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Copyright Notice 

These slides are distributed under the Creative Commons 
Attribution 3.0 License 

•  You are free: 
–  to share—to copy, distribute and transmit the work 
–  to remix—to adapt the work 

•  under the following conditions: 
–  Attribution: You must attribute the work (but not in any way that 

suggests that the author endorses you or your use of the work) as 
follows: 

•  “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of 
“UNSW” or “NICTA” 

The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode 

COMP9242 S2/2011 W02 

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 3 

The Memory Wall 
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Multicore offsets stagnant per-core performance with proliferation of cores 
!  Basic trend is unchanged 
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Caching 

!  Cache is fast (1–5 cycle access time) memory sitting between fast registers 
and slow RAM (10–100 cycles access time) 

!  Holds recently-used data or instructions to save memory accesses 
!  Matches slow RAM access time to CPU speed if high hit rate (> 90%) 
!  Is hardware maintained and (mostly) transparent to software 
!  Sizes range from few KiB to several MiB. 
!  Usually a hierarchy of caches (2–5 levels), on- and off-chip 

Good overview of implications of caches for operating systems: [Schimmel 94] 

Registers Cache Main 
Memory 

Disk 

COMP9242 S2/2011 W02 



©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License 5 

Cache Organization 

!  Data transfer unit between registers and L1 cache: ! 1 word (1–16B) 
!  Cache line is transfer unit between cache and RAM (or slower cache) 

•  typically 16–32 bytes, sometimes 128 bytes and more 
!  Line is also unit of storage allocation in cache 
!  Each line has associated control info: 

•  valid bit 
•  modified bit 
•  tag 

!  Cache improves memory access by: 
•  absorbing most reads (increases bandwidth, reduces latency) 
•  making writes asynchronous (hides latency) 
•  clustering reads and writes (hides latency) 
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Cache Access 

!  Virtually indexed:  looked up by virtual address 
•  operates concurrently with address translation 

!  Physically indexed: looked up by physical address 
•  requires result of address translation 
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Cache Indexing 

!  The tag is used to distinguish lines of set… 
!  Consists of high-order bits not used for indexing 
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Cache Indexing 

!  Address is hashed to produce index of line set. 
!  Associative lookup of line within set 
!  n lines per set: n-way set-associative cache. 

•  typically n = 1 . . . 5, some embedded processors use 32–64 
•  n = 1 is called direct mapped. 
•  n = ! is called fully associative (unusual for CPU caches) 

!  Hashing must be simple (complex hardware is slow) 
•  use least-significant bits of address 
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Cache Indexing: Direct Mapped 

tag(25) index(3) byte(4) 
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Cache Indexing: 2-Way Associative 

tag(26) index(2) byte(4) 
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Caching Index: Fully Associative 
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Note: Lookup hardware for many tags 
is large and slow " does not scale 
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Cache Mapping 

!  Different memory locations map to same cache line: 

!  Locations mapping to cache set # i are said to be of colour i 
!  n-way associative cache can hold n lines of the same colour 

0 1 … n-1 … 

Cache 

RAM 

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1 

0 1 … n-1 

!  Types of cache misses: 
•  Compulsory miss: data cannot be in cache (of infinite size) 

- first access (after flush) 
•  Capacity miss: all cache entries are in use by other data 
•  Conflict miss: set of the right colour is full 

- miss that would not happen on fully-associative cache 
•  Coherence miss: miss forced by hardware coherence protocol 

- multiprocessors 
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Cache Replacement Policy 

!  Indexing (using address) points to specific line set. 
!  On miss: all lines of set valid " must replace existing line. 
!  Replacement strategy must be simple (hardware) 

•  Dirty bit determines whether line needs to be written back 
•  Typical policies: 

- pseudo-LRU 
- FIFO 
- random 
- toss clean 
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Cache Write Policy 

!  Treatment of store operations: 
•  write back: Stores update cache only 

memory is updated once dirty line is replaced (flushed) 
" clusters writes 
# memory is inconsistent with cache 
# unsuitable for (most) multiprocessor designs 

•  write through: Stores update cache and memory immediately 
" memory is always consistent with cache 
# increased memory/bus traffic 

!  On store to a line not presently in cache, use: 
•  write allocate: allocate a cache line to the data and store 

- typically requires reading line into cache first! 
•  no allocate: store to memory and bypass cache 

!  Typical combinations: 
•  write-back & write-allocate 
•  write-through & no-allocate 
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Cache Addressing Schemes 

!  For simplicity, discussion so far assumed cache sees only one kind of 
address: virtual or physical 

!  However, indexing and tagging can use different addresses 
!  Four possible addressing schemes: 

•  virtually-indexed, virtually-tagged (VV) cache 
•  virtually-indexed, physically-tagged (VP) cache 
•  physically-indexed, virtually-tagged (PV) cache 
•  physically-indexed, physically-tagged (PP) cache 

!  PV caches can only make sense with complex and unusual MMU designs 
•  not considered here any further 
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Virtually-Indexed, Virtually-Tagged Cache  

!  Also called 
•  virtually-addressed cache 

!  Also (incorrectly) called 
•  virtual cache 
•  virtual address cache 

!  Uses virtual addresses only 
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•  can operate 
concurrently with 
MMU 

•  still needs MMU 
lookup to determine 
access rights 

!  Used for on-core L1 
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VD 
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tag(25) 

Virtually-Indexed, Physically-Tagged Cache 

!  Virtual address for accessing line 
!  Physical address for tagging 
!  Needs address translation 

completed for retrieving data 
!  Indexing concurrent with MMU,  

 use MMU output for tag check 
!  Typically used for  

on-core L1 
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Physically-Indexed, Physically-Tagged Cache 

!  Only uses physical addresses 
!  Needs address translation completed 

before begin of access 
!  Typically used off-core 
!  Note: page offset is invariant under 

virtual-address translation 
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•  if index bits are subset 
of offset, PP cache can 
be accessed without 
result of translation! 

•  VP and PP cache 
become the same in this 
case 

•  fast and suitable for on-
core use (esp. L1) 
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Cache Issues 

!  Caches are managed by hardware transparent to software 
•  OS doesn’t have to worry about them, right?   

!  Software-visible cache effects: 
•  performance 

Wrong! 

VAS1 

VAS2 

PAS 

A 

A' 

A 

A” 

B 

B' 

C 

C” 

•  homonyms:  
- same name, different data 
- can affect correctness! 

•  synonyms: 
- different name, same data 
- can affect correctness! 
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Virtually-Indexed Cache Issues 

Homonyms — same name for different data: 
!  Problem: VA used for indexing is 

 context dependent 
•  same VA refers to different PAs 
•  tag does not uniquely identify data! 
•  wrong data is accessed! 
•  an issue for most OS! 

!  Homonym prevention: 
•  flush cache on context  

switch 
•  force non-overlapping 

address-space layout 
•  tag VA with address-space ID (ASID) 

- makes VAs global 
•  use physical tags 
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Virtually-Indexed Cache Issues 

Synonyms (aliases) — multiple names  
for same data: 
!  Several VAs map to the same PA 

•  frames shared between processes 
•  multiple mappings of frame within AS 

!  May access stale data: 
•  same data cached in several lines 
•  on write, one synonym 

updated 
•  read on other synonym  

returns old value! 
•  physical tags don’t help! 
•  ASIDs don’t help 

!  Are synonyms a problem? 
•  depends on page and  

cache size 
•  no problem for R/O data or I-caches 
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Example: MIPS R4x00 Synonyms  

!  ASID-tagged, on-chip L1 VP cache 
•  16KiB cache with 32B lines, 2-way set associative 
•  4KiB (base) page size 
•  set size = 16KiB/2 = 8 KiB > page size 
•  overlap of tag and index bits, but come from different addresses! 

!  Remember, location of data in cache determined by index 
•  tag only confirms whether it’s a hit! 
•  synonym problem iff VA12 " VA#12 
•  similar issues on other processors, eg. ARM11 (set size 16KiB, page size 4KiB) 
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35 
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VA 
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index (8 bits) 
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s b 
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Address Mismatch Problem: Aliasing 

!  Page aliased in different address spaces 
•  AS1: VA12 = 1, AS2: VA12 = 0 

!  One alias gets modified 
•  in a write-back cache, other alias sees stale data 
•  lost-update problem 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 

Physical Memory 

Cache 

write 
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Address Mismatch Problem: Re-Mapping 

!  Unmap page with a dirty cache line 
!  Re-use (remap) frame for a different page (in same or different AS) 
!  Write to new page 

•  without mismatch, new write will overwrite old (hits same cache line) 
•  with mismatch, order can be reversed: “cache bomb” 

Address Space 1 
Page 0x00181000 

Address Space 2 
Page 0x0200000 

Physical Memory 

Cache 

write 
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DMA Consistency Problem 

!  DMA (normally) uses physical addresses and bypasses cache 
•  CPU access inconsistent with device access 
•  need to flush cache before device write 
•  need to invalidate cache before device read 

Physical 
Memory 

Cache 

write 

DMA 
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Avoiding Synonym Problems 

!  Hardware synonym detection 
!  Flush cache on context switch 

•  doesn’t help for aliasing within address space 

!  Detect synonyms and ensure 
•  all read-only, OR 
•  only one synonym mapped 

!  Restrict VM mapping so synonyms map to same cache set 
•  e.g., R4x00: ensure that VA12 = PA12 
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Summary: VV Caches 

"  Fastest (don’t rely on TLB for retrieving data) 
#  still need TLB lookup for protection 
#  or other mechanism to provide protection 

#  Suffer from synonyms and homonyms 
#  requires flushing on context switch 

# makes context switches expensive 
# may even be required on kernel$user switch 

•  ... or guarantee of no synonyms and homonyms 
#  Require TLB lookup for write-back! 
!  Used on MC68040, i860, ARM7/ARM9/StrongARM/Xscale 
!  Used for I-caches on a number of architectures 

•  Alpha, Pentium 4, ... 
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Summary: Tagged VV Caches 

!  Add address-space identifier (ASID) as part of tag 
!  On access compare with CPU’s ASID register 
"  Removes homonyms 

"  potentially better context switching performance 
#  ASID recycling still requires cache flush 

#  Doesn’t solve synonym problem (but that’s less serious) 
#  Doesn’t solve write-back problem 
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Summary: VP Caches 

!  Medium speed: 
"  lookup in parallel with address translation 
#  tag comparison after address translation 

"  No homonym problem 
#  Potential synonym problem 
#  Bigger tags (cannot leave off set-number bits) 

#  increases area, latency, power consumption 
!  Used on most modern architectures for L1 cache 
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Summary: PP Caches 

!  Slowest 
•  requires result of address translation before lookup starts 

!  No synonym problem 
!  No homonym problem 
!  Easy to manage 
!  If small or highly associative (all index bits come from page offset) indexing 

can be in parallel with address translation. 
•  Potentially useful for L1 cache (used on Itanium) 

!  Cache can use bus snooping to receive/supply DMA data 
!  Usable as off-chip cache with any architecture 
!  For an in-depth coverage of caches see [Wiggins 03] 
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Write Buffer 

!  Store operations can take a long time to complete 
•  e.g. if a cache line must be read or allocated 

!  Can avoid stalling the CPU by buffering writes 
!  Write buffer is a FIFO queue of incomplete stores 

•  also called store buffer or write-behind buffer 
!  Can also read intermediate values out of buffer 

•  to service load of a value that is still in write buffer 
•  avoids unnecessary stalls of load operations 

!  Implies that memory contents are temporarily stale 
•  on a multiprocessor, CPUs see different order of writes 
•  “weak store order”, to be revisited in SMP context 

CPU 

Cache 

… 
Store A 
… 
Store B 
… 
Store A 
… 
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Cache Hierarchy 

!  Hierarchy of caches to balance memory accesses: 
•  small, fast, virtually indexed L1 
•  large, slow, physically indexed L2–L5 

!  Each level reduces and clusters traffic. 
!  L1 typically split into instruction and data caches. 

•  requirement of pipelining 
!  Low levels tend to be unified. 
!  Chip multiprocessors (multicores) often 

 share on-chip L2, L3 

CPU 

I-Cache D-Cache 

L2 Cache 

L3 Cache 

Memory 

Write 
Buffer 
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Translation Lookaside Buffer (TLB) 

!  TLB is a (VV) cache for  
 page-table entries 

!  TLB can be: 
•  hardware loaded,  

transparent to OS, or 
•  software loaded,  

maintained by OS 
!  TLB can be: 

•  split, instruction and data TLBs, or 
•  unified 

!  Modern high-performance  
 architectures use a hierarchy of TLBs: 

•  top-level TLB is hardware-loaded from lower levels, typically split 
•  transparent to OS 

•  second level is hardware- or software-loaded 

ASID VPN 

VPN ASID PFN flags 

flags PFN 
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TLB Issues: Associativity 

!  First TLB (VAX-11/780, [Clark, Emer 85]) was 2-way associative 
!  Most modern architectures have fully associative TLBs 
!  Exceptions: 

•  i486 (4-way) 
•  Pentium, P6 (4-way) 
•  IBM RS/6000 (2-way) 

!  Reasons: 
•  modern architectures tend to support multiple page sizes (superpages) 

- better utilises TLB entries 
•  TLB lookup done without knowing the page’s base address 
•  set-associativity loses speed advantage 
•  superpage TLBs are fully-associative 
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TLB Size (I-TLB + D-TLB) 

Not much growth in 20 years! 
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TLB Size (I-TLB + D-TLB) 

TLB coverage 
!  Memory sizes are increasing 
!  Number of TLB entries are more-or-less constant 
!  Page sizes are growing very slowly 

•  total amount of RAM mapped by TLB is not changing much 
•  fraction of RAM mapped by TLB is shrinking dramatically 

!  Modern architectures have very low TLB coverage 
!  Also, many modern architectures have software-loaded TLBs 

•  General increase in TLB miss handling cost 
!  The TLB can become a performance bottleneck 


