 S2/2011 W11

Image Koen Kooi CC-SA 2.0

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 35

Early Days…

COMP9242 S2/2011 W11

"s

"s

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 36

Improve WCET

•  Analysis helps placing preemption points
–  Can optimise further

•  Knowledge about seL4 can eliminate many paths
–  Invariants proved during verification
–  E.g. loop iteration counts, non-interference
–  Can easily prove new invariants

•  Cache pinning
–  Big reduction in WCET
–  Eliminate cache pessimism

•  Improved pipeline modelling
–  May have practical approach

for complex pipelines
•  Aim: IRQ WCET < 10 "s

COMP9242 S2/2011 W11

Find an
infeasible

critical
path

Find an
invariant to
invalidate
the path

Express
invariants

as ILP
constraints

Measure
impact on
estimated

WCET

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 37

Phase Two: Full-System Guarantees

•  Achieved: Verification of
microkernel (8,700 LOC)

•  Next step: Guarantees for
real-world systems
(1,000,000 LOC)

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 38

Overview of Approach

COMP9242 S2/2011 W11

!  Build system with minimal TCB
!  Formalize and prove security properties about architecture
!  Prove correctness of trusted components
!  Prove correctness of setup
!  Prove temporal properties (isolation, WCET, …)
!  Maintain performance

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 39

Proof of Concept:
Secure Access Controller

COMP9242 S2/2011 W11

SAC

US NATO
AUS

SIN
www

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 40

SAC Aim

COMP9242 S2/2011 W11

SAC

Information Provider A Information Provider B

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Providers A & B should not be
able to leak info between each
other even if they actively
cooperate

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 41

Solution Overview

COMP9242 S2/2011 W11

Windows Linux

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Control Interface

Control Network

Web Server
(Linux)

Web-based
control

interface

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 42

Solution Overview

COMP9242 S2/2011 W11

Windows Linux

Terminal

User

Network A Network B

Network Interface B

Terminal Network Interface

Network Interface A

Terminal Network

Control Interface

Control Network

Web Server
(Linux)

Router
(Linux)

Not
Connected

Linux-based
Router
minimal
device
access

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 43

SAC Significance

•  Prototype of seL4-based security architecture
–  Demonstrates feasibility of seL4-based secure systems

•  incl minimal TCB
–  Demonstrates feasibility of proving relevant properties
–  Mostly hand-knitted

•  Future:
–  High-level specification of architecture and properties
–  Automation of system generation
–  Automation of verifiation

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 44

Specifying Security Architecture

System Architecture

Trusted Components

Security Policy

Trusted Component
Behaviour Spec

CapDL Spec

Bootstrapper

Components and
Glue Code

System Image
Untrusted

Components

System Security
ProofseL4 proofs

4

1

2

3

5

COMP9242 S2/2011 W11

+
High-level
security policy

Security analysis

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 45

Needed: Component Architecture (CAmkES)

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 46

Example System: Modular Access Router

NAT to multiplex a single global IP address
•  Includes drivers, network stack,...

Performance:
•  ARM11

(Freescale iMX31)
•  RPC

–  1 int arg, returning int
•  CAmkES round trip:

–  778 cycles
•  raw seL4 round trip:

–  698 cycles
•  not yet optimal!

•  CAmkES overhead:
–  80 cycles

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 47

Performance

•  ARM11 (Freescale iMX31)
•  RPC with 1 int arg, returning int

–  CAmkES round-trip: 778 cycles
–  raw seL4 round trip: 698 cycles
–  80 cycles CAmkES overhead

COMP9242 S2/2011 W11 ©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 48

Other Bits

•  Dependable device drivers
–  Event-driven drivers
–  Driver synthesis

•  exploring widening this to synthesising other system components
•  Energy management
•  Security

–  Information flow
–  Side channels and covert channels

Summary:
•  Trustworthy systems are possible

–  … and we’re the leaders in the field
•  You can be part of it!

COMP9242 S2/2011 W11

©2011 Gernot Heiser, UNSW/NICTA. Distributed under Creative Commons Attribution License 49

Leaders – Really?

COMP9242 S2/2011 W11

