
USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 59

CuriOS: Improving Reliability through Operating System Structure

Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, Roy H. Campbell

University of Illinois at Urbana-Champaign

{fdavid,emchan,jcarlyle,rhc}@illinois.edu

Abstract

An error that occurs in a microkernel operating system

service can potentially result in state corruption and ser-

vice failure. A simple restart of the failed service is not

always the best solution for reliability. Blindly restart-

ing a service which maintains client-related state such as

session information results in the loss of this state and af-

fects all clients that were using the service. CuriOS rep-

resents a novel OS design that uses lightweight distribu-

tion, isolation and persistence of OS service state to mit-

igate the problem of state loss during a restart. The de-

sign also significantly reduces error propagation within

client-related state maintained by an OS service. This

is achieved by encapsulating services in separate protec-

tion domains and granting access to client-related state

only when required for request processing. Fault injec-

tion experiments show that it is possible to recover from

between 87% and 100% of manifested errors in OS ser-

vices such as the file system, network, timer and sched-

uler while maintaining low performance overheads.

1 Introduction

Operating system reliability has been studied for several

decades [39, 19, 34, 46], but remains a major concern to-

day [47]. Operating system errors can be caused by both

hardware and software faults. Hardware faults can arise

due to various factors, some of which are aging, temper-

ature, and radiation-induced bit-flips in memory and reg-

isters (Single Event Upsets [30]). Software faults (bugs)

are also very common in large and complex operating

systems [13].

In the past, designs for reliable computer systems have

used redundancy in hardware and OS software to attempt

recovery from errors [5, 6]. Redundancy can mask tran-

sient and permanent hardware faults as well as some soft-

ware faults [4]. However, it does not address the insidi-

ous problem of the propagation of undetected errors [34].

Additionally, these systems are extremely expensive to

build and use [44].

Errors in a monolithic OS can easily propagate and

corrupt other parts of the system [22, 52], making re-

covery extremely difficult. Microkernel designs compo-

nentize the OS into servers managed by a minimal ker-

nel. These servers provide functionality such as the file

system, networking and timers. User applications and

other OS components are modeled as clients of these

servers. Inter-component error propagation is signifi-

cantly reduced because, in many microkernel designs,

servers usually execute in their own restricted address

spaces similar to user processes [25, 37].

Recovery from a microkernel server failure is typically

attempted by restarting it. The intuition behind this ap-

proach is that reinitializing data structures from scratch

by restarting a server usually fixes a transient fault. This

is similar to microrebooting [10]. In Minix3 [25], for

example, server restarts are performed by the Reincarna-

tion Server [47]. If the server managing a printer crashes,

it causes a temporary unavailability of the printer until

it is restarted. Unfortunately, this approach to recovery

does not always work. Many OS services maintain state

related to clients. In such cases, a server restart results

in the loss of this state information and affects all clients

that depend on the server. For example, a failure of the

file system server in Minix3 impacts all clients that were

using the file system. Simply restarting the file system

server does not prevent errors from occurring in these

existing clients. Reads and writes to existing open files

cannot be completed because the restarted server cannot

recognize the file handles that are presented to it. Thus,

while stateless servers such as some device drivers can

be restarted to recover the system, this technique is not

applicable for many important OS services that manage

client-related state.

Writing clients to take into account OS service restarts

and state loss is a possible solution. This requires clients

to subscribe to server failure notifications and can re-

60 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

sult in increased code complexity. Another possible

solution is to provide some form of persistence to the

server’s client-related state information. This allows a

restarted server to continue processing requests from ex-

isting clients. Some microkernel operating systems like

Chorus and Minix3 support the ability to persist state in

memory through restarts; but they do not use this func-

tionality for OS servers and, currently, only provide it as

a service for user applications or device drivers.

Attempts to solve the state loss problem by simply per-

sisting server state across a restart do not address the

possible corruption of this state due to error propaga-

tion. An error that occurs in an OS server, like a typ-

ical software error, can potentially corrupt any part of

its state [27] before being detected. This highlights yet

another significant limitation of traditional microkernel

systems. While such systems minimize inter-component

error propagation, nothing prevents intra-component er-

ror propagation.

Checkpointing OS service state in order to mitigate the

effects of error propagation is not a viable solution be-

cause rolling back to a consistent system state requires

checkpointing of client state as well. Additionally, mul-

tiple checkpoints may have to be maintained in order to

avoid rolling back to an incorrect state. This may be ex-

pensive in terms of memory and performance.

In this paper, we present CuriOS, which adopts an

approach that significantly minimizes error propagation

between as well as within OS services and recovers

failed services transparently to clients. We accomplish

this by lightweight distribution, isolation and persistence

of client-specific state information used by OS servers.

Client-specific state is stored in client-associated, but

client-inaccessible memory and servers are only granted

access to this information when servicing a request. Be-

cause this state is not associated with the server, it per-

sists after a server restart. This distribution of state

ServerLocal

Traditional Microkernel OS Service

ServerLocal

Client1 state Client2 state

CuriOS Service

Client1Local Client2Local

Client2LocalClient1Local

Client2 state

Client1 state

Code

Data

ServerClient1 Client2

Code
ServerClient1 Client2

Data

Figure 1: State Distribution

is illustrated in figure 1. A server failure that occurs

when servicing a client can only affect that client and the

restarted server can continue to process other requests

normally.

Distribution of state information from servers to

clients for fault tolerance is not new. Researchers have

exploited this technique to improve the reliability of file

system services in distributed operating systems such

as Sprite [53] and Chorus/MiX [33]. A more widely

known example is Sun’s stateless Network File Sys-

tem (NFS) [41]. But these designs do not protect the

state information from being manipulated by clients and

leads to various security problems such as those with

NFS [51, 32]. Our design supports safe distribution of

state by protecting the state from modification by clients.

Our implementation is also lightweight because we use

virtual memory remapping instead of memory copying to

grant access to state. Additionally, we provide a generic

framework for implementing distributed state and recov-

ery for any OS service, not just the file system.

CuriOS is written in C++ and is based on the Choices

object-oriented operating system [8]. It is being devel-

oped to provide a highly reliable OS environment for

mobile devices such as cellular phones powered by an

ARM processor.

Our work is complementary to other research in OS

error detection such as the language-based type-safety

techniques used in SafeDrive [55] and software guards

used in the XFI system [50]. Employing such techniques

in CuriOS can improve error detection latency and fur-

ther reduce error propagation.

A preliminary design for CuriOS is available in a pre-

vious publication [18]. The contributions of this paper

include:

1. A comparison and analysis of the effect of memory

errors on OS services of several popular microker-

nel architectures, some of which are designed for

reliability.

2. A detailed description of the state management

framework implementation in CuriOS that re-

duces intra-component error propagation and en-

ables transparent OS service recovery.

3. An evaluation of the CuriOS design using fault-

injection experiments performed on several OS ser-

vices.

The remainder of this paper is organized as follows.

We investigate several related operating systems in Sec-

tion 2. In Section 3, we look at the results of our in-

vestigations and present our observations for an oper-

ating system design that supports transparent recovery.

Section 4 presents a brief introduction to the CuriOS ar-

chitecture and details the framework used to manage OS

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 61

service state information. Section 5 describes the design

and implementation of a few transparently restartable

CuriOS components and drivers. We present an evalu-

ation of several aspects of our current implementation

in 6. We discuss a number of additional related topics

in Section 7 and conclude in Section 8. In this paper,

we limit our scope to the reliability aspects of CuriOS.

A short discussion of some security issues is available in

Section 7.

The dependability related terms used in this paper

conform to the taxonomy suggested by Avizienis et

al [3]. All names that use the font Class represent C++

classes.

2 Related Operating Systems

Some microkernel operating systems that are closely re-

lated to our work are Minix3 [25], L4 [37], Chorus [40]

and EROS [43]. For the evaluation of each of these

microkernel-based operating systems, we manually in-

ject memory access errors into different OS servers to ex-

plore the effect of an OS error on its reliability. A mem-

ory access error is the typical manifestation of a hardware

or software fault in an OS [52].

In all our experiments, a memory access error results

in the termination of the OS server. Table 1 shows the

results of our experiments. The effect of server termina-

tion after encountering the memory access error is shown

in the third column. The last column presents our anal-

ysis of whether a restarted server will continue serving

existing clients correctly (if restartability support were

included in the corresponding OS). Except for Minix3,

which already implements restartable services, this ob-

servation is based purely on source code analysis. Brief

explanations for our conclusions are provided in each

row. The entries in the last column for Minix3 are ac-

tual experimental results.

The rest of this Section discusses reliability aspects of

the previously mentioned systems and several other re-

lated operating systems in more detail.

2.1 Minix3

Reliability support in Minix3 is provided by the Reincar-

nation Server which is able to restart both failed services

and device drivers. Server restarts work well only for

device drivers [47, 24]. This is substantiated by our ex-

periments (Table 1). The file system server crashes on

all invalid memory accesses and results in an unusable

system. Even if the file system server were restarted cor-

rectly, existing open files would be inaccessible because

of the lost server state.

Minix3 includes a data store server that can be used to

store state that persists after a failure induced restart. The

Minix3 data store provides some protection from errors

in a server because it resides in a separate address space

from the server. It has been used to implement failure

resilience for device drivers [26]. A drawback of the data

store approach is the additional communication and data

copying overhead involved. This approach also does not

restrict intra-component error propagation.

2.2 L4/Iguana

Iguana [35] is a suite of OS services that are implemented

for the L4 microkernel [37]. This comprises basic OS

services such as naming, memory management, timer

and some device drivers. Our experiments study the

behavior of some Iguana services when they encounter

memory errors. Unlike Minix3, there isn’t any support

for restartable services. An analysis of the source code

shows that server restartability, if implemented, still does

not solve the problem of preventing the corruption of

state and recovering it. As an example, the Iguana timer

service maintains information about clients to which it

periodically sends messages. This information will be ir-

recoverably lost upon a restart. A stateless server like the

serial driver, on the other hand, can be restarted and may

continue to work for existing clients.

More complex functionality such as a file system is

part of the L4Linux [23] suite, which implements a com-

plete Linux system as a user-mode server. Since most

of the functionality required by Linux applications is im-

plemented in this server, the reliability of all L4Linux

applications depends on the reliability of this server, and

thus, this design is not any more reliable than the nor-

mal monolithic Linux OS. This has been improved to

some extent by isolating device drivers in separate vir-

tual L4Linux servers [36].

2.3 Chorus

The Chorus OS [40] is designed for high reliability and

is used in several telecommunication systems. In con-

trast to Minix3 and L4, services are executed in privi-

leged mode and share the same address space as the mi-

crokernel. Chorus includes “Hot Restart” technology [1]

that allows servers to maintain state in persistent memory

and resume execution quickly after a failure. Unlike both

the design we use in CuriOS and the Minix3 data store,

all allocated persistent memory in Chorus is permanently

mapped into the server domain. There is no mechanism

in place that prevents state information saved in the al-

located persistent memory from being potentially cor-

rupted by an error that occurs in a server. Unfortunately,

Chorus’ operating system services do not take advantage

of the “Hot Restart” functionality.

62 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Microkernel Operating System Recoverability after Server Failures

µkernel Failed Server Immediate Effect After Restart

Minix3

File System (fs) System unusable. × Server is not restarted because the Reincar-

nation Server depends on the file system.

Also, all current file system state informa-

tion is lost.

Network (inet) All existing network connec-

tions fail.

× Restart does not help re-establish connec-

tions because state information is lost.

Random Numbers

(random)

Temporary read failure. � Once the server is restarted, client reads be-

gin working again.

Printer Driver

(printer)

Temporary printer access

failure.

� Print job completes successfully after

spooler retries request to the restarted

printer server.

L4

Timer (ig timer) System unusable. × All clients stop receiving timer interrupts.

Restart does not help because clients wait-

ing on interrupts can’t re-register.

Name Server

(ig naming)

No immediate effect. × But many critical services inaccessible be-

cause lookup of registered names fail.

Restart does not help because all registered

clients need to re-register.

Serial (ig serial) Serial port inaccessible. � Request retries will eventually work.

Chorus

File System (vfs) System unusable. × Restart does not help because file system

state information is lost.

Network (netinet) System unusable. × Restart does not help recover existing net-

work connections.

Timer (kern) System unusable. × Restart does not address clients waiting on

timeout.

EROS
Memory allocator

(spacebank)

System unusable. � Restore from a previous checkpoint may fix

this error.

Process Creator System cannot create new

processes.

� Restore from a previous checkpoint may fix

this error.

2.4 EROS

EROS [43] is a capability-based system which saves

periodic snapshots of the entire machine state to disk.

When the system recovers after a crash, the last written

snapshot is reloaded. This approach only works when

the error is not present in the snapshot. Though the

system performs some consistency checks on snapshots,

correctness cannot be assured and several previous

snapshots may have to be reloaded before a working

version is obtained. Minix3’s approach of restarting an

erroneous server results in a re-creation of all internal

state and has better chances of eliminating errors.

Another drawback is that snapshots of large systems

and device state (not currently performed by EROS)

can be expensive in terms of memory and performance.

Reverting to a previous system snapshot on a failure also

results in a loss of all work done since the snapshot. This

may be undesirable in some situations. For example all

user input since the last snapshot is lost.

2.5 Other Systems

The Exokernel OS architecture [21] places most oper-

ating system abstractions in an application library and

securely multiplexes machine resources. Similar to a

monolithic kernel, error propagation is possible through-

out the library OS and the application. There is no mech-

anism that provides transparent recovery for an applica-

tion when errors occur in the associated library OS. An

important advantage of the exokernel approach is that er-

rors only affect the process in which they occur. This

benefit is at the cost of a complex design for multiplex-

ing shared resources like the storage subsystem. Four

design iterations were required to build the XN storage

system [31]. The Nemesis OS [29] also adopted a ver-

tical structure similar to the exokernel architecture while

providing explicit low-level guarantees for reserved re-

sources. Error propagation was limited by enforcing iso-

lation between device driver, system and application do-

mains. The design of Nemesis was driven by QoS con-

siderations and not surprisingly, does not include recov-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 63

ery support for arbitrary errors in components. However,

Nemesis provides QoS isolation between the clients of

a system service. Services are designed to prevent one

client from adversely affecting the QoS observed by oth-

ers.

The Singularity system [28] adopts a radically differ-

ent approach to security and reliability by using software

enforcement of address spaces. CuriOS relies on hard-

ware support to enforce memory protection.

3 Observations

From our study of the operating systems in the previous

Section, we are able to make several observations about

how the design of an operating system can impact its

ability to transparently recover in the event of the failure

and restart of an OS service.

Transparency of addressing: Clients should be

able to use the same address to access the OS service

after it is restarted. In EROS, since the whole system

is restored to a previous checkpoint, this property is

true. This is not supported by Chorus, whose hot restart

algorithm restarts servers with a new address. Nor is

this supported by L4 or Minix3 since a restarted server

would be assigned a different address. A name server

can be used to ameliorate this problem by maintaining

a consistent name for the server across a restart. The

restarted server would register its new address with the

name server to provide continued availability.

Minix3 achieves transparency of addressing to some

degree by using the file system server as a name server.

A server can register itself as the handler for a device

entry on the file system. For instance, the Minix3

random server mentioned in table 1 handles requests for

the /dev/random file system entry. In our experiment,

we opened /dev/random using the open system call and

used the returned file handle to read a stream of random

numbers from the server. If the random server crashed,

reads using this file handle failed; however, once the

server was restarted, reads using the same handle began

to work once again.

Suspension of clients for duration of recovery:

Clients should not time out or initiate new requests

during the recovery phase. This property is supported

by Chorus. In Minix3, clients are allowed to run when

the server is restarting, and this results in errors when a

client attempts to communicate with it. This is also the

case in L4; the client will receive an error when it tries

to communicate with a server that may be restarting.

The whole system is restored to a previous checkpoint

in EROS and therefore, this property is not applicable.

Persistence of client-related state: When a service is

restarted, requests from clients must not fail because the

server lost client-related state. Client-related state must

be preserved and made available to the restarted server.

Chorus and Minix3 have some support for in-memory

state preservation, but this is not exploited by any of the

OS services they support. An alternative is to save this

information to stable storage. In EROS, all computation

since the last saved checkpoint is lost.

Isolation of client-related state: Designs of exist-

ing microkernel operating systems provide unrestricted

access to client-related state within a server. An error

that occurs in the server can potentially corrupt state

related to all clients. This intra-component error prop-

agation problem exists in a large number of important

microkernel OS services. In EROS, error propagation

may lead to inconsistent data being checkpointed.

In the next Section, we describe how CuriOS fulfills

all of these requirements and enables transparently-

restartable OS components.

4 CuriOS Design

4.1 Structure and Overview

CuriOS is structured as a collection of interacting objects

that represent various components and services. An ob-

ject can be confined to an isolated memory protection

domain in order to reduce error propagation. We refer to

such an object as a protected object (PO). All methods on

a protected object are executed with reduced privileges

and run with hardware enforced memory protection. Cu-

riOS applies the principle of least privilege to protected

objects and only grants them access to memory regions

that are required for correct operation. This prevents an

error that occurs while running code in a protected ob-

ject from corrupting other parts of the system by over-

writing memory outside of the protected object. The re-

duced privilege execution mode also prevents protected

object code from executing privileged processor instruc-

tions. Devices can be made accessible from within pro-

tected objects in order to encapsulate device drivers.

A protected object in CuriOS is analogous to a

“server” in a traditional microkernel system. Our im-

plementation of protected objects on the ARM platform

only enforces restrictions on memory access. Implemen-

tations of protected objects on other platforms such as the

x86 can additionally exploit architectural features to pro-

vide access control for other resources such as IO ports.

Protected objects work together with a small kernel,

known as CuiK, in order to provide standard OS services

as shown in figure 2. CuiK is a thin layer of the OS that

64 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CuiK

App1 App2 App3 Protected

Object

Protected

Object

Unprivileged

Mode

Privileged

Mode

System Interface API

Application Interface Object

Protected Method Calls

CuriOS

Figure 2: CuriOS Organization

runs with the highest privileges. It is composed of a small

set of objects that manage low level architecture specific

functionality such as interrupt dispatching and context

switching. Communication between protected objects is

managed by CuiK.

CuiK uses protected method calls to invoke operations

on protected objects. Each protected object is assigned a

private heap. A private stack is reserved for every thread

that accesses the protected object. This stack is allocated

at the first invocation of a protected method, contributing

to a small delay in processing the first call to a protected

object. Subsequent invocations of protected methods on

the same protected object by the same thread reuse this

stack. A protected method call results in a switch to a re-

duced privilege execution mode and constrained access

rights to memory. The private stack and the heap are

mapped in with read-write privileges. The rest of Cu-

riOS is mapped in with read-only privileges. Permissions

to write to any additional memory has to be explicitly

granted by CuiK.

Our current implementation of protected method calls

uses a wrapper object that intercepts method calls to a

protected object and manages memory access control,

processor mode switching and recovery. The combina-

tion of protected objects and CuiK results in a single

address space operating system [11], where virtual ad-

dresses are identical across various components, but ac-

cess permissions differ.

Threads in CuriOS are managed by CuiK. Using

defined interfaces, a thread executing in CuriOS can

cross user-space application, kernel, and protected ob-

ject boundaries. For example, a system call in an appli-

cation causes the thread to cross from user-space into the

CuiK kernel. This same thread can cross from CuiK into

a protected object using a protected method call. Some

example threads are illustrated in figure 3.

CuriOS is written in C++ and uses object-oriented

techniques to minimize code duplication and improve

portability. Wrapper classes, for example, inherit from

a common base class that provides the support functions

used to switch protection domains and manage private

CuiK

App1 App2 App3 Protected

Object

Protected

Object

Unprivileged

Mode

Privileged

Mode

Figure 3: CuriOS Threads

heaps and stacks. In our current implementation, wrap-

per classes use multiple inheritance and also inherit from

the class representing the object being wrapped. This al-

lows the wrapper to exploit polymorphism and substitute

the protected object anywhere in the system.

C++ exception handling is used as the error signaling

mechanism in CuriOS [17]. Exceptions are raised for

both processor signaled errors such as invalid memory

accesses and for externally signaled errors such as OS in-

finite loop lockups (signaled by a watchdog timer) [16].

Exceptions are raised when errors are detected while

executing code within a protected object. Exceptions

that are not handled within the object are intercepted at

the wrapper which attempts to destroy and re-create the

protected object. The wrapper maintains a copy of the

constructor arguments (if any) in order to re-create the

protected object. This is similar to microrebooting or

server restarts in Minix3 and can be used to fix transient

hardware or software faults. The protected object is re-

created in-place in memory ensuring that external refer-

ences to it remain valid. This provides transparency of

addressing. The method call is immediately retried on

the newly constructed protected object. Multiple retry

failures cause an exception to be returned to the caller.

All normal system activity is suspended until the recov-

ery is completed. Thus clients are suspended for the du-

ration of recovery.

4.2 Server State Management

A server providing an OS service is implemented using

a protected object. Clients are either user applications,

or other protected objects. A protected object that rep-

resents an OS service can in turn operate as a client to

another server.

A server that needs to maintain state information about

clients uses state management functionality provided

by CuiK to distribute, isolate, and persist client-related

state. Servers that are completely stateless can be easily

restarted and do not require this functionality.

A Server State Region (SSR) is an object represent-

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 65

Protected

Method

Call

Client

SSR

SSRSSR

mapped in

for request

Server

Protected

Method

Return
Client

SSR

SSR unmapped

after request

completion

Server

Client Request Server Response

Code

Data LocalLocalLocalLocal

Figure 4: Request Processing

ing a region of memory that is allocated to store an

OS server’s client-related information. An SSR is cre-

ated when a client establishes a connection to the server.

For accounting purposes, the memory associated with

the SSR is charged to the client. SSRs are protected

from both the server and the client through hardware-

supported virtual memory protection mechanisms. A

client is never granted access to its SSR. A server is only

granted write access to a client’s SSR when it is process-

ing a request from that client (see figure 4). The SSR is

passed as an argument to the server’s protected method

call. The server can then use the SSR to store client-

related information. It has full control over management

of the memory within the SSR. Write permissions to the

SSR are revoked when the protected method call returns.

SSRs are implemented using a C++ object that holds a

pointer to a hardware-protectable region of memory.

All SSRs in CuriOS are managed by a singleton object

called the SSRManager. The SSRManager provides

the functions used to register a new server, bind a client

to a server (resulting in the creation of an SSR), undo

a client-server binding (deletion of the associated SSR)

and enumerate all the SSRs associated with a server.

Each server using SSRs is required to provide a recovery

routine that is invoked immediately after the server ob-

ject is re-created upon a failure. This routine can query

the SSRManager to obtain all associated SSRs in order

to re-create the internal state of the restarted server.

The SSR-based state management framework pro-

vides persistence and isolation of client-related state.

4.3 OS Service Construction

How should the state of a generic OS server be structured

in order to use the state management support provided by

CuiK? There are two types of stateful servers. The first

type is a server that does not require collective informa-

tion about all of its clients in order to service a request.

A server that provides pseudo random numbers based on

a per-client seed is one such example. It only needs to

know one client’s seed in order to service a request from

that client. Such servers can store client information in

SSRs and can be transparently restarted upon a failure.

All future client requests will continue to work correctly

because its SSRs and the information stored in them is

not lost.

The second type is a server that requires knowledge

about all of its clients in order to service a request. Ex-

amples of this type are OS services like the scheduler and

timer managers. Such servers can store client related in-

formation in SSRs and can redundantly cache this infor-

mation locally to process requests. Upon a restart, such

a server should be able to re-create its internal state from

its distributed SSRs.

Many CuriOS components and drivers are stateless or

structured as one of these two types of servers. When

restarting, the server’s recovery routine re-creates inter-

nal state from all SSRs. It is possible that the SSR that

was in use at the time an error occurs is corrupted. The

recovery routine can check the consistency of the ob-

jects in SSRs using simple heuristics before using them.

CuriOS uses magic numbers in objects and these can

be checked for corruption. We also use server-specific

checks to ensure that pointers and numbers are within

expected ranges. Unlike EROS which does consistency

checks of all state during normal running time, these SSR

consistency checks in CuriOS are only performed on ex-

ceptional conditions that require server recovery.

CuriOS servers can be multi-threaded and our current

implementation shares the same virtual memory map-

pings for all threads. Thus, it is possible that multiple

SSRs are mapped in when an error occurs. In this case,

the error propagation is limited to the SSRs that are cur-

rently mapped in. This can be further improved by in-

cluding support for thread-level protection.

4.4 Recoverable Errors

Protected method calls to servers are designed to retry the

request after a server fails and restarts during the process-

ing of the request. SSR-based recovery addresses a large

class of errors that result in corrupted local OS service

state. Complete reconstruction of service local state dur-

ing recovery can remedy any such corruption. When an

SSR is corrupted and multiple attempts at recovery fail,

only the client associated with the corrupted SSR is af-

fected and will need to be notified of a failure. The other

clients of the service can continue to function normally.

Thus, SSR-based recovery can minimize the impact of

a software bug that is triggered by a specific client re-

quest and a consequent failure. When repeated attempts

at processing the request fail, the client can be notified

and the service can continue processing other requests

that do not trigger the bug.

66 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Restarting a service that has visible external effects

may not always result in correct behavior. For example,

restarting a printer driver due to a failure may cause an-

other copy of the print job to be dispatched. This problem

may be ameliorated to some degree by writing code that

is restart-aware. This is achieved by incorporating some

means of recording the progress made in servicing a re-

quest. This limitation has also been acknowledged for

device driver restarts in Minix3 [26]. Similar to the ap-

proach taken by Minix3, we advocate notification of pos-

sible non-transparent recovery to applications or users.

5 CuriOS Services

Timer Management: A PeriodicTimerManager

service provided by CuriOS allows user applications to

access timer functionality. There is only one instance of

this class in the system and it is created as a PO. Clients

can start a timer by placing a request to be notified peri-

odically. The job of the PeriodicTimerManager is

to periodically signal a semaphore that the client waits

upon. In order to support recovery from a restart of the

PeriodicTimerManager service, SSRs are used to

persist and distribute information regarding each client.

The timer period, starting time and semaphore are stored

in every client’s SSR. The PeriodicTimerManager

is implemented using a linked list of pending client

notifications. Upon a failure-induced restart, the

PeriodicTimerManager can re-create this com-

plete internal linked list from the timer period and

starting time information in the distributed SSRs.

Scheduling: CuriOS schedulers are modeled as

process containers which manage a collection of pro-

cesses and provide a scheduling strategy by presenting

a method to pick the next process to run. A FIFO

scheduler, for example, is implemented using a linked

list of processes. The scheduler is created as a PO with

clients as individual processes. A client SSR includes

the pointer to the corresponding Process object and

scheduling strategy-specific information such as priori-

ties. If the scheduler is restarted after a failure, it queries

the SSRManager for all its clients and re-creates its

internal list.

Networking: The recovery mechanisms in CuriOS

allow for the construction of an extremely reliable

network stack. CuriOS uses the LWIP networking

stack [20] encapsulated in two restartable protected

objects: one for managing TCP connections and the

other for UDP. LWIP creates a tcp pcb or a udp pcb

data structure to manage state information for every

connection. We refactored LWIP code to place these

data structures within SSRs. In the case of TCP, for

example, this includes all information necessary to ser-

vice the incoming and outgoing packets of a connection.

This includes the network addresses, ports, windows,

sequence numbers and so on. If the TCP service crashes

and is restarted, this information is used to resume the

processing of packets. If this state information is not

preserved during a restart, the unfortunate consequence

is that all network connections in progress will be

terminated.

Each SSR is associated with a client Socket object

and is mapped into the TCP PO’s address space when

interacting with it. When there is an incoming packet,

the corresponding SSR is located and mapped in before

sending it through the stack. A similar approach is used

to provide access to SSRs for the TCP PO’s timer driven

events.

All the assert code in LWIP was converted to throw

exceptions instead of halting the stack. This compre-

hensive error detection in LWIP helps reduce error

propagation and improves recovery rates.

File Systems: CuriOS currently supports two dif-

ferent file systems. CramFSFileObject is a class

that provides access to a compressed file on the read-

only CramFS file system [14]. When a file is opened, an

instance of this class is created as a PO. This instance

only has information about its backing storage and does

not maintain any state regarding clients. Hence it does

not require usage of the server state management func-

tionality. The method call to read a file provides both

the offset into the file and the required number of bytes.

The PO is only granted privileges to modify its own data

and the destination buffer. Calls to other objects like the

backing storage are mediated by CuiK. Using a PO for

each file has several reliability benefits. An error that

occurs when processing one file is contained within the

PO and cannot corrupt arbitrary memory in the system.

If the error were transient, a restarted PO can continue

serving clients. If there is an error in a compressed

file stored on the disk that causes the decompression

routines to fail, it only causes an error in the clients that

were reading that particular file.

CuriOS also includes support for the Linux ext2 file

system. An Ext2Container PO is created for every

ext2 file system on disk. This manages the inode and

free space bitmaps. If this PO crashes and restarts, it can

re-read this information from disk. An Ext2Inode PO

is tasked with managing all interaction with a file. This

PO only has privileges to modify the inode it represents,

which, in turn, has all the pointers to disk blocks com-

prising the file. This has similar reliability benefits as

the CramFSFileObject protected object. Since POs

are re-created in-place, the same objects can be used to

access the file after the service is restarted.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 67

68 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

all of these manifested faults would result in a service

or system failure in most existing operating systems,

which do not implement restart recovery with state

management as used in CuriOS. An error is reported

as successfully recovered if the system is usable after

recovery. In some cases, a client’s connection to a server

is terminated because of a corrupted SSR or repeated

errors while the system, as well as other clients using

the restarted service, still remain usable. We count such

cases as successful system recovery in the figure shown.

In the face of arbitrary errors that corrupt a client’s SSR

or request, there is no possibility of maintaining the

unfortunate client’s connection.

Timer Manager: This experiment is set up so that

a couple of processes that use the timer are started

before faults are injected into the server. These are

applications like a clock that displays the time of day.

While the memory abort errors are fully recovered by

reconstructing the internal timer queue, in the register

bit-flip injections we see a few cases (3%) where errors

are detected but are not recovered. These happen when

the recovery procedure itself encounters an error and

is unable to complete. We are working on eliminating

such cases by improving the robustness of the recovery

routines. 6% of the register-bit flips evade detection by

the protected object mechanism and cause unrecoverable

errors in other parts of CuriOS. This is because register

bit-flip errors can propagate to other CuriOS subsystems

through invalid method call arguments and results. We

do not yet perform an exhaustive check of the validity

of all method call arguments and results. This is a work

in progress and we expect it to significantly reduce this

inter-component error propagation.

System Scheduler: This experiment is set up sim-

ilar to the timer manager experiment with several

processes in the system. The goal of this experiment is

to examine if a failure in the scheduler can be recovered

and if CuiK can continue scheduling processes. For the

memory abort experiments, re-creation of the internal

linked list is always successful. In the case of the register

bit-flip experiments, 6% of the errors are not detected by

the PO mechanism and cause CuriOS to crash.

Network: We run a simple web server and an

echo server in CuriOS while also running an HTTP

client that fetches a half-megabyte file from an external

host. Faults are injected into the LWIP code for TCP

processing of IP packets on both the send and receive

paths. If an error is detected, the TCP stack PO is

restarted and the request is retried. If multiple attempts

at executing a protected method fail, an exception is

thrown. If this exception is thrown when processing an

incoming IP packet, the packet is silently dropped by the

IP layer. This has no effect on the correctness of TCP

because this is similar to packet loss on the network and

is recovered by the TCP stack. If an exception is thrown

back to a client with a TCP connection handle, the TCP

connection for that client is terminated. We verify that

the network stack is still usable and other connections

are unaffected in spite of a single connection failure. For

the network stack, 5% of the manifested register-bit flip

faults are not detected and consequently, not recovered.

While the system is recovered in 95% of the cases, 45%

of these recoveries were at the cost of a single client’s

TCP connection termination due to state corruption.

File System: We inject faults into the code for the

ext2 file system that is used when accessing a file on

disk (in Ext2Inode). The memory abort faults are

always completely recovered after a retry. 13% of the

manifested register bit-flip faults are not detected by

the protected object mechanism and are therefore not

recovered. Again, this is due to error propagation via

corrupted method call arguments and results.

6.2 Performance

A protected method call incurs additional processing

overhead in comparison to a normal C++ method call.

We made use of both of CuriOS’ supported platforms to

measure the overhead associated with protected method

calls. On the OMAP1610 hardware platform we mea-

sured the overhead in terms of microseconds of execu-

tion, and on the QEMU emulator we measured the over-

head in terms of instructions executed. The OMAP1610

was clocked at 96MHz, and the same test source code

was used for both platforms. Table 2 shows the over-

heads for the two types of protected method calls: a pro-

tected call into a stateless server that does not require the

mapping of an SSR and a protected call info a server that

uses an SSR to manage state information. In the second

case, additional processing is required to map the SSR

into memory. The time overhead for switching into and

out of a protected object domain is comparable to the cost

of performing two context switches (148 microseconds

for two switches) in CuriOS. Since a protected method

call is analogous to switching between two microkernel

domains, we believe that this represents acceptable per-

formance. The numbers reported here are the average

Table 2: Protected Method Call Performance
Protected Call Instruction Time Overhead

Overhead (microseconds)

Without SSR 1594 ± 4 195.7± 0.5

With SSR 4893 ± 3 378.9± 0.9

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 69

of 100 trials with error estimates provided by the sample

standard deviation. We believe that these overheads may

be further reduced with careful code optimization.

Apart from the extra code implementing the protected

object mechanism, a major source of overhead is the

need to flush the TLB when switching between page ta-

bles. While the ARM architecture allows for selective

flushing of TLB entries, our current implementation does

not support this feature. The single address space design

of CuriOS helps to keep the costs of protected method

calls down by obviating the need to flush the virtually

tagged caches on the OMAP1610 ARM processor.

How fast does recovery happen? When an error is de-

tected, the exception handling framework signals the er-

ror and the C++ library unwinds the stack and destroys

stack objects. Restarting the server requires re-running

the constructor for the PO and code to recover informa-

tion from SSRs (if required). Altogether, the time from

error detection to a recovered system is usually on the

order of a few hundred microseconds.

6.3 Memory Overheads

Protected objects, like user applications, require addi-

tional page tables to enforce memory protection and this

results in some memory overhead. Each PO also has an

associated heap and a stack for each thread that can exe-

cute within the protected domain. The memory overhead

due to stacks depends on the number of threads that use

the PO. The use of SSRs also results in some memory

overheads. We use hardware protection to isolate SSRs.

However, hardware protection is not always available for

small memory regions. Thus the minimum size of an

SSR is determined by the smallest hardware-protectable

region of memory. For example, on the ARM platform,

this is a 1 KB page. Our current implementation uses

a page for the minimum size of an SSR. This results in

some memory waste. If this is a concern for small em-

bedded devices, our design can be extended so that multi-

ple SSRs share the same protected area. This saves space

at the cost of better isolation between the SSRs. This

problem may be mitigated by future architectural support

for finer granularity of access control such as Mondriaan

Memory Protection [54]. Nevertheless, the total memory

overhead per protected object in CuriOS is only on the

order of tens of kilobytes when there are a small number

of clients. This includes 20 KB for a minimal set of page

tables plus memory pages for the heap, per-thread stack

and per-client SSR (at least one page for each).

6.4 Refactoring Effort

Our proposed OS design requires writing OS service

code to encapsulate objects in protected domains and to

utilize our state management framework. The protected

object support in CuriOS is implemented through wrap-

per objects. Wrappers are currently written by hand and

consist of a one line statement per object method. The

statement is a C++ preprocessor macro that expands to

the code required to switch into and out of the associated

protection domain. This additional complexity may also

be avoided by using an automated wrapper generation

tool. Code-changes are also required to refactor OS ser-

vices so that they can make use of the state management

framework. The use of SSR-based state management in

the file system, scheduler and the timer manager required

less than 50 additional lines of code in each component.

In order to convert the LWIP networking stack to use

SSRs, we had to change around 100 lines of code. This

mostly involved replacing calls to its internal allocator

with the SSR-based state management code.

7 Discussion

7.1 Security

Our security model relies primarily on address space iso-

lation. We only map in memory that is necessary for a

protected object to execute. This includes the unprivi-

leged code and stack for the object as well as the SSR

region for the request. Our model is most closely related

to Nooks, which uses similar protection policies for ker-

nel memory. We differ from Nooks in that protected ob-

jects execute in an unprivileged processor mode. This

prevents a malfunctioning or compromised server from

affecting the integrity or confidentiality of information

used by inactive clients. Although we restrict the scope

of possible damage, our current implementation does not

consider intentionally malicious modules. We are work-

ing on fortifying the protected method call and server

state management mechanisms by borrowing ideas from

systems like EROS.

7.2 Fault-Tolerance

A number of standard fault tolerance techniques are

available in literature. These include redundancy in hard-

ware and software, transactions, error correction codes

for memory, majority or Byzantine voting, and other

software fault tolerance approaches [49]. Some of these

techniques can be directly applied to CuriOS to further

improve its fault tolerance. These techniques may be

used to ensure that the core of the system (CuiK and re-

covery code) itself is protected from failure.

VINO [42] used transactions to roll-back changes

made by misbehaving kernel extensions. We have also

investigated the use of software transactional memory

techniques to protect component state in Choices [15].

70 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The use of transactional semantics alone to recover com-

plete component state is only effective when errors are

detected before commits. When this property cannot be

enforced, there are no constraints on error propagation

within the component. However, when used together

with our SSR-based approach that reduces error prop-

agation, transactions can provide an additional layer of

protection to SSRs while they are being manipulated by

a service.

In addition to some of the operating systems discussed

in Section 2, many other system designs incorporate vir-

tual memory protection to improve reliability. In the Rio

project [12], virtual memory was used to protect the file

cache from corruption by errors occurring elsewhere in

the system. The protected object concept is similar to a

virtual memory protected region in Nooks [46]. How-

ever, unlike Nooks, a protected object executes in an

unprivileged processor mode. More importantly, while

Nooks is designed to wrap OS extensions such as de-

vice drivers, a protected object can encapsulate core OS

components. Unlike the shadow driver mechanism [45]

used by Nooks, the SSR-based recovery mechanisms can

isolate requests that cause crashes because of a software

bug and continue servicing requests that do not trigger

the bug. This is possible because of the rigorous par-

titioning of per-client state in CuriOS. When using the

shadow driver approach, the bug will be triggered in the

shadow driver just as it was in the original driver since

the same code is used.

OS service design using SSRs is closely related to the

principle of crash-only software [9]. Similar to crash-

only components, recovery involves a component restart

and component crashes are masked from end users using

transparent component-level retries.

7.3 Applicability to Other Systems

The state separation approach described in this work may

also be applied to other microkernel systems which pro-

vide isolation for OS services such as L4 and Minix3.

This would require some modifications to these kernels

to incorporate SSR management and changes to server

APIs. These systems would need to also be augmented to

support the other requirements for transparent recovery

detailed in Section 3. The benefits of state partitioning

for operating systems that do not use inter-component

isolation is debatable. Since there are no constraints on

error propagation, it is difficult to determine which OS

subsystem needs to be restarted.

7.4 Additional Benefits

There are several additional benefits of our design. Since

memory usage of SSRs can be attributed to clients, they

cannot cause a denial of service problem at a server by

creating a large number of connections to it. Our design

also makes it possible to transparently upgrade a server

by simply terminating the old server and starting a newer

version while preserving the SSRs. If the new server can

interpret the existing SSRs (backwards compatible), it

can continue serving existing clients.

7.5 Drawbacks

While there are several advantages of adopting our ap-

proach to OS design, there are also several drawbacks.

Apart from the performance and memory overheads

quantified in Section 6, there is still the added complexity

involved in separating state from services and hopefully

not introducing new software faults (bugs) in the process.

We have tried to quantify this additional complexity in

terms of lines of code in Section 6. Our observations in-

dicate that it requires about 12-24 person-hours to design

and refactor an OS service to work with our framework.

This includes the time spent in fixing most bugs uncov-

ered using fault injection.

8 Concluding Remarks

In this paper, we have analyzed some of the reasons why

current designs for reliable microkernel operating sys-

tems struggle with client-transparent recovery. Through

simple fault injection experiments with various systems,

we gain insights into properties that are essential for suc-

cessful client-transparent recovery of OS services. We

have described a design for structuring an OS that pre-

serves these properties. CuriOS minimizes error prop-

agation and persists client information using distributed

and isolated OS service state to enhance the transparent

restartability of several system components. Restricted

memory access permissions prevent erroneous OS ser-

vices from corrupting arbitrary memory locations. Our

experimental results show that it is possible to isolate and

recover core OS services from a significant percentage of

errors with acceptable performance.

The source code for our CuriOS implementation

and the code for the QEMU-based fault injector can

be found on our website at http://choices.cs.

uiuc.edu/.

Acknowledgments

We are very grateful for the insights and feedback from

Galen Hunt (our shepherd) and the anonymous review-

ers. Part of this research was made possible by grants

from DoCoMo Labs USA and Motorola as well as gen-

erous equipment support from Texas Instruments.

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 71

References

[1] ABROSSIMOV, V., AND HEMANN, F. Fast Error Recov-

ery in CHORUS/OS: The Hot-Restart Technology. Tech.

Rep. CSI-T4-96-34, Chorus Systems, Inc., August 1996.

[2] ARMTMIntegrator Family. http://www.arm.com/

products/DevTools/Hardware_Platforms.

html.

[3] AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND

LANDWEHR, C. E. Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE Transactions

on Dependable and Secure Computing 1, 1 (2004), 11–

33.

[4] BARTLETT, J., GRAY, J., AND HORST, B. Fault Toler-

ance in Tandem Computer Systems. In The Evolution of

Fault-Tolerant Systems, A. Avizienis, H. Kopetz, and J.-

C. Laprie, Eds. Springer-Verlag, Vienna, Austria, 1987,

pp. 55–76.

[5] BARTLETT, J. F. A NonStop Kernel. In Symposium

on Operating Systems Principles (New York, NY, USA,

1981), ACM Press, pp. 22–29.

[6] BARTLETT, W., AND SPAINHOWER, L. Commercial

Fault Tolerance: A Tale of Two Systems. IEEE Transac-

tions on Dependable and Secure Computing 1, 1 (2004),

87–96.

[7] BELLARD, F. QEMU, a Fast and Portable Dynamic

Translator. In USENIX Annual Technical Conference,

FREENIX Track (April 2005).

[8] CAMPBELL, R. H., JOHNSTON, G. M., AND RUSSO, V.

“Choices (Class Hierarchical Open Interface for Custom

Embedded Systems)”. ACM Operating Systems Review

21, 3 (July 1987), 9–17.

[9] CANDEA, G., AND FOX, A. Crash-Only Software. In

Proceedings of the 9th Workshop on Hot Topics in Oper-

ating Systems (HotOS IX) (Lihue, HI, May 2003).

[10] CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIED-

MAN, G., AND FOX, A. Microreboot – A Technique for

Cheap Recovery. In Symposium on Operating Systems

Design and Implementation (San Francisco, CA, Decem-

ber 2004), pp. 31–44.

[11] CHASE, J. S., LEVY, H. M., FEELEY, M. J., AND LA-

ZOWSKA, E. D. Sharing and Protection in a Single Ad-

dress Space Operating System. ACM Transactions on

Computer Systems 12, 4 (1994), 271–307.

[12] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C.,

RAJAMANI, G., AND LOWELL, D. The Rio File Cache:

Surviving Operating System Crashes. In International

Conference on Architectural Support for Programming

Languages and Operating Systems (1996), pp. 74–83.

[13] CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND

ENGLER, D. R. An Empirical Study of Operating System

Errors. In Symposium on Operating Systems Principles

(2001), pp. 73–88.

[14] Compressed ROM filesystem. http://

sourceforge.net/projects/cramfs/.

[15] DAVID, F. M., AND CAMPBELL, R. H. Building a Self-

Healing Operating System. In Symposium on Depend-

able, Autonomic and Secure Computing (Columbia, MD,

Sep 2007), pp. 3–17.

[16] DAVID, F. M., CARLYLE, J. C., AND CAMPBELL, R. H.

Exploring Recovery from Operating System Lockups. In

USENIX Annual Technical Conference (Santa Clara, CA,

June 2007), pp. 351–356.

[17] DAVID, F. M., CARLYLE, J. C., CHAN, E. M., RAILA,

D. K., AND CAMPBELL, R. H. Exception Handling in

the Choices Operating System, vol. 4119 of Lecture Notes

in Computer Science. Springer-Verlag Inc., New York,

NY, USA, 2006.

[18] DAVID, F. M., CARLYLE, J. C., CHAN, E. M.,

REAMES, P. A., AND CAMPBELL, R. H. Improving

Dependability by Revisiting Operating System Design.

In Workshop on Hot Topics in Dependability (Edinburgh,

UK, June 2007), pp. 58–63.

[19] DENNING, P. J. Fault Tolerant Operating Systems. ACM

Computing Survey 8, 4 (1976), 359–389.

[20] DUNKELS, A. Full TCP/IP for 8-bit Architectures. In In-

ternational Conference on Mobile Systems, Applications

and Services (New York, NY, USA, 2003), ACM, pp. 85–

98.

[21] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE,

J. Exokernel: An Operating System Architecture for

Application-Level Resource Management. In Symposium

on Operating Systems Principles (1995), pp. 251–266.

[22] GU, W., KALBARCZYK, Z., AND IYER, R. K. Error

Sensitivity of the Linux Kernel Executing on PowerPC

G4 and Pentium 4 Processors. In International Confer-

ence on Dependable Systems and Networks (Washington,

DC, USA, 2004), IEEE Computer Society, pp. 887–896.

[23] HARTIG, H., HOHMUTH, M., AND WOLTER, J. Taming

Linux. In Australasian Conference on Parallel And Real-

Time Systems (Adelaide, Australia, Sept 1998).

[24] HERDER, J., BOS, H., GRAS, B., HOMBURG, P., AND

TANENBAUM, A. S. Roadmap to a Failure-Resilient Op-

erating System. USENIX ;login 32 (February 2007), 14–

20.

[25] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P.,

AND TANENBAUM, A. S. Reorganizing UNIX for Re-

liability. In Asia-Pacific Computer Systems Architecture

Conference (2006), pp. 81–94.

[26] HERDER, J. N., BOS, H., GRAS, B., HOMBURG, P.,

AND TANENBAUM, A. S. Failure Resilience for Device

Drivers. In International Conference on Dependable Sys-

tems and Networks (2007), pp. 41–50.

[27] HILLER, M., JHUMKA, A., AND SURI, N. PROPANE:

An Environment for Examining the Propagation of Errors

in Software. In Symposium on Software Testing and Anal-

ysis (New York, NY, USA, 2002), ACM Press, pp. 81–85.

[28] HUNT, G. C., LARUS, J. R., ABADI, M., AIKEN,

M., BARHAM, P., FAHNDRICH, M., HAWBLITZEL, C.,

HODSON, O., LEVI, S., MURPHY, N., STEENSGAARD,

72 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

B., TARDITI, D., WOBBER, T., AND ZILL, B. An

Overview of the Singularity Project. Tech. Rep. MSR-

TR-2005-135, Microsoft Research, 2005.

[29] HYDEN, E. A. Operating System Support for Quality of

Service. PhD thesis, University of Cambridge, 1994.

[30] JOHANSSON, R. On Single Event Upset Error Manifes-

tation. In European Dependable Computing Conference

(London, UK, 1994), Springer-Verlag, pp. 217–231.

[31] KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R.,

NO, H. M. B., HUNT, R., MAZIÈRES, D., PINCKNEY,

T., GRIMM, R., JANNOTTI, J., AND MACKENZIE, K.

Application Performance and Flexibility on Exokernel

Systems. In Symposium on Operating Systems Principles

(New York, NY, USA, 1997), ACM Press, pp. 52–65.

[32] KENNELL, R., AND JAMIESON, L. H. Establishing the

Genuinity of Remote Computer Systems. In USENIX Se-

curity Symposium (2003), pp. 295–308.

[33] KITTUR, S., ARMAND, F., STEEL, D., AND LIPKIS,

J. Fault Tolerance in a Distributed CHORUS/MiX Sys-

tem. In USENIX Annual Technical Conference (1996),

pp. 219–228.

[34] LEE, I., AND IYER, R. K. Faults, Symptoms, and Soft-

ware Fault Tolerance in the Tandem GUARDIAN90 Op-

erating System. In International Symposium on Fault-

Tolerant Computing (1993), pp. 20–29.

[35] LESLIE, B., VAN SCHAIK, C., AND HEISER, G. Wom-

bat: A portable user-mode Linux for embedded systems.

In Linux.Conf.Au, (Canberra) (April 2005).

[36] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ,

S. Unmodified Device Driver Reuse and Improved Sys-

tem Dependability via Virtual Machines. In Symposium

on Operating Systems Design and Implementation (San

Francisco, CA, Dec. 2004), pp. 17–30.

[37] LIEDTKE, J. On µ-Kernel Construction. In Symposium

on Operating Systems Principles (New York, NY, USA,

1995), ACM Press, pp. 237–250.

[38] NG, W. T., AND CHEN, P. M. The Systematic Improve-

ment of Fault Tolerance in the Rio File Cache. In Interna-

tional Symposium on Fault-Tolerant Computing (1999),

pp. 76–83.

[39] RANDELL, B. Operating Systems: The Problems of Per-

formance and Reliability. In IFIP Congress 71 Volume 1

(1971), pp. 281–290.

[40] ROZIER, M., ABROSSIMOV, V., ARMAND, F., BOULE,

I., GIEN, M., GUILLEMONT, M., HERRMAN, F.,

KAISER, C., LANGLOIS, S., LÉONARD, P., AND

NEUHAUSER, W. Overview of the Chorus Distributed

Operating System. In Workshop on Micro-Kernels and

Other Kernel Architectures (Seattle WA (USA), 1992),

pp. 39–70.

[41] SANDBERG, R., GOLDBERG, D., KLEIMAN, S.,

WALSH, D., AND LYON, B. Design and Implementation

of the Sun Network Filesystem. In USENIX Conference

(Portland, OR, USA, 1985), pp. 119–130.

[42] SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH,

K. A. Dealing With Disaster: Surviving Misbehaved Ker-

nel Extensions. In Symposium on Operating Systems De-

sign and Implementation (New York, NY, USA, 1996),

ACM, pp. 213–227.

[43] SHAPIRO, J. S. EROS: A Capability System. PhD thesis,

University of Pennsylvania, 1999.

[44] The Standish Group. TCO in the Trenches 2002.

http://www.himalaya.compaq.com/object/

TCO.html.

[45] SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N.,

AND LEVY, H. M. Recovering Device Drivers. In Sym-

posium on Operating Systems Design and Implementa-

tion (2004), pp. 1–16.

[46] SWIFT, M. M., BERSHAD, B. N., AND LEVY, H. M.

Improving the Reliability of Commodity Operating Sys-

tems. In Symposium on Operating Systems Principles

(New York, NY, USA, 2003), ACM Press, pp. 207–222.

[47] TANENBAUM, A. S., HERDER, J. N., AND BOS, H. Can

We Make Operating Systems Reliable and Secure? IEEE

Computer 39, 5 (2006), 44–51.

[48] Texas Instruments OMAP Platform. http://focus.

ti.com/omap/docs/omaphomepage.tsp.

[49] TORRES-POMALES, W. Software Fault Tolerance: A Tu-

torial. Tech. Rep. NASA/TM-2000-210616, NASA Lan-

gley Research Center, 2000.

[50] ÚLFAR ERLINGSSON, VALLEY, S., ABADI, M.,

VRABLE, M., BUDIU, M., AND NECULA, G. C. XFI:

Software Guards for System Address Spaces. In Sym-

posium on Operating Systems Design and Implementa-

tion (Berkeley, CA, USA, 2006), USENIX Association,

pp. 75–88.

[51] VENEMA, W. Murphy’s law and computer security.

USENIX Security Symposium (1996), 187.

[52] WANG, L., KALBARCZYK, Z., GU, W., AND

IYER, R. K. An OS-level Framework for Providing

Application-Aware Reliability. In IEEE Pacific Rim Inter-

national Symposium on Dependable Computing (2006).

[53] WELCH, B. B. Naming, State Management, and User-

Level Extensions in the Sprite Distributed File Sys-

tem. PhD thesis, University of California, Berkeley, CA

94720, Feb. 1990. Technical Report UCB/CSD 90/567.

[54] WITCHEL, E., CATES, J., AND ASANOVIĆ, K. Mon-

drian Memory Protection. In International Conference on

Architectural Support for Programming Languages and

Operating Systems (New York, NY, USA, 2002), ACM

Press, pp. 304–316.

[55] ZHOU, F., CONDIT, J., ANDERSON, Z., BAGRAK, I.,

ENNALS, R., HARRE, M., NECULA, G., AND BREWER,

E. SafeDrive: Safe and Recoverable Extensions Using

Language-Based Techniques. In Symposium on Oper-

ating Systems Design and Implementation (Nov 2006),

pp. 45–60.

