
Multiprocessors and Locking

COMP9242
2008/S2 Week 12
Part 1

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 2

Types of Multiprocessors (MPs)

 Uniform memory-access (UMA) MP
• Access to all memory occurs at the same

speed for all processors.

 Non-uniform memory-access (NUMA) MP
• Access to some parts of memory is faster

for some processors than other parts of
memory

 We'll focus on UMA

Main
Memory

CPU

Cache

CPU

Cache

Bus

Cache Main
Memory

Main
Memory

CPU

Cache

Interconnect

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 3

Types of UMA Multiprocessors

 Classical multiprocessor
• CPUs with local caches

• connected by bus

• fully separated cache hierarchy
⇒ cache coherency issues

 Chip Multiprocessor (CMP)
• per-core L1 caches

• shared lower on-chip caches

• usually called “multicore”

• mild cache coherency issues
− easily addressed in hardware

 Symmetric multithreading (SMT)
• replicated functional units, register state
• interleaved execution of several threads
• fully shared cache hierarchy
• no cache coherency issues

Main
Memory

CPU

Cache

CPU

Cache

Bus

CPU package

CPU core

L1

CPU core

L1

L2 cache

Main
Memory

Bus

CPU core

HW thread

L1 cache

HW thread

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 4

Cache Coherency

 What happens if one CPU writes to
(cached) address and another CPU
reads from the same address

• Can be thought of as replication and
migration of data between CPUs

 Ideally, a read produces the result of the last write to the particular
memory location

• Approaches that avoid the issue in software also prevent exploiting
replication for parallelism

• Typically, a hardware solution is used
− Snooping – typically for bus-based architectures
− Directory based – typically for non-bus interconnects

Main
Memory

CPU

Cache

CPU

Cache

Bus

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 5

Snooping

 Each cache “broadcasts” transactions
on the bus

 Each cache monitors the bus for
transactions that affect its state

 Typically use “MESI” protocol in
bus-based architectures

 How does snooping work with multiple levels of caches?
• inclusion property: L

n
 ⊃ L

n-1

• multi-level snooping

Main
Memory

CPU

Cache

CPU

Cache

Bus

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 6

Example Coherence Protocol MESI

Each cache line is in one of four states

 Modified (M)
• The line is valid in the cache and in only this cache.
• The line is modified with respect to system memory—that is, the modified

data in the line has not been written back to memory.
 Exclusive (E)

• The addressed line is in this cache only.
• The data in this line is consistent with system memory.

 Shared (S)
• The addressed line is valid in the cache and in at least one other cache.
• A shared line is always consistent with system memory. That is, the shared

state is shared-unmodified; there is no shared-modified state.
 Invalid (I)

• This state indicates that the addressed line is not resident in the cache and/
or any data contained is considered not useful.

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 7

MESI Coherence Protocol

 Events
– RH = Read Hit
– RMS = Read miss, shared
– RME = Read miss, exclusive
– WH = Write hit
– WM = Write miss
– SHR = Snoop hit on read
– SHI = Snoop hit on invalidate
– LRU = LRU replacement

 Bus Transactions
– Push = Write cache line back to memory
– Invalidate = Broadcast invalidate
– Read = Read cache line from memory

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 8

Directory-based Coherence

 Each memory block has a home node
 Home node keeps directory of cache that have a copy

• E.g., a bitmap of processors per memory block
✔ Invalidation/update messages can be directed explicitly
✗ Requires more storage to keep directory

• E.g. each 256 bits or memory requires 32 bits of directory

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 9

Interaction with Memory Architecture

 Example: critical section
 /* counter++ */
 load r1, counter
 add r1, r1, 1
 store r1, counter
 /* unlock(mutex) */
 store zero, mutex

 Relies on all CPUs seeing update of counter before update of mutex
 Depends on assumptions about ordering of stores to memory

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 10

Memory Models: Strong Ordering

 Loads and stores execute in program order
 Memory accesses of different CPUs are sequentialised
 Traditionally used by many architectures

 CPU 0 CPU 1
 store r1, adr1 store r1, adr2
 load r2, adr2 load r2, adr1

 At least one CPU must load the other's new value

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 11

Other Memory Models

 Modern hardware features can interfere with store order:
• write buffer (or store buffer or write-behind buffer)
• instruction reordering (out-of-order completion)
• superscalar execution
• pipelining

 Each CPU keeps its own data consistent, but how about others?
• multiprocessing
• DMA

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 12

Total Store Ordering

 Stores go to write buffer to hide memory latency
 Loads read from write buffer if possible
 Stores are guaranteed to occur in FIFO order

 CPU 0 CPU 1
 store r1, adr1 store r1, adr2
 load r2, adr2 load r2, adr1

 Both CPUs may read old value!
 Need hardware support, e.g.

• atomic swap
• test & set
• load-linked + store-conditional
• memory barriers

 Stall pipeline and drain (and bypass) write buffer

CPU

Cache

…
Store A

…
Store B

…
Store A

…

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 13

Partial Store Ordering

 All stores go to write buffer
 Loads read from write buffer if possible
 Redundant stores are cancelled

 load r1, counter
 add r1, r1, 1
 store r1, counter
 barrier
 store zero, mutex

 Store to mutex can overtake store to counter
 Need to use memory barrier
 Failure to do so will introduce subtle bugs:

• changing process state after saving context
• initiating I/O after setting up parameter buffer

CPU

Cache

…
Store A

…
Store B

…
Store A

…

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 14

Observation

 Locking primitives require exclusive access to the “lock”

 Care required to avoid excessive bus/interconnect traffic

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 15

Focus on locking in the Common Case

 Bus-based UMA, per-CPU write-back caches, snooping coherence
protocol.

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 16

Kernel Locking

 Several CPUs can be executing kernel code concurrently.

 Need mutual exclusion on shared kernel data.

 Issues:
• Granularity of locking

• Lock implementation

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 17

• Fast communication
➝ shared data structures

• Expensive communication
➝ distributed data structures

Multiprocessing Options

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 18

• Scheduling domain
➔ Hardware thread contexts of an SMT core
➔ Multiple cores on a chip with fast cache migration, inter-core interrupts

• Separate domains where communication is slow
➔ Multiple cores without shared caches
➔ Bus-connected processors

Scheduling Domain

Sched. Queue

RAM

Sched. Queue

CoreCore

Cache

Core

Cache

Core

Multiprocessing Options

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 19

Lock Granularity

 Fine-grained vs coarse-grained?
• tradeoff is highly dependent on

− length of system calls
− number of fine-grained

locks required
− cost of individual locks
− ...

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 20

Mutual Exclusion Techniques

 Disabling interrupts (CLI — STI).
• Unsuitable for multiprocessor systems.

 Spin locks.
• Busy-waiting wastes cycles.

 Lock objects.
• Flag (or a particular state) indicates object is locked.

• Manipulating lock requires mutual exclusion.

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 21

Hardware Provided Locking Primitives

• int test_and_set(lock *);
• int compare_and_swap(int c, int v, lock *);
• int exchange(int v, lock *)
• int atomic_inc(lock *)

• v = load_linked(lock *) / bool
store_conditional(int, lock *)

• LL/SC can be used to implement all of the above

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 22

Spin locks

void lock (volatile lock_t *lk) {
while (test_and_set(lk)) ;

}
void unlock (volatile lock_t *lk) {

*lk = 0;
}

 Busy waits. Good idea?

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 23

Spin Lock Busy-waits Until Lock Is Released

 Stupid on uniprocessors, as nothing will change while spinning.
• Should release (yield) CPU immediately.

 Maybe ok on SMPs: locker may execute on other CPU.
• Minimal overhead (if contention low).
• Still, should only spin for short time.

 Generally restrict spin locking to:
• short critical sections,
• unlikely to be contended by the same CPU.
• local contention can be prevented

− by design
− by turning off interrupts

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 24

Spinning versus Switching

• Blocking and switching
− to another process takes time

• Save context and restore another
• Cache contains current process not new

» Adjusting the cache working set also takes time
• TLB is similar to cache

− Switching back when the lock is free encounters the same again
• Spinning wastes CPU time directly

 Trade off
• If lock is held for less time than the overhead of switching to and back
⇒ It’s more efficient to spin

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 25

Spinning versus Switching

 The general approaches taken are
• Spin forever

• Spin for some period of time, if the lock is not acquired, block and switch
− The spin time can be

• Fixed (related to the switch overhead)
• Dynamic

» Based on previous observations of the lock acquisition time

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 26

Interrupt Disabling

 Assume no local contention by design, is disabling interrupt important?

 Hint: What happens if a lock holder is preempted (e.g., at end of its
timeslice)?

 All other processors spin until the lock holder is re-scheduled

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 27

Alternative: Conditional Lock

bool cond lock (volatile lock_t *lk) {

if (test and set(lk))

return FALSE; //couldn’t lock
else

return TRUE; //acquired lock
}

 Can do useful work if fail to aquire lock.

 But may not have much else to do.

 Starvation: May never get lock!

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 28

More Appropriate Mutex Primitive:

void mutex lock (volatile lock t *lk) {
while (1) {

for (int i=0; i<MUTEX N; i++)
if (!test and set(lk))

return;
yield();

}
}
 Spins for limited time only

• assumes enough for other CPU to exit critical section
 Useful if critical section is shorter than N iterations.
 Starvation possible.

©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 29

Common Multiprocessor Spin Lock

void mp spinlock (volatile lock t *lk) {
cli(); // prevent preemption
while (test and set(lk)) ; // lock

}
void mp unlock (volatile lock t *lk) {

*lk = 0;
sti();

}
 Only good for short critical sections
 Does not scale for large number of processors
 Relies on bus-arbitrator for fairness
 Not appropriate for user-level
 Used in practice in small SMP systems
[Anderson, 1990]

	Slide 1
	Types of Multiprocessors (MPs)
	Slide 3
	Cache Coherency
	Snooping
	Example Coherence Protocol MESI
	Slide 7
	Directory-based coherence example
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Observation
	Focus on locking in the Common Case
	Kernel Locking
	Slide 17
	Slide 18
	Slide 19
	Mutual Exclusion Techniques
	Hardware Provided Locking Primitives
	Spin locks
	Spin Lock Busy-waits Until Lock Is Released
	Spinning versus Switching
	Slide 25
	Interrupt Disabling
	Alternative: Conditional Lock
	More Appropriate Mutex Primitive:
	Common Multiprocessor Spin Lock

