LINUX INTERNALS

Peter Chubb and Etienne Le Sueur
first.last @icta.com au

BEU UNsw

ustralian Government

nnnnnnnnn

A LITTLE BIT OF HISTORY

Ken Thompson and Dennis Ritchie in 1967-70
USG and BSD

John Lions 1976-95

Andrew Tanenbaum 1987

Linux Torvalds 1991

e

NICTA

e

NICTA

The history of UNix-like operating systems is a history of people
being dissatisfied with what they have and wanting to do some-
thing better. It started when Ken Thompson got bored with MUL-
TICS and wanted to write a computer game (Space Travel). He
found a disused PDP-7, and wrote an interactive operating sys-
tem to run his game. The main contribution at this point was the
simple file-system abstraction. (Ritchie 1984)

Other people found it interesting enough to want to port it to other
systems, which led to the first major rewrite — from assembly to
C. In some ways UNIx was the first successfully portable OS.
After Ritchie & Thompson (1974) was published, AT&T became
aware of a growing market for UNIX. They wanted to discourage
it: it was common for AT&T salesmen to say, ‘Here’s what you
get: Awhole lot of tapes, and an invoice for $10 000’. Fortunately
educational licences were (almost) free, and universities around
the world took up UNixX as the basis for teaching and research.
The University of California at Berkeley was one of those univer-

2-1

sities. In 1977, Bill Joy (a postgrad) put together and released
the first Berkeley Software Distribution — in this instance, the
main additions were a pascal compiler and Bill Joy’s ex editor.
Later BSDs contained contributed code from other universities,
including UNSW. The BSD tapes were freely shared between
source licensees of AT&T's UNIX.

John Lions and Ken Robinson read Ritchie & Thompson (1974),
and decided to try to use UNIx as a teaching tool here. Ken sent
off for the tapes, the department put them on a PDP-11, and
started exploring. The license that came with the tapes allowed
disclosure of the source code for ‘Education and Research’ —
so John started his famous OS course, which involved reading
and commenting on the Edition 6 source code.

In 1979, AT&T changed their source licence (it's conjectured, in
response to the popularity of the Lions book), and future AT&T

licencees were not able to use the book legally any more. UNSW
obtained an exemption of some sort; but the upshot was that the
Lions book was copied and copied and studied around the world.
However, the licence change also meant that an alternative was
needed for OS courses.

Many universities stopped teaching OS at any depth. One stand-
out was Andy Tanenbaum'’s group in the Netherlands. He and
his students wrote an OS called ‘Minix’ which was (almost) sys-
tem call compatible with Edition 7 UNIx, and ran on readily avail-
able PC hardware. Minix gained popularity not only as a teach-
ing tool but as a hobbyist almost ‘open source’ OS.

In 1991, Linus Torvalds decided to write his own OS — after all,
how hard could it be? — to fix what he saw as some of the
shortcomings of Minix. The rest is history.

A LITTLE BIT OF HISTORY O.

NICTA

e Basic concepts well established
— Process model
— File system model
— IPC

e Additions:
— Paged virtual memory (3BSD, 1979)
— TCP/IP Networking (BSD 4.1, 1983)

— Multiprocessing (Vendor Unices such as
Sequent’s ‘Balance’, 1984)

The UNIX core concepts have remained more-or-less the same
since Ritchie and Thompson published their CACM paper. The
process model and the file system model have remained the
same. The IPC model (inherited from MERT, a different real-time
OS being developed in Bell Labs in the 70s) also is the same.
However there have been some significant additions.

The most important of these were Paged Virtual Memory (intro-
duced when UNIX was ported to the VAX), which also introduced
the idea of Memory-mapped files; TCP/IP networking, Graphi-
cal terminals, and multiprocessing, in all variants, master-slave,
SMP and NUMA. Most of these improvements were from outside
Bell Labs, and fed into AT&T’s product via an open-source like
patch-sharing.

In the late 80s the core interfaces were standardised by the
IEEE, in the so-called POSIX standards.

ABSTRACTIONS O.

<>
—

Thread of Control

As in any POSIX operating system, the basic idea is to abstract
away physical memory, processors and I/O devices (which can
be arranged in arbitrarily complex topologies in a modern sys-
tem), and provide threads, which are gathered into processes (a
process is a group of threads sharing an address space and a
few other resources), that access files (a file is something that
can be read from or written to. Thus the file abstraction incor-
porates most devices). There are some other features provided:
the OS tries to allocate resources according to some system-
defined policies. It enforces security (processes in general can-
not see each others’ address spaces, and files have owners).

41

PROCESS MODEL Oe

NICTA

NICTA

Root process (i ni t)

fork() creates (almost) exact copy

— Much is shared with parent — Copy-On-Write
avoids overmuch copying

exec() overwrites memory image from a file

Allows a process to control what is shared

The POSIX process model works by inheritance. At boot time,
an initial process (process 1) is hand-crafted and set running. It
then sets up the rest of the system in userspace.

5-1

FORK() AND EXEC() e

NICTA

O A process can clone itself by calling f or k() .
O Most attributes copied:

O Address space (actually shared, marked copy-on-write)

O current directory, current root
O File descriptors
O permissions, etc.

O Some attributes shared:
O Memory segments marked MAP_SHARED
O Open files

First | want to review the UNIX process model. Processes clone
themselves by calling f or k() . The only difference between the
child and parent process after a f or k() is the return value from
fork() — itis zero in the child, and the value of the child’s
process ID in the parent. Most properties child are logical copies
of the parent’s; but open files and shared memory segments are
shared between the child and the parent.

In particular, seek operations by either parent or child will affect
and be seen by the other process.

FORK() AND EXEC() e

NICTA

File descriptor table

Open file descriptor

In—kernel inode
ﬁ Offset
dup()

File descriptor tabl

N P o s W N = O

Process A

YON

Each process has a file descriptor table. Logically this is an array
indexed by a small integer. Each entry in the array contains a flag
(the cl ose- on- exec flag and a pointer to an entry in an open
file table. (The actual data structures used are more complex
than this, for performance and SMP locking).

When a process calls open() , the file descriptor table is scanned
from 0, and the index of the next available entry is returned. The
pointer is instantiated to point to an open file descriptor which in
turn points to an in-kernel representation of an index node — an
inode — which describes where on disc the bits of the file can
be found, and where in the buffer cache can in memory bits be
found. (Remember, this is only a logical view; the implementa-
tion is a lot more complex.)

A process can duplicate a file descriptor by calling dup() or
dup2() . All dup does is find the lowest-numbered empty slot in

> s o O

Process B

the file descriptor table, and copy its target into it. All file descrip-
tors that are dups share the open file table entry, and so share
the current position in the file for read and write.

When a process fork()s, its file descriptor table is copied.
Thus it too shares its open file table entry with its parent.

FORK() AND EXEC() e

NICTA

switch (kidpid = fork()) {

case 0: /* child */
close(0); close(l); close(2);
dup(infd); dup(outfd); dup(outfd);
execve("path/to/ prog", argv, envp);
_exi t (EXI T_FAI LURE) ;

case -1:
/* handle error =/
def aul t:

wai t pi d(ki dpi d, &status, 0);

So a typical chunk of code to start a process looks something
like this. f or k() returns 0 in the child, and the process id of the
child in the parent. The child process closes the three lowest-
numbered file descriptors, then calls dup() to populate them
again from the file descriptors for input and output. It then in-
vokes execve(), one of a family of exec functions, to run prog.
One could alternatively use dup2(), which says which target
file descriptor to use, and closes it if it's in use. Be careful of the
calls to cl ose and dup as order is significant!

Some of the exec family functions do not pass the environment
explicitly (envp); these cause the child to inherit a copy of the
parent's environment.

Any file descriptors marked close on exec will be closed in the
child after the exec; any others will be shared.

STANDARD FILE DESCRIPTORS e

NICTA

0 Standard Input
1 Standard Output
2 Standard Error

O Inherited from parent
O On login, all are set to controlling tty

There are three file descriptors with conventional meanings. File
descriptor 0 is the standard input file descriptor. Many command
line utilities expect their input on file descriptor 0.

File descriptor 1 is the standard output. Almost all command line
utilities output to file descriptor 1.

File descriptor 2 is the standard error output. Error messages
are output on this descriptor so that they don't get mixed into
the output stream. Almost all command line utilities, and many
graphical utilities, write error messages to file descriptor 2.

As with all other file descriptors, these are inherited from the
parent.

When you first log in, or when you start an X terminal, all three
are set to point to the controlling terminal for the login shell.

9-1

FILE MODEL e

NICTA

e Separation of names from content.

e ‘regular’ files ‘just bytes’ — structure/meaning
supplied by userspace

e Devices represented by files.

e Directories map names to index node indices
(i nuns)

e Simple permissions model

The file model is very simple. In operating systems before UNIX,
the OS was expected to understand the structure of all kinds of
files: typically files were organised as fixed (or variable) length
records with one or more indices into them. By contrast, UNIX
regular files are just a stream of bytes.

Originally directories were also just files, albeait with a structure
understood by the kernel. To give more flexibility, they are now
opaque to userspace, and managed by each individual filesys-
tem.

FILE MODEL
bin Ns inode 324
2
- 2
bin 324
boot 3 324
dev 4 - 2
N bash 300
: sh 300
var 5 Is 301
vmlinux | 125 .
etc 6 d
7 which 367
usr
- nano 368
sbin 8 busybox | 402
setserial | 401
bzcmp 265

The diagram shows how the kernel finds a file.

If it gets a file name that starts with a slash (/), it starts at the
root of the directory hierarchy (otherwise it starts at the current
process’s current directory). The first link in the pathname is
extracted (" bi n") by calling into the filesystem, and searched
for in the root directory.

That yields an inode number, that can be used to find the con-
tents of the directory. The next pathname component is then
extracted from the name and looked up. In this case, that's the
end, and inode 301 contains the metadata for "/ bi n/ | s".

(Je

NICTA

NAMEI e

NICTA

0 translate name — inode
0 abstracted per filesystem in VFS layer
O Can be slow: extensive use of caches to speed it up

dentry cache

O hide filesystem and device boundaries
O walks pathname, translating symbolic links

Linux has many different filesystem types. Each has its own
directory layout. Pathname lookup is abstracted in the Virtual
FileSystem (VFS) layer. Traditionally, looking up the name to
inode (nanei) mapping has been slow; Linux currently uses a
cache to speed up lookup.

At any point in the hierarchy a new filesystem can be grafted in
using nount ; nanei () hides these boundaries from the rest of
the system.

Symbolic links haven't been mentioned yet. A symbolic link is a
special file that holds the name of another file. When the kernel
encounters one in a search, it replaces the name it's parsing with
the contents of the symbolic link.

Also, because of changes in the way that pathname lookups
happen, there is no longer a function called nanei () ; however
the files containing the path lookup are still called nanei . [ch] .

C DIALECT e
NICTA
e Extra keywords:
— SectionIDs: _init, _exit, _percpuetc
— Info Taint annotation _user, _rcu, _Xkernel,

__i omem

— Locking annotations __acqui res(X),
_rel eases(x)

— extra typechecking (endian portability) __bi t wi se

C DIALECT

(Je

e Extra iterators

— type_name f or each()

e Extra accessors

— cont ai ner _of ()

NICTA

14

The kernel is written in C, but with a few extras. Code and data
marked __i ni t is used only during initialisation, either at boot
time, or at module insertion time. After it has finished, it can be
(and is) freed.

Code and data marked __exi t is used only at module removal
time. If it's for a built-in section, it can be discarded at link time.
The build system checks for cross-section pointers and warns
about them.

__per cpu data is either unique to each processor, or replicated.
The kernel build systenm can do some fairly rudimentary static
analysis to ensure that pointers passed from userspace are al-
ways checked before use, and that pointers into kernel space
are not passed to user space. This relies on such pointers being
declared with __user or _kernel . It can also check that vari-
ables that are intended as fixed shape bitwise entities are always

used that way—useful for bi-endian architectures like ARM.
Almost every agregate data structure, from lists through trees to
page tables has a defined type-safe iterator.

And there’s a new built-in, cont ai ner _of that, given a type and
a member, returns a typed pointer to its enclosing object.

C DIALECT e

NICTA

e Massive use of inline functions
e Some use of CPP macros

o Little #i f def use in code: rely on optimizer to elide
dead code.

The kernel is written in a style that does not use #i f def in C
files. Instead, feature test constants are defined that evaluate
to zero if the feature is not desired; the GCC optimiser will then
eliminate any resulting dead code.

SCHEDULING e

NICTA

Goals:

e O(1) in number of runnable processes, number of
processors

o ‘fair’
e Good interactive response

e topology-aware

Because Linux runs on machines with up to 4096 processors,
any scheduler must be scalable, and preferably O(1) in the num-
ber of runnable processes. It should also be ‘fair — by which
| mean that processes with similar priority should get similar
amounts of time, and no process should be starved.

Becasue Linux is used by many for desktop./laptop use, it should
give good interactivity, and respond ‘snappily’ to mouse/keyboard
even if that compromises absolute throughput.

And finally, the scheduler should be aware of the caching. pack-
aging and memory topology of the system, so it when it migrates
tasks, it can keep them close to the memory they use, and also
attempt to save power by keeping whole packages idle where
possible.

SCHEDULING e SCHEDULING e
in turn (when it gave poor interactive performance on small ma-

NICTA chines) with the current ‘Completely Fair Scheduler’ NICTA
1. Keep tasks ordered by effective CPU runtime
weighted by nice in red-black tree

2. Always run left-most task.

implementation: - .
P Devil's in the details:

e Changes from time to time. e Avoiding overflow

e Currently ‘CFS’ by Ingo Molnar. e Keeping recent history
e multiprocessor locality
e handling too-many threads

17 arSleaninn tasks

SCHEDULING (e
Linux has had several different schedulers since it was first re-
leased. The first was a very simple scheduler similar to the NICTA
MINIX scheduler. As Linux was deployed to larger, shared, sys-
tems it was found to have poor fairness, so a very simple dual-
entittement scheduler was created. The idea here was that there
were two queues: a deserving queue, and an undeserving queue.
New and freshly woken processes were given a timeslice based
on their ‘nice’ value. When a process’s timeslice was all used up,
it was moved to the ‘undeserving’ qgueue. When the ‘deserving’
gueue was empty, a new timeslice was given to each runnable
process, and the queues were swapped. e Group hierarchy
The main problem with this approach was that it was O(n) in the
number of runnable and running processes—and on the big iron
with 1024 processors, that was too slow. So it was replaced in
the early 2.6 kernels with an O(1) scheduler, that was replaced

The scheduler works by keeping track of run time for each task.
Assuming all tasks are cpu bound and have equal priority, then
all should run at the same rate. On an infinitely parallel machine,
they would always have equal runtime.

The scheduler keeps a period during which all runnable tasks
should get a go on the processor — this period is by default 6ms
scaled by the log of the number of available processors. Within
a period, each task gets a time quantum weighted by its nice.
However there is a minimum quantum; if the machine is over-
loaded, the period is stretched so that the minimum quantum is
0.75ms.

To avoid overflow, the scheduler tracks ‘virtual runtime’ instead
of actual; virtual runtime is normalised to the number of running
tasks. It is also adjusted regularly to avoid overflow.

Tasks are kept in vruntime order in a red-black tree. The leftmost

node then has the least vruntime so far; newly activated entities
also go towards the left — short sleeps (less than one period)
don't affect vruntime; but after awaking from a long sleep, the
vruntime is set to the current minimum vruntime if that is greater
than the task’s current vruntime. Depending on how the sched-
uler has been configured, the new task will be scheduled either
very soon, or at the end of the current period.

SCHEDULING e

NICTA

|
|

1 _,

=]

|
|

|
|

=
=
=
=)

|
|

~—n—
<~

=]

|
|

Your typical system has hardware threads as its bottom layer.
These share functional units, and all cache levels. Hardware
threads share a core, and there can be more than one core in a
package or socket. Depending on the architecture, cores within
a socket may share memory directly, or may be connected via
separate memory buses to different regions of physical memory.
Typically, separate sockets will connect to different regions of
memory.

SCHEDULING e

NICTA

Locality Issues:

e Best to reschedule on same processor (don’t move
cache footprint, keep memory close)

— Otherwise schedule on a ‘nearby’ processor
o Try to keep whole sockets idle

e Somehow identify cooperating threads, co-schedule
on same package?

The rest of the complications in the scheduler are for hierarchi-
cal group-scheduling, and for coping with non-uniform processor
topology.

I’'m not going to go into group scheduling here (even though it's
pretty neat), but its aim is to allow schedulable entities (at the
lowest level, tasks or threads) to be gathered together into higher
level entities according to credentials, or job, or whatever, and
then schedule those entities against each other.

Locality, however, is really important. You'll recall thatin a NUMA
system, physical memory is spread so that some is local to any
particular processor, and other memory is a long way off. To get
good performance, you want as much as possible of a process’s
working set in local memory. Similarly, even in an SMP situation,
if a process’s working set is still (partly) in-cache it should be run
on a processor that shares that cache.

Linux currently uses a ‘first touch’ policy: the first processor to
write to a page causes the page to be allocated to its nearest
memory. On f or k() , the new process is allocated to the same
node as its parent. exec() doesn’t change this (although there
is an API to allow a process to migrate before calling exec() .
So how do processors other than the boot processor ever get to
run anything?

The answer is in runqueue balancing.

21-3

SCHEDULING e

NICTA

One queue per processor (or hyperthread)
Processors in hierarchical ‘domains’
Load balancing per-domain, bottom up

Aims to keep whole domains idle if possible (power
savings)

There is one runqueue for each lowest schedulable entity (hyper-
thread or processor). These are grouped into ‘domains’. Each
domain has its ‘load’ updated at regular intervals (where load is
essentially sum of vruntime/number of processors).

One of the idle processors is nominated the ‘idle load balancer’.
When a processor notices that rebalancing is needed (for exam-
ple, because it is overloaded), it kicks the idle load balancer. The
idle load balancer finds the busiest domains, and tries to move
tasks around to fill up idle processors near the busiest domain. It
needs more imbalance to move a task to a completely idle node
than to a partly idle node.

Solving this problem perfectly is NP-hard — it's equivalent to
the bin-packing problem — but the heuristic approach seems to
work well enough.

22

MEMORY MANAGEMENT e

NICTA

Physical Virtual

Highmem
DMA

Linux kernel 3G

Memory in
zones

User VM

Identity Mapped with offset

hysical address 0

Some of Linux's memory handling is to account for peculiarities
in the PC architecture. To make things simple, as much memory
as possible is mapped at a fixed offset, at least on X86-derived
processors. Because of legacy devices that could only do DMA
to the lowest 16M or memory, the lowest 16M are handled spe-
cially as ZONE_DVA — drivers for devices that need memory in
that range can request it. (Some architectures have no physical
memory in that range; either they have IOMMUs or they do not
support such devices).

The linux kernel maps itself in, and has access to all of user vir-
tual memory. In addition, as much physical memory as possible
is mapped in with a simple offset. This allows easy access for
in-kernel use of physical memory (e.g., for page tables or DMA
buffers).

Any physical memory that cannot be mapped is termed ‘High-

mem’ and is mapped in on an ad-hoc basis. It is possible to
compile the kernel with no ‘Normal’ memory, to allow all of the
4G virtual address space to be allocated to userspace, but this
comes with a performance hit.

MEMORY MANAGEMENT e

NICTA

e Direct mapped pages become logical addresses

— _pa() and __va() convert physical to virtual for
these

e small memory systems have all memory as logical

e More memory — A kernel refer to memory by
struct page

Direct mapped pages can be referred to by logical addresses;
there are a simple pair of macros for converting between physi-
cal and logical addresses for these. Anything not mapped must
be referred to by a st ruct page and an offset within the page.
Thereisastruct page for every physical page (and for some
things that aren’t memory, such as MMIO regions). A struct
page is less than 10 words (where a word is 64 bits on 64-bit
architectures, and 32 bits on 32-bit architectures).

24-1

MEMORY MANAGEMENT e

NICTA
struct page:

e Every frame has a st ruct page (up to 10 words)

o Track:

— flags

backing address space

offset within mapping or freelist pointer

Reference counts

Kernel virtual address (if mapped)

A struct page lives on one of several lists, and is in an array
from which the physical address of the frame can be calculated.
Because there hasto be ast ruct page for every frame, there’s
considerable effort put into keeping them small. Without debug-
ging options, for most architectures they will be 6 words long;
with 4k pages and 64bit words that's a little over 1% of physical
memory in this table.

A frame can be on a free list. If it is not, it will be in an ac-
tive list, which is meant to give an approximation to LRU for the
frames. The same pointers are overloaded for keeping track of
compound frames (for SuperPages). Free lists are organised per
memory domain on NUMA machines, using a buddy algorithm
to merge pages into superpages as necessary.

25-1

MEMORY MANAGEMENT e

struct
vm_area_struct

\Invirtual address order.... NICTA

struct struct
vm_area_struct vm_area_struct

struct task_struct

Page Table
(hardware defined)

Some of the structures for managing memory are shown in the
slide. What's not visible here are the structure for managing
swapping out, NUMA locality and superpages.

There is one t ask_struct for each thread of control. Each
points to an mmst ruct that describes the address space the
thread runs in. Processes can be multi-threaded; one, the first to
have been created, is the thread group leader, and is pointed to
by the nmstruct. The struct mmstruct also has a pointer
to the page table for this process (the shape of which is care-
fully abstracted out so that access to it is almost architecture-
independent, but it always has to be a tree), a set of mappings
held both in a red-black tree (for rapid access to the mapping
for any address) and in a double linked list (for traversing the
space).

Each VMA (virtual memory area, or st ruct vmarea.struct)

describes a contiguous mapped area of virtual memory, where
each page within that area is backed (again contiguously) by
the same object, and has the same permissions and flags. You
could think of each mmap() call creating a new VMA. munnap()
calls that split a mapping, or npr ot ect () calls that change part
of a mapping can also create new VMAS.

26-2

MEMORY MANAGEMENT (e

Address Space:

e Misnamed: means collection of pages mapped from
the same object

e Tracks inode mapped from, radix tree of pages in
mapping

e Has ops (from file system or swap manager) to:
dirty mark a page as dirty
readpages populate frames from backing store
writepages Clean pages
migratepage Move pages between NUMA nodes

MEMORY MANAGEMENT e

NICTA

NICTA

Others... And other housekeeping

Each VMA points into a st ruct addr ess_space which repre-
sents a mappable object. An addr ess_space also tracks which
pages in the page cache belong to this object.

Most pages will either be backed by a file, or will be anonymous
memory. Anonymous memory is either unbacked, or is backed
by one of a number of swap areas.

PAGE FAULT TIME e

e Special case in-kernel faults NICTA

e Find the VMA for the address

— segfault if not found (unmapped area)
e If it's a stack, extend it.

e Otherwise:
1. Check permissions, SIG_SEGV if bad

2. Callhandl e mmfaul t ():
— walk page table to find entry (populate higher
levels if nec. until leaf found)
— call handl e pt e fault()

When a fault happens, the kernel has to work out whether this
is a normal fault (where the page table entry just isn’t instanti-
ated yet) or is a userspace problem. Kernel faults are rare: they
should occur only in a few special cases, and when accessing
user virtual memory. They are handled specially.

It does this by first looking up the VMA in the red-black tree.
If there’s no VMA, then this is an unmapped area, and should
generate a segmentation violation. If it's next to a stack segment,
and the faulting address is at or near the current stack pointer,
then the stack needs to be extended.

If it finds the VMA, then it checks that ther attempted operation is
allowed — for example, writes to a read-only operation will cause
a Segmentation Violation at this stage. If everything’s OK, the
code invokes handl e_.mmf aul t () which walks the page table
in an architecture-agnostic way, populating ‘middle’ directories

29-1

PAGE FAULT TIME e
on the way to the leaf. Transparent superpages are also handled
on the way down. NICTA
Finally handl e_pt e f aul t () is called to handle the fault, now
it's established that there really is a fault to handle.

handl e pt e faul t (): Depending on PTE status, can
e provide an anonymous page
e do copy-on-write processing
e reinstantiate PTE from page cache
e initiate a read from backing store.

and if necessary flushes the TLB.

There are a number of different states the pte can be in. Each
PTE holds flags that describe the state.

The simplest case is if the PTE is zero — it has only just been in-
stantiated. In that case if the VMA has a fault handler, it is called
via do_l i near faul t () to instantiate the PTE. Otherwise an
anonymous page is assigned to the PTE.

If this is an attempted write to a frame marked copy-on-write, a
new anonymous page is allocated and copied to.

If the page is already present in the page cache, the PTE can just
be reinstantiated — a ‘minor’ fault. Otherwise the VMA-specific
fault handler reads the page first — a ‘major’ fault.

If this is the first write to an otherwise clean page, it's corre-
sponding st ruct page is marked dirty, and a call is made into
the writeback system — Linux tries to have no dirty page older
than 30 seconds (tunable) in the cache.

DRIVER INTERFACE e
NICTA

Three kinds of device:
1. Platform device
2. enumerable-bus device

3. Non-enumerable-bus device

There are esentially three kinds of devices that can be attached
to a computer system:

1. platform devices exist at known locations in the system’s
10 and memory address space, with well known inter-
rupts. An example are the COM1 and COM2 ports on
a PC.

2. Devices on a bus such as PCI or USB have unique iden-
tifiers that can be used at run-time to hook up a driver to
the device. It is possible to enumerate all devices on the
bus, and find out what’s attached.

3. Devices on a bus such as i%c or ISA have no standard
way to query what they are.

31-1

DRIVER INTERFACE e

NICTA

Enumerable buses:

static DEFINE_PClI _DEVI CE_TABLE(cp_pci _thl)

{ PCl _DEVI CE(PCl _VENDOR | D_REALTEK, PCI _DEVI CE
{ PCI_DEVI CE(PCI _VENDOR | D_TTTECH, PCI _DEVI CE_

{ }l
1
MODULE_DEVI CE_TABLE(pci, cp_pci_thbl);

Each driver for a bus that identifies devices by some kind of ID
declares a table of IDs of devices it can driver. You can also
specify device IDs to bind against as a module parameter.

DRIVER INTERFACE e

NICTA

Driver interface:
i nit called to register driver
exi t called to deregister driver, at module unload time

probe() called when bus-id matches; returns O if driver
claims device

open, close, etc as necessary for driver class

All drivers have an initialisation function, that, even if it does
nothing else, calls a bus_r egi st er _.dri ver () function to tell
the bus subsystem which devices this driver can manage, and
to provide a vector of functions.

Most drivers also have an exi t () function, that deregisters the
driver.

When the bus is scanned (either at boot time, or in response to
a hot-plug event), these tables are looked up, and the ‘probe’
routine for each driver that has registered interest is called.

The first whose probe is successful is bound to the device. You
can see the bindings in/ sys

DRIVER INTERFACE Y

NICTA

Platform Devices:

static struct platformdevice nslu2_uart
.name = "serial 8250",

.id = PLAT8250 DEV_PLATFORM
.dev.platformdata = nslu2_uart_dat a,
.num_resources = 2,

.resource = nslu2_uart_resources,

b

Platform devices are made to look like bus devices. Because
there is no unique ID, the platform-specific initialisation code reg-
isters platform devices in a large table.

Here’s an example, from the SLUG. Each platform device is de-
scribed by a struct pl atformdevi ce that contains at the
least a name for the device, the number of ‘resources’ (10 or
MMIO regions) and an array of those resources. The initialisa-
tion code calls pl at f or mdevi ce_r egi st er () on each plat-
form device. This registers against a dummy ‘platform bus’ using
the name and ID.

The 8250 driver eventually calls seri al 8250 _pr obe() which
scans the platform bus claiming anything with the name ‘se-
rial8250'.

PY DRIVER INTERFACE e

NICTA

={

non-enumerable buses: Treat like platform devices

At present, devices on non-enumerable buses are treated a bit
like platform devices: at system initialisation time a table of the
addresses where devices are expected to be is created; when
the driver for the adapter for the bus is initialised, the bus ad-
dresses are probed.

SUMMARY e
NICTA
e |'ve told you status today
— Next week it may be different
e I've simplified a lot. There are many hairy details
BACKGROUND READING e
NICTA

References

Ritchie, D. M. (1984), ‘The evolution of the UNIX
time-sharing system’, AT&T Bell Laboratories
Technical Journal 63(8), 1577-1593.

Ritchie, D. M. & Thompson, K. (1974), ‘The UNIX
time-sharing system’, CACM 17(7), 365—-375.

