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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

“Courtesy of Gernot Heiser, UNSW/NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 
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What’s Next? 
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Trust Without Trustworthiness 
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Core Issue: Complexity 

•  Massive functionality ! huge software stacks 
–  Expensive recalls of CE devices 

•  Increasing usability requirements 
–  Wearable or implanted medical devices 
–  Patient-operated  
–  GUIs next to life-critical functionality 

•  On-going integration of critical and entertainment functions 
–  Automotive infotainment and engine control 
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Our Vision: Trustworthy Systems 

We will change industry’s approach to the design and implementation 
of critical systems, resulting in true trustworthiness. 

Trustworthy means highly 
dependable, with hard 
guarantees on security, 
safety or reliability. 
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Dealing With Complexity 

•  Complexity of critical devices will continue to grow 
–  Critical systems with millions of lines of code (LOC) 

•  We need to learn to ensure dependability despite complexity 
–  Need to guarantee dependability 

•  Correctness guarantees for MLOCs unfeasible  

•  Key to solution: isolation 
–  … with controlled 

communication 
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Isolation: Physical 

Dedicated CPUs for critical tasks 

Cost: Space, costly interconnects, poor use of hardware 
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Isolation: Logical 

•  Protect critical components by  
sandboxing complex components 

•  Provide tightly-controlled  
communication channels 

•  Trustworthy microkernel 
provides general mechanisms  
to enforce isolation 

•  Policy layer defines access rights 
•  Microkernel becomes core of 

trusted computing base 
–  System trustworthiness 

only as good as microkernel! 
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Isolation Requirements 

To guarantee dependability, following must be guaranteed: 
•  Isolation infrastructure impact must be specified  

–  To allow reason about operation of isolated critical instances 
•  Isolation infrastructure must behave as specified 

–  Functional correctness 
–  Bounded and know worst-case latencies 

•  Isolation infrastructure must provide actual isolation 
–  Integrity guarantees 
–  Temporal isolation 
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Dependability Requirements 
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NICTA Trustworthy Systems Agenda 

1.  Dependable microkernel (seL4) as a rock-solid base 
–  Formal specification of functionality 
–  Proof of functional correctness of implementation 
–  Proof of safety/security properties 
–  Timeliness guarantees 

2.  Lift microkernel guarantees to whole system 
–  Use kernel correctness and integrity to guarantee critical functionality 
–  Ensure correctness of balance of trusted computing base 
–  Prove dependability properties of complete system 
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seL4: Designing and Formalising 
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Two Mentalities 

Formal Methods Practitioners 
vs 

Kernel Developers 
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Standard Kernel Design 

Kernel Hacker View 
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Formal Design 

Design & 
Specify 

Formal 
Model 

Safety 
Theorem 

Design in  
Theorem Prover 

Formal Methods View 

High-Performance 
C implementation 

Step 2 
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Iterative Design and Formalisation 

Design & 
Specify 

Formal 
Model 

High-Performance 
C implementation 

Safety 
Theorem 

Haskell 
Prototype Proof 

•   Prototype kernel  
   executes native binaries on simulator 

•   Exposes usability issues early 

•   Tight formal design integration 

Inspired by existing code 
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Kernel Design for Verification 

•  Main objective: minimise complexity 
–  global invariants must be proven for each state change 
–  must prove pre- and post-conditions for statements/blocks 
–  effort determined by complexity of conditions and state change 

•  … without sacrificing performance 
•  Affects design in many ways 

–  global variables, side effects 
–  kernel memory management 
–  concurrency and non-determinism 
–  I/O 
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Global Variables 

•  Not a difficulty per se, but  
potential source of complexity 

•  Eg: scheduler queue as  
doubly-linked list 
–  Show that 

•  all pointers are to valid nodes 
•  front- and back-pointers  

are consistent 
•  nodes point to TCBs 

•  Requires proof that any pointer operation maintains invariants 
•  Challenge is temporary violation 

–  eg adding a node 
–  Requires ensuring atomicity 

TCB TCB TCB 
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Kernel Memory 

•  seL4 kernel memory management  
model pushes policy to userland 
–  aids verification 
–  need to ensure strict hierarchy 
–  capability derivation tree 

•  Challenge is re-use 
–  most difficult part  

of verification! 
–  use derivation tree to  

detect all references 
–  global data structure that  

requires invariants in all parts  
of the system 

supervisory OS 

Microkernel 

App1 App2 
.... 

TCB CT untyped 
object3 

untyped 
object n TCB .. CT 
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Concurrency 

•  Proofs about concurrent programs are inherently hard! 
•  seL4 strictly limits concurrency to the bare minimum 

–  Single processor 
•  multicore via big kernel lock or multikernel approach 

–  User-level device drivers 
–  Non-preemptible, event-based 

•  single kernel stack 
–  Interrupt points to limit real-time latencies 

•  poll interrupt status 
•  insert new kernel event (ahead of user) 
•  return to user boundary and re-enter kernel 
•  allows maintaining all invariants 
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Concurrency 

Preempting object destruction: 
•  Keep one cap as zombie during object cleanup 

–  only retained to reference partially cleaned-up object 
–  stores state of cleanup, maintaining invariants 
–  attempt by preemptor to remove zombie can just execute 

Exceptions in kernel: 
•  Prevent memory exceptions  

–  ensure kernel page tables are complete 
–  map into every address space 

•  Disallow other exceptions 
–  verification is its own friend ! 
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I/O 

•  Mostly a non-issue 
–  user-level drivers 

•  IOMMU support for DMA security 
–  non-preemptible kernel 

•  Exception is timer tick 
–  essentially a source of interrupts 
–  handled in-kernel as separate event 
–  no real complication 
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Lessons for Kernel Design 

•  Need to reduce complexity forced simple and clean design 
–  beneficial even with traditional validation 
–  does not necessarily impact performance 

•  Some design decision beneficial for other reasons too 
–  single kernel stack for memory footprint 
–  interrupt handling by polling has performance advantages 
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Binary Code Verification (In Progress) 
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Formal Verification Summary 

Kinds of properties proved 
•  Behaviour of C code is fully captured by abstract model 
•  Behaviour of C code is fully captured by executable model 

–  Can prove many interesting properties on higher-level models 
•  Kernel never fails, behaviour is always well-defined 

–  assertions never fail 
–  will never de-reference null pointer 
–  cannot be subverted by misformed input 

•  All syscalls terminate, reclaiming memory is safe, ... 
•  Well typed references, aligned objects, kernel always mapped… 
•  Access control is decidable 

Effort: 
•  Average 6 people over 5.5 years 
•  Only 50–100% more than comparable (low-assurance) projects 
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Verification vs Certification 

Common Criteria: Military-Strength Security 

Evaluation 
Level Requirements Functional 

Specification 
Top Down 

Design 
Imple-

mentation Cost 

EAL1 Informal 

EAL2 Informal Informal 

EAL3 Informal Informal 

EAL4 Informal Informal Informal 

EAL5 Semi-formal Semi-formal Informal 

EAL6 Formal Semi-formal Semi-formal Informal 1K/LoC 

EAL7 Formal Formal Formal Informal 

seL4 Formal Formal Formal Formal 0.6K/LoC 
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Kernel Worst-Case Execution Time 

Issues for WCET analysis of seL4: 
•  Need knowledge of worst-case interrupt-latency 

–  Longest non-preemptible path + IRQ delivery cost 
–  seL4 runs with interrupts disabled 

•  System calls in well-designed microkernel are short! 
•  Strategic preemption points in long-running operations 
•  Optimal average-case performance with reasonable worst-case 

•  Applications also need to know cost of system calls 
–  Need WCET analysis of all possible code paths 
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Kernel Worst-Case Execution Time 

Challenges for WCET analysis of OS kernels in general: 
•  Kernel code notoriously unstructured 
•  Low-level system-specific instructions 
•  Context-switching 
•  Assembly code 

seL4-specific advantages: 
•  (Relatively) structured design (evolved from Haskell prototype) 
•  Event-based kernel (single kernel stack) 
•  Small (as far as operating systems go!) 
•  No function pointers in C 
•  Preemption points are explicit and preserve code structure 
•  Memory allocation performed in userspace 
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WCET analysis process 
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Evaluation platform 

•  OMAP3-based BeagleBoard-xM 
–  ARM Cortex-A8 @ 800 MHz 
–  128 MB memory 
–  32KB 4-way set-associative L1 instruction cache 

•  random replacement " pessimistic model 
–  Disabled L2 cache 

•  Cache analysis does not (yet) scale 
•  Fairly accurate (but sound) model 

–  dual-issue pipeline (simplified) 
–  no branch prediction 
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Early Days… 
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Improve WCET 

•  Analysis helps placing preemption points 
–  Can optimise further 

•  Knowledge about seL4 can eliminate many paths 
–  Invariants proved during verification 
–  E.g. loop iteration counts, non-interference 
–  Can easily prove new invariants 

•  Cache pinning 
–  Big reduction in WCET 
–  Eliminate cache pessimism 

•  Improved pipeline modelling 
–  May have practical approach 

for complex pipelines 
•  Aim: IRQ WCET < 10 "s 
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Phase Two: Full-System Guarantees 

•  Achieved: Verification of 
microkernel (8,700 LOC) 

•  Next step: Guarantees for 
real-world systems 
(1,000,000 LOC) 
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Overview of Approach 
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!   Build system with minimal TCB 
!   Formalize and prove security properties about architecture 
!   Prove correctness of trusted components  
!   Prove correctness of setup 
!   Prove temporal properties (isolation, WCET, …) 
!   Maintain performance 
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Proof of Concept: 
Secure Access Controller 
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SAC Aim 
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Solution Overview 
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Solution Overview 
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SAC Significance 

•  Prototype of seL4-based security architecture 
–  Demonstrates feasibility of seL4-based secure systems 

•  incl minimal TCB 
–  Demonstrates feasibility of proving relevant properties 
–  Mostly hand-knitted 

•  Future:  
–  High-level specification of architecture and properties 
–  Automation of system generation 
–  Automation of verifiation 
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Specifying Security Architecture 

System Architecture

Trusted Components

Security Policy

Trusted Component
Behaviour Spec

CapDL Spec

Bootstrapper
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System Image
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4
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Needed: Component Architecture (CAmkES) 
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Example System: Modular Access Router 

NAT to multiplex a single global IP address 
•  Includes drivers, network stack,... 

Performance: 
•  ARM11  

(Freescale iMX31) 
•  RPC 

–  1 int arg, returning int 
•  CAmkES round trip:  

–  778 cycles 
•  raw seL4 round trip:  

–  698 cycles 
•  not yet optimal! 

•  CAmkES overhead: 
–  80 cycles 
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Performance 

•  ARM11 (Freescale iMX31) 
•  RPC with 1 int arg, returning int 

–  CAmkES round-trip: 778 cycles 
–  raw seL4 round trip: 698 cycles 
–  80 cycles CAmkES overhead 
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Other Bits 

•  Dependable device drivers 
–  Event-driven drivers 
–  Driver synthesis 

•  exploring widening this to synthesising other system components 
•  Energy management 
•  Security 

–  Information flow 
–  Side channels and covert channels 

Summary: 
•  Trustworthy systems are possible 

–  … and we’re the leaders in the field 
•  You can be part of it! 
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Leaders – Really? 
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