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Types of Multiprocessors (MPs)

 Uniform memory-access (UMA) MP
• Access to all memory occurs at the same 

speed for all processors.  

 Non-uniform memory-access (NUMA) MP
• Access to some parts of memory is faster 

for some processors than other parts of 
memory

 We'll focus on UMA
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Types of UMA Multiprocessors

 Classical multiprocessor
• CPUs with local caches

• connected by bus

• fully separated cache hierarchy
⇒ cache coherency issues

 Chip Multiprocessor (CMP)
• per-core L1 caches 

• shared lower on-chip caches

• usually called “multicore”

• mild cache coherency issues
− easily addressed in hardware

 Symmetric multithreading (SMT)
• replicated functional units, register state
• interleaved execution of several threads
• fully shared cache hierarchy
• no cache coherency issues
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Cache Coherency

 What happens if one CPU writes to 
(cached) address and another CPU 
reads from the same address

• Can be thought of as replication and 
migration of data between CPUs

 Ideally, a read produces the result of the last write to the particular 
memory location

• Approaches that avoid the issue in software also prevent exploiting 
replication for parallelism

• Typically, a hardware solution is used
− Snooping – typically for bus-based architectures
− Directory based – typically for non-bus interconnects
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Snooping

 Each cache “broadcasts” transactions 
on the bus 

 Each cache monitors the bus for 
transactions that affect its state

 Typically use “MESI” protocol in
bus-based architectures

 How does snooping work with multiple levels of caches?
• inclusion property: L

n
 ⊃ L

n-1

• multi-level snooping
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Example Coherence Protocol  MESI

Each cache line is in one of four states

 Modified (M) 
• The line is valid in the cache and in only this cache.
• The line is modified with respect to system memory—that is, the modified 

data in the line has not been written back to memory.
 Exclusive (E)

• The addressed line is in this cache only. 
• The data in this line is consistent with system memory.

 Shared (S)
• The addressed line is valid in the cache and in at least one other cache. 
• A shared line is always consistent with system memory. That is, the shared 

state is shared-unmodified; there is no shared-modified state.
 Invalid (I)

• This state indicates that the addressed line is not resident in the cache and/
or any data contained is considered not useful.
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MESI Coherence Protocol

 Events
– RH = Read Hit
– RMS = Read miss, shared
– RME = Read miss, exclusive
– WH = Write hit
– WM = Write miss
– SHR = Snoop hit on read
– SHI = Snoop hit on invalidate
– LRU = LRU replacement

 Bus Transactions
– Push = Write cache line back to memory
– Invalidate = Broadcast invalidate
– Read = Read cache line from memory
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Directory-based Coherence

 Each memory block has a home node
 Home node keeps directory of cache that have a copy

• E.g., a bitmap of processors per memory block
✔ Invalidation/update messages can be directed explicitly
✗ Requires more storage to keep directory

• E.g. each 256 bits or memory requires 32 bits of directory
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Interaction with Memory Architecture

 Example: critical section
 /* counter++ */
  load  r1, counter
  add   r1, r1, 1
  store r1, counter
  /* unlock(mutex) */
  store zero, mutex

 Relies on all CPUs seeing update of counter  before update of mutex
 Depends on assumptions about ordering of stores to memory
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Memory Models: Strong Ordering

 Loads and stores execute in program order
 Memory accesses of different CPUs are sequentialised
 Traditionally used by many architectures

 CPU 0 CPU 1
 store  r1, adr1 store  r1, adr2
  load   r2, adr2 load   r2, adr1

 At least one CPU must load the other's new value
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Other Memory Models

 Modern hardware features can interfere with store order:
• write buffer (or store buffer or write-behind buffer)
• instruction reordering (out-of-order completion)
• superscalar execution
• pipelining

 Each CPU keeps its own data consistent, but how about others?
• multiprocessing
• DMA
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Total Store Ordering

 Stores go to write buffer to hide memory latency
 Loads read from write buffer if possible
 Stores are guaranteed to occur in FIFO order

 CPU 0 CPU 1
      store  r1, adr1 store  r1, adr2
   load   r2, adr2 load   r2, adr1

 Both CPUs may read old value!
 Need hardware support, e.g.

• atomic swap
• test & set
• load-linked + store-conditional
• memory barriers

 Stall pipeline and drain (and bypass) write buffer

CPU

Cache

…
Store A

…
Store B

…
Store A

…



©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 13

Partial Store Ordering

 All stores go to write buffer
 Loads read from write buffer if possible
 Redundant stores are cancelled

  load  r1, counter
  add   r1, r1, 1
  store r1, counter
  barrier
  store zero, mutex

 Store to mutex can overtake store to counter
 Need to use memory barrier
 Failure to do so will introduce subtle bugs:

• changing process state after saving context
• initiating I/O after setting up parameter buffer
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Observation

 Locking primitives require exclusive access to the “lock”

 Care required to avoid excessive bus/interconnect traffic
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Focus on locking in the Common Case

 Bus-based UMA, per-CPU write-back caches, snooping coherence 
protocol. 
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Kernel Locking

 Several CPUs can be executing kernel code concurrently.

 Need mutual exclusion on shared kernel data.

 Issues:
• Granularity of locking

• Lock implementation
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• Fast communication
➝  shared data structures

• Expensive communication
➝  distributed data structures

Multiprocessing Options
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• Scheduling domain
➔ Hardware thread contexts of an SMT core
➔ Multiple cores on a chip with fast cache migration, inter-core interrupts

• Separate domains where communication is slow 
➔ Multiple cores without shared caches
➔ Bus-connected processors
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Lock Granularity

 Fine-grained vs coarse-grained?
• tradeoff is highly dependent on

− length of system calls
− number of fine-grained

locks required
− cost of individual locks
− ...
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Mutual Exclusion Techniques

 Disabling interrupts (CLI — STI).
• Unsuitable for multiprocessor systems.

 Spin locks.
• Busy-waiting wastes cycles.

 Lock objects.
• Flag (or a particular state) indicates object is locked.

• Manipulating lock requires mutual exclusion.
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Hardware Provided Locking Primitives

• int test_and_set(lock *);
• int compare_and_swap(int c, int v, lock *);
• int exchange(int v, lock *)
• int atomic_inc(lock *)

• v = load_linked(lock *) / bool 
store_conditional(int, lock *)

• LL/SC can be used to implement all of the above
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Spin locks

void lock (volatile lock_t *lk) {
while (test_and_set(lk)) ;

}
void unlock (volatile lock_t *lk) {

*lk = 0;
}

 Busy waits. Good idea?
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Spin Lock Busy-waits Until Lock Is Released

 Stupid on uniprocessors, as nothing will change while spinning.
• Should release (yield) CPU immediately.

 Maybe ok on SMPs: locker may execute on other CPU.
• Minimal overhead (if contention low).
• Still, should only spin for short time.

 Generally restrict spin locking to:
• short critical sections,
• unlikely to be contended by the same CPU.
• local contention can be prevented

− by design
− by turning off interrupts
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Spinning versus Switching

• Blocking and switching
−  to another process takes time

• Save context and restore another
• Cache contains current process not new

» Adjusting the cache working set also takes time
• TLB is similar to cache

− Switching back when the lock is free encounters the same again
• Spinning wastes CPU time directly

 Trade off
• If lock is held for less time than the overhead of switching to and back
⇒ It’s more efficient to spin 
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Spinning versus Switching

 The general approaches taken are
• Spin forever

• Spin for some period of time, if the lock is not acquired, block and switch
− The spin time can be 

• Fixed (related to the switch overhead)
• Dynamic 

» Based on previous observations of the lock acquisition time
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Interrupt Disabling

 Assume no local contention by design, is disabling interrupt important?

 Hint: What happens if a lock holder is preempted (e.g., at end of its 
timeslice)?

 All other processors spin until the lock holder is re-scheduled
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Alternative: Conditional Lock

bool cond lock (volatile lock_t *lk) {

if (test and set(lk))

return FALSE; //couldn’t lock
else

return TRUE; //acquired lock
}

 Can do useful work if fail to aquire lock.

 But may not have much else to do.

 Starvation: May never get lock!
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More Appropriate Mutex Primitive:

void mutex lock (volatile lock t *lk) {
while (1) {

for (int i=0; i<MUTEX N; i++)
if (!test and set(lk))

return;
yield();

}
}
 Spins for limited time only

• assumes enough for other CPU to exit critical section
 Useful if critical section is shorter than N iterations.
 Starvation possible.
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Common Multiprocessor Spin Lock

void mp spinlock (volatile lock t *lk) {
cli(); // prevent preemption
while (test and set(lk)) ; // lock

}
void mp unlock (volatile lock t *lk) {

*lk = 0;
sti();

}
 Only good for short critical sections
 Does not scale for large number of processors
 Relies on bus-arbitrator for fairness
 Not appropriate for user-level
 Used in practice in small SMP systems
[Anderson, 1990]
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