THE UNIVERSITY OF NEW SOUTH WALES

NICTA
COMP9242

Advanced Operating Systems

S2/2011 Week 1:
Introduction to selL4

NICTA Funding and Supporting Members and Partners

.
! Autralan Goernment L fmm UNSW Wik @ M ¢
85X Department of Broadband, Communications 6oz University i Seriamoms NSW

and the Digital Economy

Australian Research Council

COMP9242 S2/2011 W01

Monolithic Kernels vs Microkernels Oe
NICTA

» Idea of microkernel:
— Flexible, minimal platform
— Mechanisms, not policies
— Goes back to Nucleus [Brinch Hansen, CACM’70]

Application Syscall

Device
Application Driver

IPC, virtual memory

COMP9242 S2/2011 W01 3 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Copyright Notice Oe
NICTA

These slides are distributed under the Creative Commons
Attribution 3.0 License

¢ You are free:

— to share—to copy, distribute and transmit the work
— to remix—to adapt the work
» under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as

follows:

» “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2011 W01 2

Microkernel Evolution

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Oe

First generation

* Eg Mach ('87)

Low-level FS,
Swapping

Kernel memory

Scheduling
IPC,"MMU abstr.

» 180 syscalls
+ 100 kLOC
+ 100 ps IPC

COMP9242 S2/2011 W01 4

Second generation

. EgL4 (95)

Kernel' me
Schedulin

IPC, MMU abstr.

* ~7 syscalls
+ ~10kLOC
« ~1uslIPC

NICTA
Third generation
. sel4 (‘09)
Memory-
mangmt
library

Scheduling
IPC,"MMU"abstr.
* ~3syscalls

+ 9kLOC
« <1puslIPC

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

2nd.Generation Microkernels (e
NICTA

« 1st-generation kernels (Mach, Chorus) were a failure
— Complex, inflexible, slow

* L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95]
— Radical simplification & manual micro-optimisation

— “A concept is tolerated inside the microkernel only if moving it outside
the kernel, i.e. permitting competing implementations, would prevent the
implementation of the system’s required functionality.”

— High IPC performance
* Family of L4 kernels:
— Original GMD assembler kernel (‘95)

— Fiasco (Dresden ‘98), Hazelnut (Karlsruhe ‘99), Pistachio (Karlsruhe/
UNSW ‘02), L4-embedded (NICTA ‘04)

» L4-embedded commercialised as OKL4 by Open Kernel Labs
» Deployed in ~ 1.5 billion phones

— Commercial clones (PikeOS, P4, CodeZero, ...)

— Approach adopted e.g. in QNX (‘82) and Green Hills Integrity (‘90s)

COMP9242 S2/2011 W01 5 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW
seL4 Principles e
NICTA

» Single protection mechanism: capabilities
— Except for time ®
» All resource-management policy at user level
— Painful to use
— Need to provide standard memory-management library
* Results in L4-like programming model
» Suitable for formal verification (proof of implementation correctness)
— Attempted since ‘70s
— Finally achieved by L4.verified project at NICTA [Klein et al, SOSP’09]

COMP9242 S2/2011 W01 7 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Issues of 2G L4 Kernels (e
NICTA

* L4 solved performance issue [Hartig et al, SOSP’97]
» Left a number of security issues unsolved
* Problem: ad-hoc approach to protection and resource management
— Global thread name space => covert channels
— Threads as IPC targets = insufficient encapsulation
— Single kernel memory pool = DoS attacks
— Insufficient delegation of authority = limited flexibility, performance

* Addressed by selL4
— Designed to support safety- and security-critical systems

COMP9242 S2/2011 W01 6 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW
seL4 Concepts @
NICTA

* Kernel objects:
— Threads (thread-control blocks, TCBs) /2
— Address spaces (page table objects, PDs, PTs)
- IPC endpoints (EPs, AsyncEPs) ——

— Capability spaces (CNodes) —___ A
- Frames d;?]

- Interrupt objects
— Untyped memory

» Capabilities (Caps) -
— mediate access —————

» System calls

— Send, Wait (and variants)
- Yield

COMP9242 S2/2011 W01 8 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Capabilities (Caps) Oe
NICTA

» Token representing privileges [Dennis & Van Horn, ‘66]
— Cap = “prima facie evidence of right to perform operation(s)”

» Object-specific = fine-grained access control
— Cap identifies object = is an (opaque) object name
— Leads to object-oriented API:

err = method(cap, args);
— Privilege check at invocation time
» Caps were used in microkernels before
— KeyKOS (‘85), Mach ('87)

— EROS ('99): first well-performing cap system
— OKL4 V2.1 ('08): first cap-based L4 kernel

COMP9242 S2/2011 W01 9 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License HN§W
Inter-Process Communication (IPC) Oe
NICTA

* Fundamental microkernel operation
— Kernel provides no services, only mechanisms
— OS services provided by (protected) user-level server processes
— invoked by IPC

Client

» sel4 IPC uses a handshake through endpoints:
— Transfer points without storage capacity

— Message must be transferred instantly send —@—) receive

» One partner may have to block
» Single copy user — user by kernel
» Two endpoint types:
— Synchronous (Endpoint) and asynchronous (AsyncEP)

COMP9242 S2/2011 W01 11 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

C %o seL4 Capabilities Oe

» Stored in cap space (CSpace)
— Kernel object made up of CNodes Cw
— each a set of cap “slots”
* Inaccessible to userland
— But referred to by pointers into CSpace (slot addresses)
— These CSpace addresses are called CPTRs
» Caps convey specific privilege (access rights)
- Read, Write, Grant (cap transfer) [Yes, there should be Execute!]
* Main operations on caps:
- Invoke: perform operation on object referred to by cap
» Possible operations depend on object type
- Copyl/Mint/Grant: create copy of cap with samel/lesser privilege
- Movel Mutate: transfer to different address with same/lesser privilege
- Delete: invalidate slot

» Only affects object if last cap is deleted
- Revoke: delete any derived (eg. copied or minted) caps

COMP9242 §2/2011 W01 10 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Synchronous Endpoint Oe

NICTA
Thread, Thread,
Running Blocked Blocked Running

2 Wait (ep_cap, ...)
Send (ep_cap, ...) | .
E

Wait (ep_cap, ...) Send (ep_cap, ...)

3

* Threads must rendez-vous for message transfer
— One side blocks until the other is ready
» Message copied from sender’s to receiver's message registers
— Message is combination of caps and data words
» presently max 121 words (484B, incl message “tag”)

COMP9242 §2/2011 W01 12 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

“ Asynchronous Endpoint OO

NICTA
Thread, Thread,
Running Blocked Blocked Running
w = Poll (ep_cap, ...)
...... w = Wait (ep_cap,...)
Send (ep_cap, ...)
Send (ep_cap, ...)
» Avoids blocking
— send transmits 1-word message, OR-ed to receiver data word
— no caps can be sent
* Receiver can poll or wait
— waiting returns and clears data word
— polling just returns data word
» Similar to interrupt (with small payload)
COMP9242 §2/2011 W01 13 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License HN§W
@ Client-Server Communication Oe
NICTA
Client, Client,
* Asymmetric relationship:
— Server widely accessible, clients not
— How can server reply back to client?
» Client can pass (session) reply cap in first request
— server needs to maintain session state
— client must trust server not to use cap beyond session
« sel4 solution: Kernel provides single-use reply cap
— only for Call operation (Send+Wait)
— allows server to reply to client
— cannot be copied/minted/re-used
COMP9242 S2/2011 W01 15 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License HMN§W

@ Receiving from Sync and Async Endpoints OQ
NICTA

Client Driver

Server with synchronous and asynchronous interface
* Example: file system
— synchronous (RPC-style) client protocol
— asynchronous notifications from driver
» Could have separate threads waiting on endpoints
— forces multi-threaded server, concurrency control
» Alternative: allow single thread to wait on both EP types
— Mechanism:
» AsyncEP is bound to thread with BindAEP() syscall
« thread waits on synchronous endpoint
» async message delivered as if been waiting on AsyncEP

COMP9242 §2/2011 W01 14 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Call RPC Semantics Oe

NICTA
= oo
Client Kernel Server
Wait(ep,&rep)
Call(ep,...)
mint rep
deliver to server
process
Send(rep,...)
destroy rep
deliver to client
process process

COMP9242 S2/2011 W01 16 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Identifying Clients e

NICTA

Stateful server serving multiple clients
¢ Must respond to
correct client Client,
— Ensured by reply cap
* Must associate request
with correct state Cd
* Could use separate EP per client
— endpoints are lightweight (16 B)
— but requires mechanism to wait on a set of EPs (like select)
* Instead, selL4 allows to individually mark (“badge”) caps to same EP

— server provides individually badged caps to clients
— server tags client state with badge

Client, \/
state

Client, \/
state

— kernel delivers badge to receiver on invocation of badged caps

COMP9242 §2/2011 W01 17 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U

@ IPC Message Format e

NICTA
Raw data
T Caps (on Send) CSpace reference for receiving
ag Message Badges (on Receive) caps (Receive only)
Caps # Msg

Label unwrapped Caps Length

Meaning defined
by IPC protocol
(Kernel or user)

Bitmap indicating
caps which had
badges extracted

Caps sent
or received

Note: Details hidden behind library wrappers

COMP9242 §2/2011 W01 19 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ IPC Mechanics: Virtual Registers e
NICTA

« Like physical registers, virtual registers are thread state

— context-switched by kernel

— implemented as physical registers or fixed memory location
* Message registers

— contain message transferred in IPC

— architecture-dependent subset mapped to physical registers

* 50n ARM, 3 on x86

— library interface hides details

— 18t message register is special, contains message tag
» Data word for asynchronous IPC

— accumulates async messages (reset by Wait)

— as with interrupts, information is lost if not collected timely
* Reply cap

— overwritten by next receive

— can move to CSpace with SaveCaller()

COMP9242 §2/2011 W01 18 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

@ Client-Server IPC Example Oe
NICTA

Load into Client
R seL4_Messagelnfo tag = { { .length=1, .extraCaps=0 } };

seL4_SetTag(tag);

Set message seL4_SetMR(0,1);
register #0 seL4_Call(server_c, tag);

Allocate EP (retype
some memory if needed)

Insert EP into

Server CSpace

om_endpoint_t ep = om_new_endpoint();
seL4_CPtr ep_cap = om_map_endpoint(adr_space, ep, seL4_all_rights,
seL4_CapData,_MakeBadge(0));

seL4_Word badge;
seL4_MessageInfo msg = seL.4_Wait(ep, &badge); Cap is badged 0

seL4_MessageInfo reply = { .raw=0 };

sel4_Reply(reply); T
-of reply cap

COMP9242 $2/2011 W01 20 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Server Saving Reply Cap Oe

NICTA

Server
Save reply cap

in CSpace
om_endpoint_t ep = om_new_endpoint();
seL4_CPtr ep_cap = om_map_endpoint(adr_space, ep «f_all_rights,

8_MakeBadge(0));

seL4_Word badge;

seL4_MessageInfo msg = seL4
seL4_CPtr slot = om_new
om_save_reply_cap(slot);

seL4_MessageInfo reply = { .raw=0 };

seL4_Send(slot, reply);— =

om_free_cslot(slot); Explicit use
of reply cap

Reply cap no
longer valid

COMP9242 §2/2011 W01 21 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

€ w9 Derived Capabilities Oe

NICTA

» Badging is an example of capability derivation
» The I/int operation creates a new, less powerful cap
— Can add a badge
* Mint (G,) = €0
— Can strip access rights
+ eg WR—R/O
« Granting transfers caps over an Endpoint
— Delivers copy of sender’s cap(s) to receiver
* reply caps are a special case of this
— Sender needs Endpoint cap with Grant permission
— Receiver needs Endpoint cap with Write permission
* else Write permission is stripped from new cap
* Retyping
— Fundamental operation of seL4 memory management
— Details later...

COMP9242 §2/2011 W01 23 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ IPC Operations Summary Oe
NICTA

e Send (ep_cap, ...), Wait (ep_cap, ...), Wait (aep_cap, ...)
— blocking message passing
— needs Write, Read permission, respectively
NBSend (ep_cap, ...)
— discard message if receiver isn’t ready
e Call (ep_cap, ...)
— equivalent to Send (ep_cap,...) + reply-cap + Wait (ep_cap,...)
Reply (...)
— equivalent to Send (rep_cap, ...)
ReplyWait (ep_cap, ...)
— equivalent to Reply (...) + Wait (ep_cap, ...)
— purely for efficiency of server operation
Notify (aep_cap, ...), Poll (aep_cap, ...)
— non-blocking send / check for message on AsyncEP
No failure notification where this reveals info on other entities!

COMP9242 §2/2011 W01 22 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

s seL4 System Calls Oe

NICTA

* Notionally, seL4 has 8 syscalls:
- Yield(): invokes scheduler
+ only syscall which doesn’t require a cap!
- Send(), Receive() and 5 variants/combinations thereof
* Notify() is actually not a separate syscall but same as Send()
— This is why | earlier said “approximately 3 syscalls” ©

» All other kernel operations are invoked by “messaging”
Invoking Send()/Receive() on an object cap
— Each object has a set of kernel protocols
» operations encoded in message tag
» parameters passed in message words
Mostly hidden behind “syscall” wrappers

COMP9242 S2/2011 W01 24 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

seL4 Memory Management Principles @

* Memory (and caps referring to it) is typed: NICTA

— Untyped memory:
» unused, free to Retype into something else
— Frames:
* (can be) mapped to address spaces, no kernel semantics
— Rest: TCBs, address spaces, CNodes, EPs
+ used for specific kernel data structures
« After startup, kernel never allocates memory!
— All remaining memory made Untyped, handed to initial address space
« Space for kernel objects must be explicitly provided to kernel
— Ensures strong resource isolation
« Extremely powerful tool for shooting oneself in the foot!
— We hide most of this behind the object manager (OM) server API

COMP9242 §2/2011 W01 25 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Memory Management Mechanics: Retype ()@
NICTA

Cwo

Retype (Untyped, 2")

Retype (Frame, 22) Retype (Untyped, 2')

Retype (CNode, 2m, 20 Retype (TCB, 2"
Mint () ye () ype ()
Revoke()
=
N
Fo Fy Fs Fs I : 2 2 2 2
COMP9242 S2/2011 W01 27 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License U..‘N‘NS‘W

seL4 Memory Management Approach @

NICTA

Strong isolation,
No shared kernel
resources

Addr

Resources fully
delegated, allows

autonomous
operation Addr Addr

Space Space

Resource Manager Resource Manager

RM RM
Data Data

Global Resource Manager

RAM | Kemel|] GRM
Data Data

COMP9242 §2/2011 W01 26 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UN§W
A selL4 Address Spaces (VSpaces) @
NICTA

« Very thin wrapper around hardware page tables
— Architecture-dependent
— ARM and x86 are very similar
» Page directories (PDs) map page tables, g
page tables (PTs) map pages W_E
* A VSpace is represented
by a PD object: S
— Creating a PD (by Retype) ==
creates the VSpace
— To use it must be associated

Page_Map(PT)

with “ASID pool” =
* hidden by OM
— Deleting the PD deletes
the VSpace S .
PageTable_Map(PD)

COMP9242 S2/2011 W01 28 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Address Space Operations (e

NICTA

om_frame_t new_frame =om_new_frame();

om_map_frame(adr_space, new_frame,
0xA0000000,sel.4_AlIRights);

bzero((void *)OxA0000000, PAGESIZE);

om_unmap_frame(adr_space, new_frame, 0OxA0000000);
om_free_frame(new_frame);

COMP9242 §2/2011 W01 29

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A Memory Management Caveats (o

NICTA

* Objects are allocated by Retype() of Untyped memory

» Free 4 frames for making a page directory may not work
— only if they are part of the same Untyped object
— and they are the full Untyped object

Untyped Memory 2'5B

» Be careful with allocations!

+ Don't try to allocate all of physical
memory as frames, as you need
more memory for TCBs, endpoints

LI

etc.

COMP9242 §2/2011 W01 31

+ Allocate big objects first
* eg om_address_space_t
+ Be aware that page table objects
are also being created behind the
scenes.

8 frames

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A

Memory Management Caveats (e

NICTA

* The object manager handles allocation for you
* However, it is very simplistic, you need to understand how it works
* Simple rule:

Freeing an object of size n = you can allocate new objects <= size n

Freeing 2 objects of size n does not mean that you can allocate an
object of size 2n.

Frame 212
Page directory 214
Endpoint 24
Cslot 24
TCB 29
Page table 210
» All kernel objects must be size aligned!
3 Threads (e

NICTA

* Theads are represented by TCB objects
» They have a number of attributes (recorded in TCB):

VSpace: a virtual address space

» page directory reference

» multiple threads can belong to the same VSpace
CSpace: capability storage

* CNode reference (CSpace root) plus a few other bits
Fault endpoint

» Kernel sends message to this EP if the thread throws an exception
IPC buffer (backing storage for virtual registers)
stack pointer (SP), instruction pointer (IP), user-level registers
Scheduling priority
Time slice length (presently a system-wide constant)

* Yes, this is broken! (Will be fixed soon...)

* These must be explicitly managed

... but our object manager hides a lot of the tedious stuff

COMP9242 §2/2011 W01 32 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Threads

Creating a thread

Obtain a TCB object
Set attributes: Configure()

— associate with VSpace, CSpace, fault EP, prio, define IPC buffer

Set SP, IP (and optionally other registers): WriteRegisters()
— this results in a completely initialised thread

— will be able to run if resume_target is set in call, else still inactive
Activated (made schedulable): Resume()

COMP9242 §2/2011 W01 33 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Threads and Stacks

Stacks are completely user-managed, kernel doesn’t care!
— Kernel only preserves SP, IP on context switch

Stack location, allocation, size must be managed by userland

Beware of stack overflow!
— Easy to grow stack into other data
» Pain to debug!
— Take special care with automatic arrays!

Stack 1 Stack 2

fO{
int buf[10000];

COMP9242 S2/2011 W01 35 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Creating a Thread in Own VSpace (e

NICTA

static char stack[100];

int thread_fct() {
while(1);
return O;

}
om_frame_t ipc_buf = om_new_frame();
om_map_frame(adr_space, ipc_buf, 0OxA0000000,sel.4_AllRights);

seL4_capData badge = seL4_CapData_MakeBadge(++trh_cnt);
om_tcb_t teb = om_new_tcb(adr_space, exct_hdlr, badge, O,

ipc_buf, 0OXA0000000);
om_start_thread(tcb, &stack, &thread_fct, 0);

COMP9242 §2/2011 W01 34 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

3 Creating a Thread in a New VSpace

om_endpoint_t exept_ep = om_new_endpoint();
seL4_CPtr endpoint_cap = om_map_endpoint(adr_space, except_ep,
seL4_AllRights,

(e

NICTA

seL4_CapData_MakeBadge(0));

char *dite = (char *)dite_lookup(appdite, “test”)->p_base;
unsigned int entry = elf_getEntryPoint(dite);

om_frame_t ipc_buf=om_new_frame();

om_map_frame(adr_space, ipc_buf, 0OxA0000000,seL.4_AllIRights);
seL4_capData badge = seL4_CapData_MakeBadge(++trh_cnt);
om_tcb_t teb = om_new_tcb(adr_space, exct_hdlr, badge, O,
ipc_buf, 0XA0000000);
om_start_thread(tcb, &stack, &thread_fct, 0);

COMP9242 §2/2011 W01 36 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

3 selLd Scheduling e

NICTA

» sel4 uses 256 hard priorities (0-255)
— Priorities are strictly observed
— The scheduler will always pick the highest-prio runnable thread
— Round-robin scheduling within prio level
* Aim is real-time performance, not fairness
— Kernel itself will never change the prio of a thread
— Achieving fairness (if desired) is the job of user-level servers

prio 255
—————— -
% ®
COMP9242 §2/2011 W01 37 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License
3 Exception Handling e
NICTA
E o T g Handler performs
» xcelpflcl)(n riggered. appropriate action
ernel fakes message (e.g. map page).
from thread to handler
xception
2 . Handler
TCB /
Kernel intercepts t';?_:gl;r_trtehele'zz
message and
restarts thread
COMP9242 $2/2011 W01 39 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Exception Handling e

NICTA

» A thread can trigger different kinds of exceptions:
— invalid syscall
* may require instruction emulation or result from virtualization
— capability fault
* cap lookup failed or operation is invalid on cap
— page fault
« attempt to access unmapped memory

* may have to grow stack, grow heap, load dynamic library, ...
— architecture-defined exception

« divide by zero, unaligned access, ...
* Results in kernel sending message to fault endpoint
— exception protocol defines state info that is sent in message
* Replying to this message restarts the thread

COMP9242 §2/2011 W01 38 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

“ Interrupt Management Oe

NICTA

+ sel4 models IRQs as messages sent to an AsyncEP
— Interrupt handler has Receive cap on that EP
» 2 special objects used for managing and acknowledging interrupts:
— Single IRQControl object
+ single IRQControl cap provided by kernel to initial VSpace
+ only purpose is to create IRQHandler caps
— Per-IRQ-source IRQHandler object
* interrupt association and dissociation
* interrupt acknowledgment

= IRQControl
: \ /@b Get(usb)
Dy
IRQHandler
,/ —C

P e
Lan e

COMP9242 S2/2011 W01 40 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

“ Interrupt Handling (e

* |IRQHandler cap allows driver to bind AsycEP to interrupt NICTA

« Afterwards:
— AsyncEP is used to receive interrupt
— IRQHandler is used to acknowledge interrupt

IRQHandler

SetEndpoint(aep)

Wait(aep)
Ack(handler)

seL4_IRQHandler interrupt = om_new_interrupt(usb, tcb)
seL.4_IRQHander_ack(interrupt);

Ack first, in case
IRQ arrived
during registring

COMP9242 §2/2011 W01 41 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Project Platform: NSLU2 (Slug) (o
NICTA

MO — make user

/ applications print to
/ here

& /

COMP9242 S2/2011 W01 43 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Device Drivers (e

o NICTA

« Drivers do three things:
— Handle interrupts (already explained)
— Communicate with rest of OS (IPC + shared memory)
— Access device registers
» Device register access
— Devices are memory-mapped on ARM
— Only have to map the appropriate page in the driver's VSpace

om_device_frame_t frame = om_get_device_frame(DEVICE_ADDRESS, 0);
om_map_device_frame(adr_space, frame, 0OXA0000000);

*((void *) OXA0000000 = 5;

Magic device
register access

Xscale 32 MiB Serial USB
CPU Memory Port seL4_DebugPutChar()
IXP420 Timer & UARE M6 — Network File
Network other / System (NFS)
Processor devices Ethernet

COMP9242 S2/2011 W01 42 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License HN§W
Stuff & Gallery (e
NICTA
* to cover
— scheduling

> D

COMP9242 S2/2011 W01 44 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

