
COMP9242
Advanced Operating Systems

S2/2011 Week 2:
Caches:
What every OS Designer Must Know

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 2

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

•  You are free:
–  to share—to copy, distribute and transmit the work
–  to remix—to adapt the work

•  under the following conditions:
–  Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3

The Memory Wall

COMP9242 S2/2011 W02

Multicore offsets stagnant per-core performance with proliferation of cores
!  Basic trend is unchanged

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 4

Caching

!  Cache is fast (1–5 cycle access time) memory sitting between fast registers
and slow RAM (10–100 cycles access time)

!  Holds recently-used data or instructions to save memory accesses
!  Matches slow RAM access time to CPU speed if high hit rate (> 90%)
!  Is hardware maintained and (mostly) transparent to software
!  Sizes range from few KiB to several MiB.
!  Usually a hierarchy of caches (2–5 levels), on- and off-chip

Good overview of implications of caches for operating systems: [Schimmel 94]

Registers Cache Main
Memory

Disk

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5

Cache Organization

!  Data transfer unit between registers and L1 cache: ! 1 word (1–16B)
!  Cache line is transfer unit between cache and RAM (or slower cache)

•  typically 16–32 bytes, sometimes 128 bytes and more
!  Line is also unit of storage allocation in cache
!  Each line has associated control info:

•  valid bit
•  modified bit
•  tag

!  Cache improves memory access by:
•  absorbing most reads (increases bandwidth, reduces latency)
•  making writes asynchronous (hides latency)
•  clustering reads and writes (hides latency)

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 6

Cache Access

!  Virtually indexed: looked up by virtual address
•  operates concurrently with address translation

!  Physically indexed: looked up by physical address
•  requires result of address translation

CPU
Virtual
Address MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data Data Data

Physical
Address

Physical
Address

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 7

Cache Indexing

!  The tag is used to distinguish lines of set…
!  Consists of high-order bits not used for indexing

t1

t s b

Address

t0

t2

Byte #

data tag

tag

Set #

1 Set

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 8

Cache Indexing

!  Address is hashed to produce index of line set.
!  Associative lookup of line within set
!  n lines per set: n-way set-associative cache.

•  typically n = 1 . . . 5, some embedded processors use 32–64
•  n = 1 is called direct mapped.
•  n = ! is called fully associative (unusual for CPU caches)

!  Hashing must be simple (complex hardware is slow)
•  use least-significant bits of address

CPU
Registers

Main Memory Line 1

Line 2

Line 3

Line 4

Set 0

Set 1

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 9

Cache Indexing: Direct Mapped

tag(25) index(3) byte(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

Index bits used
to select
unique line to
match

Tag used to check
whether lines contains
requested address

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 10

Cache Indexing: 2-Way Associative

tag(26) index(2) byte(4)

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

Index bits
used to
select set to
match within

Tag compared with
both lines within set
for match

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 11 COMP9242 S2/2011 W02

Caching Index: Fully Associative

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3

Word 3
Word 3

Word 3

Word 3

Word 3

Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

Lower bits used to
select appropriate
bytes from line

tag(28) byte(4)

Tag compared with all
lines for a match

Note: Lookup hardware for many tags
is large and slow " does not scale

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 12 COMP9242 S2/2011 W02

Cache Mapping

!  Different memory locations map to same cache line:

!  Locations mapping to cache set # i are said to be of colour i
!  n-way associative cache can hold n lines of the same colour

0 1 … n-1 …

Cache

RAM

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1

0 1 … n-1

!  Types of cache misses:
•  Compulsory miss: data cannot be in cache (of infinite size)

- first access (after flush)
•  Capacity miss: all cache entries are in use by other data
•  Conflict miss: set of the right colour is full

- miss that would not happen on fully-associative cache
•  Coherence miss: miss forced by hardware coherence protocol

- multiprocessors

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 13 COMP9242 S2/2011 W02

Cache Replacement Policy

!  Indexing (using address) points to specific line set.
!  On miss: all lines of set valid " must replace existing line.
!  Replacement strategy must be simple (hardware)

•  Dirty bit determines whether line needs to be written back
•  Typical policies:

- pseudo-LRU
- FIFO
- random
- toss clean

Address

VD
VD
VD
VD
VD
VD
VD
VD

Tag
Tag
Tag
Tag
Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 14 COMP9242 S2/2011 W02

Cache Write Policy

!  Treatment of store operations:
•  write back: Stores update cache only

memory is updated once dirty line is replaced (flushed)
" clusters writes
# memory is inconsistent with cache
# unsuitable for (most) multiprocessor designs

•  write through: Stores update cache and memory immediately
" memory is always consistent with cache
# increased memory/bus traffic

!  On store to a line not presently in cache, use:
•  write allocate: allocate a cache line to the data and store

- typically requires reading line into cache first!
•  no allocate: store to memory and bypass cache

!  Typical combinations:
•  write-back & write-allocate
•  write-through & no-allocate

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 15 COMP9242 S2/2011 W02

Cache Addressing Schemes

!  For simplicity, discussion so far assumed cache sees only one kind of
address: virtual or physical

!  However, indexing and tagging can use different addresses
!  Four possible addressing schemes:

•  virtually-indexed, virtually-tagged (VV) cache
•  virtually-indexed, physically-tagged (VP) cache
•  physically-indexed, virtually-tagged (PV) cache
•  physically-indexed, physically-tagged (PP) cache

!  PV caches can only make sense with complex and unusual MMU designs
•  not considered here any further

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 16 COMP9242 S2/2011 W02

Virtually-Indexed, Virtually-Tagged Cache

!  Also called
•  virtually-addressed cache

!  Also (incorrectly) called
•  virtual cache
•  virtual address cache

!  Uses virtual addresses only

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

MMU

Physical Memory

•  can operate
concurrently with
MMU

•  still needs MMU
lookup to determine
access rights

!  Used for on-core L1

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 17 COMP9242 S2/2011 W02

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

index(2) byte(4)

CPU

MMU

Physical Memory

tag(25)

Virtually-Indexed, Physically-Tagged Cache

!  Virtual address for accessing line
!  Physical address for tagging
!  Needs address translation

completed for retrieving data
!  Indexing concurrent with MMU,

 use MMU output for tag check
!  Typically used for

on-core L1

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 18 COMP9242 S2/2011 W02

Physically-Indexed, Physically-Tagged Cache

!  Only uses physical addresses
!  Needs address translation completed

before begin of access
!  Typically used off-core
!  Note: page offset is invariant under

virtual-address translation

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

tag(26) index(2) byte(4)

CPU

Physical Memory

MMU

•  if index bits are subset
of offset, PP cache can
be accessed without
result of translation!

•  VP and PP cache
become the same in this
case

•  fast and suitable for on-
core use (esp. L1)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 19 COMP9242 S2/2011 W02

Cache Issues

!  Caches are managed by hardware transparent to software
•  OS doesn’t have to worry about them, right?

!  Software-visible cache effects:
•  performance

Wrong!

VAS1

VAS2

PAS

A

A'

A

A”

B

B'

C

C”

•  homonyms:
- same name, different data
- can affect correctness!

•  synonyms:
- different name, same data
- can affect correctness!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 20 COMP9242 S2/2011 W02

Virtually-Indexed Cache Issues

Homonyms — same name for different data:
!  Problem: VA used for indexing is

 context dependent
•  same VA refers to different PAs
•  tag does not uniquely identify data!
•  wrong data is accessed!
•  an issue for most OS!

!  Homonym prevention:
•  flush cache on context

switch
•  force non-overlapping

address-space layout
•  tag VA with address-space ID (ASID)

- makes VAs global
•  use physical tags

VD
VD
VD
VD

Tag
Tag
Tag
Tag

Word 3
Word 3
Word 3
Word 3

Word 2
Word 2
Word 2
Word 2

Word 1
Word 1
Word 1
Word 1

Word 0
Word 0
Word 0
Word 0

CPU

MMU

Physical Memory

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 21 COMP9242 S2/2011 W02

Virtually-Indexed Cache Issues

Synonyms (aliases) — multiple names
for same data:
!  Several VAs map to the same PA

•  frames shared between processes
•  multiple mappings of frame within AS

!  May access stale data:
•  same data cached in several lines
•  on write, one synonym

updated
•  read on other synonym

returns old value!
•  physical tags don’t help!
•  ASIDs don’t help

!  Are synonyms a problem?
•  depends on page and

cache size
•  no problem for R/O data or I-caches

VD
VD Tag Tag

Word 3
Word 3

Word 2
Word 2

Word 1
Word 1

Word 0
Word 0

CPU

MMU

Physical Memory

VD

VD

Tag

Tag
Tag

Word 0

Word 0

Word 1

Word 1

Word 2

Word 2

Word 3

Word 3

tag(26) index(2) byte(4)

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 22 COMP9242 S2/2011 W02

Example: MIPS R4x00 Synonyms

!  ASID-tagged, on-chip L1 VP cache
•  16KiB cache with 32B lines, 2-way set associative
•  4KiB (base) page size
•  set size = 16KiB/2 = 8 KiB > page size
•  overlap of tag and index bits, but come from different addresses!

!  Remember, location of data in cache determined by index
•  tag only confirms whether it’s a hit!
•  synonym problem iff VA12 " VA#12
•  similar issues on other processors, eg. ARM11 (set size 16KiB, page size 4KiB)

39

35

13 5 0
VA

Cache
index (8 bits)

tag (24 bits)
0 11

s b

PFN offset PA

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 23 COMP9242 S2/2011 W02

Address Mismatch Problem: Aliasing

!  Page aliased in different address spaces
•  AS1: VA12 = 1, AS2: VA12 = 0

!  One alias gets modified
•  in a write-back cache, other alias sees stale data
•  lost-update problem

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Physical Memory

Cache

write

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 24 COMP9242 S2/2011 W02

Address Mismatch Problem: Re-Mapping

!  Unmap page with a dirty cache line
!  Re-use (remap) frame for a different page (in same or different AS)
!  Write to new page

•  without mismatch, new write will overwrite old (hits same cache line)
•  with mismatch, order can be reversed: “cache bomb”

Address Space 1
Page 0x00181000

Address Space 2
Page 0x0200000

Physical Memory

Cache

write

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 25

DMA Consistency Problem

!  DMA (normally) uses physical addresses and bypasses cache
•  CPU access inconsistent with device access
•  need to flush cache before device write
•  need to invalidate cache before device read

Physical
Memory

Cache

write

DMA

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 26

Avoiding Synonym Problems

!  Hardware synonym detection
!  Flush cache on context switch

•  doesn’t help for aliasing within address space

!  Detect synonyms and ensure
•  all read-only, OR
•  only one synonym mapped

!  Restrict VM mapping so synonyms map to same cache set
•  e.g., R4x00: ensure that VA12 = PA12

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 27

Summary: VV Caches

"  Fastest (don’t rely on TLB for retrieving data)
#  still need TLB lookup for protection
#  or other mechanism to provide protection

#  Suffer from synonyms and homonyms
#  requires flushing on context switch

# makes context switches expensive
# may even be required on kernel$user switch

•  ... or guarantee of no synonyms and homonyms
#  Require TLB lookup for write-back!
!  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale
!  Used for I-caches on a number of architectures

•  Alpha, Pentium 4, ...

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 28

Summary: Tagged VV Caches

!  Add address-space identifier (ASID) as part of tag
!  On access compare with CPU’s ASID register
"  Removes homonyms

"  potentially better context switching performance
#  ASID recycling still requires cache flush

#  Doesn’t solve synonym problem (but that’s less serious)
#  Doesn’t solve write-back problem

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 29

Summary: VP Caches

!  Medium speed:
"  lookup in parallel with address translation
#  tag comparison after address translation

"  No homonym problem
#  Potential synonym problem
#  Bigger tags (cannot leave off set-number bits)

#  increases area, latency, power consumption
!  Used on most modern architectures for L1 cache

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 30

Summary: PP Caches

!  Slowest
•  requires result of address translation before lookup starts

!  No synonym problem
!  No homonym problem
!  Easy to manage
!  If small or highly associative (all index bits come from page offset) indexing

can be in parallel with address translation.
•  Potentially useful for L1 cache (used on Itanium)

!  Cache can use bus snooping to receive/supply DMA data
!  Usable as off-chip cache with any architecture
!  For an in-depth coverage of caches see [Wiggins 03]

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 31

Write Buffer

!  Store operations can take a long time to complete
•  e.g. if a cache line must be read or allocated

!  Can avoid stalling the CPU by buffering writes
!  Write buffer is a FIFO queue of incomplete stores

•  also called store buffer or write-behind buffer
!  Can also read intermediate values out of buffer

•  to service load of a value that is still in write buffer
•  avoids unnecessary stalls of load operations

!  Implies that memory contents are temporarily stale
•  on a multiprocessor, CPUs see different order of writes
•  “weak store order”, to be revisited in SMP context

CPU

Cache

…
Store A
…
Store B
…
Store A
…

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 32

Cache Hierarchy

!  Hierarchy of caches to balance memory accesses:
•  small, fast, virtually indexed L1
•  large, slow, physically indexed L2–L5

!  Each level reduces and clusters traffic.
!  L1 typically split into instruction and data caches.

•  requirement of pipelining
!  Low levels tend to be unified.
!  Chip multiprocessors (multicores) often

 share on-chip L2, L3

CPU

I-Cache D-Cache

L2 Cache

L3 Cache

Memory

Write
Buffer

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 33

Translation Lookaside Buffer (TLB)

!  TLB is a (VV) cache for
 page-table entries

!  TLB can be:
•  hardware loaded,

transparent to OS, or
•  software loaded,

maintained by OS
!  TLB can be:

•  split, instruction and data TLBs, or
•  unified

!  Modern high-performance
 architectures use a hierarchy of TLBs:

•  top-level TLB is hardware-loaded from lower levels, typically split
•  transparent to OS

•  second level is hardware- or software-loaded

ASID VPN

VPN ASID PFN flags

flags PFN

COMP9242 S2/2011 W02 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 34

TLB Issues: Associativity

!  First TLB (VAX-11/780, [Clark, Emer 85]) was 2-way associative
!  Most modern architectures have fully associative TLBs
!  Exceptions:

•  i486 (4-way)
•  Pentium, P6 (4-way)
•  IBM RS/6000 (2-way)

!  Reasons:
•  modern architectures tend to support multiple page sizes (superpages)

- better utilises TLB entries
•  TLB lookup done without knowing the page’s base address
•  set-associativity loses speed advantage
•  superpage TLBs are fully-associative

COMP9242 S2/2011 W02

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 35 COMP9242 S2/2011 W02

TLB Size (I-TLB + D-TLB)

Not much growth in 20 years!

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 36 COMP9242 S2/2011 W02

TLB Size (I-TLB + D-TLB)

TLB coverage
!  Memory sizes are increasing
!  Number of TLB entries are more-or-less constant
!  Page sizes are growing very slowly

•  total amount of RAM mapped by TLB is not changing much
•  fraction of RAM mapped by TLB is shrinking dramatically

!  Modern architectures have very low TLB coverage
!  Also, many modern architectures have software-loaded TLBs

•  General increase in TLB miss handling cost
!  The TLB can become a performance bottleneck

