
1

COMP9242
Advanced Operating Systems

S2/2011 Week 7:
Multiprocessors – Part 2

COMP9242 S2/2011 W07 2

Multiprocessor OS

•  Key design challenges:
–  Correctness of (shared) data structures
–  Scalability

COMP9242 S2/2011 W07

3

Scalability of Multiprocessor OS

Remember Amdahl’s law
–  Serialisation prevents scalability
–  Whenever application not running on core, scalability reduced

Sources of Serialisation:
•  Locking

–  Waiting for a lock stalls self
–  Lock implementation:

•  Atomic operations lock bus stalls everyone
•  Cache coherence traffic loads bus slows down others

•  Memory access
–  Relatively high latency to memory stalls self

•  Cache
–  Processor stalled while cache line is fetched or invalidated
–  Limited by latency of interconnect round-trips
–  Performance depends on data size (cache lines) and contention

(number of cores)
COMP9242 S2/2011 W07 4

More Cache Issues

•  False sharing
–  Unrelated data structs share the same cache line
–  Accessed from different processors
 Cache coherence traffic and delay

•  Cache line bouncing
–  Shared R/W on many processors
–  E.g: bouncing due to locks: each processor spinning on a lock brings it

into its own cache
 Cache coherence traffic and delay

•  Cache misses
–  Potentially direct memory access
–  When does cache miss occur?

•  Application runs on new core
•  Cached memory has been evicted

COMP9242 S2/2011 W07

5

Optimisation for Scalability

•  Reduce amount of code in critical sections
–  Increases concurrency
–  Fine grained locking

•  Lock data not code
•  Tradeoff: more concurrency but more locking (and locking causes

serialisation)
–  Lock free data structures

•  Reduce false sharing
–  Pad data structures to cache lines

•  Reduce cache line bouncing
–  Reduce sharing
–  E.g: MCS locks use local data

•  Reduce cache misses
–  Affinity scheduling: run process on the core where it last ran.
–  Avoid cache pollution

COMP9242 S2/2011 W07 6

Contemporary Multiprocessor Hardware

•  Intel Nehalem: Beckton, Westmere
•  AMD Opteron: Barcelona, Magny Cours
•  ARM Cortex A9, A15 MPCore
•  Oracle (Sun) UltraSparc T1,T2,T3,T4 (Niagara)

COMP9242 S2/2011 W07

2

7

Scale and Structure

•  ARM Cortex A9 MPCore

COMP9242 S2/2011 W07
From http://www.arm.com/images/Cortex-A9-MP-core_Big.gif

8

Scale and Structure

•  Intel Nehalem

COMP9242 S2/2011 W07

From www.dawnofthered.net/wp-content/uploads/2011/02/Nehalem-EX-architecture-detailed.jpg

9

Interconnect

•  AMD Barcelona

COMP9242 S2/2011 W07

From www.sigops.org/sosp/sosp09/slides/baumann-slides-sosp09.pdf

10

Memory Locality and Caches

COMP9242 S2/2011 W07

From www.systems.ethz.ch/education/past-courses/fall-2010/aos/lectures/wk10-multicore.pdf

11

Interprocessor Communication

COMP9242 S2/2011 W07

UltraSPARC® IIIi
processor

1x

2004 2005 2006 2007 2008

UltraSPARC® T1
processor
32 threads
eight cores

14x

UltraSPARC T2
processor
64 threads
eight cores

35x

“Victoria Falls”
128 threads

16 cores
65x

(two sockets)

FB DIMM FB DIMM FB DIMM FB DIMM

SPU SPU SPU SPU SPU SPU SPU SPU

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <95 W x8 @ 2.0 GHz

NIU
(Ethernet+)

Sys I/F
Buffer Switch Core PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

FB DIMM FB DIMM FB DIMM FB DIMM

FPU FPU FPU FPU FPU FPU FPU FPU

2x 10
Gigabit Ethernet

Power <100 W x8 @2. GHz

NIU
(E-NET+)

Sys I/F
Buffer Switch Core

PCIe

L2$ L2$ L2$ L2$ L2$ L2$ L2$ L2$

C0 C1 C2 C3 C4 C5 C6 C7

MCU

Full Cross Bar

MCU MCU MCU

From Sun/Oracle

12

Experimental/Future Multiprocessor Hardware

•  Intel SCC
•  Microsoft Beehive
•  Intel Polaris
•  Tilera Tile64

COMP9242 S2/2011 W07

3

13

Scale and Structure

•  Tilera Tile64, Intel Polaris

COMP9242 S2/2011 W07

PCIe 1

MAC/
PHY

SerDes

GbE

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG,SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

0

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D

I-TLB D-TLB

From www.tilera.com/products/processors/TILE64

14

Cache and Memory

•  Intel SCC

COMP9242 S2/2011 W07

From techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf

15

Interprocessor Communication

•  Beehive

COMP9242 S2/2011 W07

From projects.csail.mit.edu/beehive/BeehiveV5.pdf

16

Summary

•  Scalability
–  100+ cores
–  Amdahl’s law really kicks in

•  NUMA
–  Also variable latencies due to topology and cache coherence

•  Cache coherence may not be possible
–  Can’t use it for locking
–  Shared data structures require explicit work

•  Computer is a distributed system
–  Message passing
–  Consistency and Synchronisation
–  Fault tolerance

•  Heterogeneity
–  Heterogeneous cores, memory, etc.
–  Properties of similar systems may vary wildly (e.g. interconnect topology

and latencies between different AMD platforms)
COMP9242 S2/2011 W07

17

OS Design for Modern (and future) Multiprocessors

•  Avoid shared data
–  Performance issues arise less from lock contention than from data

locality
•  Explicit communication

–  Regain control over communication costs
–  Sometimes it’s the only option

•  Tradeoff: parallelism vs synchronisation
–  Synchronisation introduces serialisation
–  Make concurrent threads independent

•  Allocate for locality
–  E.g. provide memory local to a core

•  Schedule for locality
–  With cached data
–  With local memory

•  Tradeoff: uniprocessor performance vs scalability

COMP9242 S2/2011 W07 18

Design approaches

•  Divide and conquer
–  Using virtualisation
–  Using exokernel

•  Reduced sharing
–  By design
–  Brute force

•  No sharing
–  Computer is a distributed system

COMP9242 S2/2011 W07

4

19

Divide and Conquer

Disco
–  Scalability is too hard!

•  Context:
–  ca. 1995, large ccNUMA multiprocessors appearing
–  Scaling OSes requires extensive modifications

•  Idea:
–  Implement a scalable VMM
–  Run multiple OS instances

•  VMM has most of the features of a scalable OS:
–  NUMA aware allocator
–  Page replication, remapping, etc.

•  VMM substantially simpler/cheaper to implement
•  Modern incarnations of this

–  Virtual servers (Amazon, etc.)
–  Research (Cerebrus)

COMP9242 S2/2011 W07

Running commodity OSes on scalable multiprocessors [Bugnion et al., 1997]
http://www-flash.stanford.edu/Disco/

20

Disco Architecture

COMP9242 S2/2011 W07

21

Disco Performance

COMP9242 S2/2011 W07 22

Space-Time Partitioning

Tessellation
–  Space-Time partitioning
–  2-level scheduling

•  Context:
–  2009-… highly parallel multicore systems
–  Berkeley Par Lab

COMP9242 S2/2011 W07

Tessellation: Space-Time Partitioning in a Manycore Client OS [Liu et al., 2010]
http://tessellation.cs.berkeley.edu/

23

Tessellation

COMP9242 S2/2011 W07 24

Reduce Sharing

K42
•  Context:

–  1997-2006: OS for ccNUMA systems
–  IBM, U Toronto (Tornado, Hurricane)

•  Goals:
–  High locality
–  Scalability

•  Object Oriented
–  Fine grained objects

•  Clustered (Distributed) Objects
–  Data locality

•  Deferred deletion (RCU)
–  Avoid locking

•  NUMA aware memory allocator
–  Memory locality

COMP9242 S2/2011 W07

Clustered Objects, Ph.D. thesis [Appavoo, 2005]
http://www.research.ibm.com/K42/

5

25

K42: Fine-grained objects

COMP9242 S2/2011 W07 26

K42: Clustered objects

•  Globally valid object
reference

•  Resolves to
–  Processor local

representative
•  Sharing, locking strategy

local to each object
•  Transparency

–  Eases complexity
–  Controlled introduction of

locality
•  Shared counter:

–  inc, dec: local access
–  val: communication

•  Fast path:
–  Access mostly local

structures
COMP9242 S2/2011 W07

27

K42 Performance

COMP9242 S2/2011 W07

2.4.19

28

Corey

•  Context
–  2008, high-end multicore servers, MIT

•  Goals:
–  Application control of OS sharing

•  Address Ranges
–  Control private per core and shared address spaces

•  Kernel Cores
–  Dedicate cores to run specific kernel functions

•  Shares
–  Lookup tables for kernel objects allow control over which object

identifiers are visible to other cores.
•  Linux scalability (2010 – scale Linux to 48 cores)

–  sloppy counters, per-core data structs, fine-grained lock, lock free,
cache lines : 3002 lines of code changed

–  no scalability reason to give up on traditional operating system
organizations just yet.

COMP9242 S2/2011 W07

Corey: An Operating System for Many Cores [Boyd-Wickizer et al., 2008]
http://pdos.csail.mit.edu/corey

An Analysis of Linux Scalability to Many Cores [Boyd-Wickizer et al., 2010]

29

FlexSC

•  Context:
–  2010, commodity multicores
–  U Toronto

•  Goal:
–  Reduce context switch

overhead of system calls
•  Syscall context switch:

–  Usual mode switch overhead
–  But: cache and TLB pollution!

•  Asynchronous system calls
–  Batch system calls
–  Run them on dedicated cores

•  FlexSC-Threads
–  M on N
–  M >> N

COMP9242 S2/2011 W07

FlexSC: Flexible System Call Scheduling with Exception-Less System Calls
[Soares and Stumm., 2010]

30

FlexSC Results

COMP9242 S2/2011 W07

6

31

No sharing

•  Multikernel
–  Barrelfish
–  fos: factored operating system

COMP9242 S2/2011 W07

The Multikernel: A new OS architecture for scalable multicore systems [Baumann et al., 2009]
http://www.barrelfish.org/

32

Barrelfish

•  Context:
–  2007 large multicore machines appearing
–  100s of cores on the horizon
–  NUMA (cc and non-cc)
–  ETH Zurich and Microsoft

•  Goals:
–  Scale to many cores
–  Support and manage heterogeneous hardware

•  Approach:
–  Structure OS as distributed system

•  Design principles:
–  Interprocessor communication is explicit
–  OS structure hardware neutral
–  State is replicated

•  Microkernel
–  Similar to seL4: capabilities

COMP9242 S2/2011 W07

The Multikernel: A new OS architecture for scalable multicore systems
[Baumann et al., 2009] http://www.barrelfish.org/

33

Barrelfish

COMP9242 S2/2011 W07 34

Barrelfish: Replication

•  Kernel + Monitor:
–  Only memory shared for message channels

•  Monitor:
–  Collectively coordinate system-wide state

•  System-wide state:
–  Memory allocation tables
–  Address space mappings
–  Capability lists

•  What state is replicated in Barrelfish
–  Capability lists

•  Consistency and Coordination
–  Retype: two-phase commit to globally execute operation in order
–  Page (re/un)mapping: one-phase commit to synchronise TLBs

COMP9242 S2/2011 W07

35

Barrelfish: Communication

•  Different mechanisms:
–  Intra-core

•  Kernel endpoints
–  Inter-core

•  URPC
•  URPC

–  Uses cache coherence + polling
–  Shared bufffer

•  Sender writes a cache line
•  Receiver polls on cache line
•  (last word so no part message)

–  Polling?
•  Cache only changes when sender

writes, so poll is cheap
•  Switch to block and IPI if wait is

too long.

COMP9242 S2/2011 W07 36

Barrelfish: Results

•  Message passing vs caching

COMP9242 S2/2011 W07

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

La
te

n
cy

 (c
yc

le
s
!

10
0

0
)

Cores

SHM8
SHM4
SHM2
SHM1
MSG8
MSG1

Server

7

37

Barrelfish: Results

•  Broadcast vs Multicast

COMP9242 S2/2011 W07

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

n
cy

 (c
yc

le
s
!

10
0

0
)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

38

Barrelfish: Results

•  TLB shootdown

COMP9242 S2/2011 W07

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

La
te

n
cy

 (c
yc

le
s

×
 1

0
0

0
)

Cores

Windows
Linux

Barrelfish

39

Summary

•  Trends in multicore
–  Scale (100+ cores)
–  NUMA
–  No cache coherence
–  Distributed system
–  Heterogeneity

•  OS design guidelines
–  Avoid shared data
–  Explicit communication
–  Locality

•  Approaches to multicore OS
–  Partition the machine (Disco, Tessellation)
–  Reduce sharing (K42, Corey, Linux, FlexSC)
–  No sharing (Barrelfish, fos)

COMP9242 S2/2011 W07

