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Multiprocessor OS 

•  Key design challenges: 
–  Correctness of (shared) data structures 
–  Scalability 

COMP9242 S2/2011 W07 

3 

Scalability of Multiprocessor OS 

Remember Amdahl’s law 
–  Serialisation prevents scalability 
–  Whenever application not running on core, scalability reduced 

Sources of Serialisation: 
•  Locking 

–  Waiting for a lock  stalls self 
–  Lock implementation:  

•  Atomic operations lock bus  stalls everyone 
•  Cache coherence traffic loads bus  slows down others 

•  Memory access 
–  Relatively high latency to memory   stalls self  

•  Cache 
–  Processor stalled while cache line is fetched or invalidated 
–  Limited by latency of interconnect round-trips 
–  Performance depends on data size (cache lines) and contention 

(number of cores) 
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More Cache Issues 

•  False sharing 
–  Unrelated data structs share the same cache line 
–  Accessed from different processors  
 Cache coherence traffic and delay 

•  Cache line bouncing 
–  Shared R/W on many processors 
–  E.g: bouncing due to locks: each processor spinning on a lock brings it 

into its own cache 
 Cache coherence traffic and delay 

•  Cache misses 
–  Potentially direct memory access 
–  When does cache miss occur? 

•  Application runs on new core  
•  Cached memory has been evicted 
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Optimisation for Scalability 

•  Reduce amount of code in critical sections 
–  Increases concurrency 
–  Fine grained locking 

•  Lock data not code 
•  Tradeoff: more concurrency but more locking (and locking causes 

serialisation) 
–  Lock free data structures 

•  Reduce false sharing 
–  Pad data structures to cache lines 

•  Reduce cache line bouncing 
–  Reduce sharing 
–  E.g: MCS locks use local data 

•  Reduce cache misses 
–  Affinity scheduling: run process on the core where it last ran. 
–  Avoid cache pollution 
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Contemporary Multiprocessor Hardware 

•  Intel Nehalem: Beckton, Westmere 
•  AMD Opteron: Barcelona, Magny Cours 
•  ARM Cortex A9, A15 MPCore 
•  Oracle (Sun) UltraSparc T1,T2,T3,T4 (Niagara) 

COMP9242 S2/2011 W07 



2 

7 

Scale and Structure 

•  ARM Cortex A9 MPCore 
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Scale and Structure 

•  Intel Nehalem 
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From www.dawnofthered.net/wp-content/uploads/2011/02/Nehalem-EX-architecture-detailed.jpg 
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Interconnect 

•  AMD Barcelona 
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From www.sigops.org/sosp/sosp09/slides/baumann-slides-sosp09.pdf 
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Memory Locality and Caches 
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From www.systems.ethz.ch/education/past-courses/fall-2010/aos/lectures/wk10-multicore.pdf 
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Interprocessor Communication 
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Experimental/Future Multiprocessor Hardware 

•  Intel SCC 
•  Microsoft Beehive 
•  Intel Polaris 
•  Tilera Tile64 
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Scale and Structure 

•  Tilera Tile64, Intel Polaris 
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Cache and Memory 

•  Intel SCC 
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From techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf 
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Interprocessor Communication 

•  Beehive 
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From projects.csail.mit.edu/beehive/BeehiveV5.pdf 
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Summary 

•  Scalability 
–  100+ cores 
–  Amdahl’s law really kicks in 

•  NUMA 
–  Also variable latencies due to topology and cache coherence 

•  Cache coherence may not be possible 
–  Can’t use it for locking 
–  Shared data structures require explicit work 

•  Computer is a distributed system 
–  Message passing 
–  Consistency and Synchronisation 
–  Fault tolerance 

•  Heterogeneity 
–  Heterogeneous cores, memory, etc. 
–  Properties of similar systems may vary wildly (e.g. interconnect topology 

and latencies between different AMD platforms) 
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OS Design for Modern (and future) Multiprocessors 

•  Avoid shared data 
–  Performance issues arise less from lock contention than from data 

locality 
•  Explicit communication 

–  Regain control over communication costs 
–  Sometimes it’s the only option 

•  Tradeoff: parallelism vs synchronisation 
–  Synchronisation introduces serialisation 
–  Make concurrent threads independent  

•  Allocate for locality 
–  E.g. provide memory local to a core 

•  Schedule for locality 
–  With cached data 
–  With local memory 

•  Tradeoff: uniprocessor performance vs scalability 
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Design approaches 

•  Divide and conquer 
–  Using virtualisation 
–  Using exokernel 

•  Reduced sharing 
–  By design 
–  Brute force 

•  No sharing 
–  Computer is a distributed system 

COMP9242 S2/2011 W07 



4 

19 

Divide and Conquer 

Disco 
–  Scalability is too hard! 

•  Context:  
–  ca. 1995, large ccNUMA multiprocessors appearing 
–  Scaling OSes requires extensive modifications 

•  Idea: 
–  Implement a scalable VMM 
–  Run multiple OS instances 

•  VMM has most of the features of a scalable OS: 
–  NUMA aware allocator 
–  Page replication, remapping, etc.  

•  VMM substantially simpler/cheaper to implement 
•  Modern incarnations of this 

–  Virtual servers (Amazon, etc.) 
–  Research (Cerebrus) 
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Running commodity OSes on scalable multiprocessors [Bugnion et al., 1997] 
http://www-flash.stanford.edu/Disco/  
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Disco Architecture 
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Disco Performance 
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Space-Time Partitioning 

Tessellation 
–  Space-Time partitioning 
–  2-level scheduling 

•  Context:  
–  2009-… highly parallel multicore systems 
–  Berkeley Par Lab 
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Tessellation: Space-Time Partitioning in a Manycore Client OS [Liu et al., 2010] 
http://tessellation.cs.berkeley.edu/ 
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Tessellation 
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Reduce Sharing 

K42 
•  Context: 

–  1997-2006: OS for ccNUMA systems 
–  IBM, U Toronto (Tornado, Hurricane) 

•  Goals:  
–  High locality 
–  Scalability 

•  Object Oriented 
–  Fine grained objects 

•  Clustered (Distributed) Objects 
–  Data locality 

•  Deferred deletion (RCU) 
–  Avoid locking  

•  NUMA aware memory allocator 
–  Memory locality 
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Clustered Objects, Ph.D. thesis [Appavoo, 2005] 
http://www.research.ibm.com/K42/ 
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K42: Fine-grained objects 
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K42: Clustered objects 

•  Globally valid object 
reference 

•  Resolves to  
–  Processor local 

representative 
•  Sharing, locking  strategy 

local to each object 
•  Transparency 

–  Eases complexity 
–  Controlled introduction of 

locality 
•  Shared counter: 

–  inc, dec: local access 
–  val: communication 

•  Fast path: 
–  Access mostly local 

structures 
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K42 Performance 
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Corey 

•  Context 
–  2008, high-end multicore servers, MIT 

•  Goals: 
–  Application control of OS sharing 

•  Address Ranges 
–  Control private per core and shared address spaces 

•  Kernel Cores 
–  Dedicate cores to run specific kernel functions 

•  Shares 
–  Lookup tables for kernel objects allow control over which object 

identifiers are visible to other cores. 
•  Linux scalability (2010 – scale Linux to 48 cores) 

–  sloppy counters, per-core data structs, fine-grained lock, lock free, 
cache lines : 3002 lines of code changed 

–  no scalability reason to give up on traditional operating system 
organizations just yet. 
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Corey: An Operating System for Many Cores [Boyd-Wickizer et al., 2008] 
http://pdos.csail.mit.edu/corey 

An Analysis of Linux Scalability to Many Cores [Boyd-Wickizer et al., 2010] 

29 

FlexSC 

•  Context: 
–  2010, commodity multicores 
–  U Toronto 

•  Goal: 
–  Reduce context switch 

overhead of system calls 
•  Syscall context switch: 

–  Usual mode switch overhead 
–  But: cache and TLB pollution! 

•  Asynchronous system calls 
–  Batch system calls 
–  Run them on dedicated cores 

•  FlexSC-Threads   
–  M on N 
–  M >> N 
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FlexSC: Flexible System Call Scheduling with Exception-Less System Calls  
[Soares and Stumm., 2010] 
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FlexSC Results 
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No sharing 

•  Multikernel 
–  Barrelfish 
–  fos: factored operating system 
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The Multikernel: A new OS architecture for scalable multicore systems [Baumann et al., 2009] 
http://www.barrelfish.org/ 

32 

Barrelfish 

•  Context:  
–  2007 large multicore machines appearing 
–  100s of cores on the horizon 
–  NUMA (cc and non-cc) 
–  ETH Zurich and Microsoft 

•  Goals: 
–  Scale to many cores 
–  Support and manage heterogeneous hardware 

•  Approach: 
–  Structure OS as distributed system 

•  Design principles: 
–  Interprocessor communication is explicit 
–  OS structure hardware neutral 
–  State is replicated 

•  Microkernel 
–  Similar to seL4: capabilities 
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The Multikernel: A new OS architecture for scalable multicore systems  
[Baumann et al., 2009]   http://www.barrelfish.org/ 
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Barrelfish 
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Barrelfish: Replication 

•  Kernel + Monitor: 
–  Only memory shared for message channels 

•  Monitor: 
–  Collectively coordinate system-wide state 

•  System-wide state: 
–  Memory allocation tables 
–  Address space mappings 
–  Capability lists 

•  What state is replicated in Barrelfish 
–  Capability lists 

•  Consistency and Coordination 
–  Retype: two-phase commit to globally execute operation in order 
–  Page (re/un)mapping: one-phase commit to synchronise TLBs 
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Barrelfish: Communication 

•  Different mechanisms: 
–  Intra-core 

•  Kernel endpoints 
–  Inter-core 

•  URPC 
•  URPC 

–  Uses cache coherence + polling 
–  Shared bufffer 

•  Sender writes a cache line 
•  Receiver polls on cache line 
•  (last word so no part message) 

–  Polling? 
•  Cache only changes when sender 

writes, so poll is cheap 
•  Switch to block and IPI if wait is 

too long. 
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Barrelfish: Results 

•  Message passing vs caching 
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Barrelfish: Results 

•  Broadcast vs Multicast 

COMP9242 S2/2011 W07 

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

La
te

n
cy

 (c
yc

le
s 
! 

10
0

0
)

Cores

Broadcast
Unicast

Multicast
NUMA-Aware Multicast

38 

Barrelfish: Results 

•  TLB shootdown 
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Summary 

•  Trends in multicore 
–  Scale (100+ cores) 
–  NUMA 
–  No cache coherence  
–  Distributed system 
–  Heterogeneity 

•  OS design guidelines 
–  Avoid shared data 
–  Explicit communication 
–  Locality 

•  Approaches to multicore OS 
–  Partition the machine (Disco, Tessellation) 
–  Reduce sharing (K42, Corey, Linux, FlexSC) 
–  No sharing (Barrelfish, fos) 
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