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Types of Multiprocessors (MPs)

 Uniform memory-access (UMA) MP
• Access to all memory occurs at the same 

speed for all processors.  

 Non-uniform memory-access (NUMA) MP
• Access to some parts of memory is faster 

for some processors than other parts of 
memory

 We'll focus on UMA
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Types of UMA Multiprocessors

 Classical multiprocessor
• CPUs with local caches

• connected by bus

• fully separated cache hierarchy
⇒ cache coherency issues

 Chip Multiprocessor (CMP)
• per-core L1 caches 

• shared lower on-chip caches

• usually called “multicore”

• mild cache coherency issues
− easily addressed in hardware

 Symmetric multithreading (SMT)
• replicated functional units, register state
• interleaved execution of several threads
• fully shared cache hierarchy
• no cache coherency issues
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Cache Coherency

 What happens if one CPU writes to 
(cached) address and another CPU 
reads from the same address

• Can be thought of as replication and 
migration of data between CPUs

 Ideally, a read produces the result of the last write to the particular 
memory location

• Approaches that avoid the issue in software also prevent exploiting 
replication for parallelism

• Typically, a hardware solution is used
− Snooping – typically for bus-based architectures
− Directory based – typically for non-bus interconnects
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Snooping

 Each cache “broadcasts” transactions 
on the bus 

 Each cache monitors the bus for 
transactions that affect its state

 Typically use “MESI” protocol in
bus-based architectures

 How does snooping work with multiple levels of caches?
• inclusion property: L

n
 ⊃ L

n-1

• multi-level snooping
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Example Coherence Protocol  MESI

Each cache line is in one of four states

 Modified (M) 
• The line is valid in the cache and in only this cache.
• The line is modified with respect to system memory—that is, the modified 

data in the line has not been written back to memory.
 Exclusive (E)

• The addressed line is in this cache only. 
• The data in this line is consistent with system memory.

 Shared (S)
• The addressed line is valid in the cache and in at least one other cache. 
• A shared line is always consistent with system memory. That is, the shared 

state is shared-unmodified; there is no shared-modified state.
 Invalid (I)

• This state indicates that the addressed line is not resident in the cache and/
or any data contained is considered not useful.
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MESI Coherence Protocol

 Events
– RH = Read Hit
– RMS = Read miss, shared
– RME = Read miss, exclusive
– WH = Write hit
– WM = Write miss
– SHR = Snoop hit on read
– SHI = Snoop hit on invalidate
– LRU = LRU replacement

 Bus Transactions
– Push = Write cache line back to memory
– Invalidate = Broadcast invalidate
– Read = Read cache line from memory
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Directory-based Coherence

 Each memory block has a home node
 Home node keeps directory of cache that have a copy

• E.g., a bitmap of processors per memory block
✔ Invalidation/update messages can be directed explicitly
✗ Requires more storage to keep directory

• E.g. each 256 bits or memory requires 32 bits of directory
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Interaction with Memory Architecture

 Example: critical section
 /* counter++ */
  load  r1, counter
  add   r1, r1, 1
  store r1, counter
  /* unlock(mutex) */
  store zero, mutex

 Relies on all CPUs seeing update of counter  before update of mutex
 Depends on assumptions about ordering of stores to memory
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Memory Models: Strong Ordering

 Loads and stores execute in program order
 Memory accesses of different CPUs are sequentialised
 Traditionally used by many architectures

 CPU 0 CPU 1
 store  r1, adr1 store  r1, adr2
  load   r2, adr2 load   r2, adr1

 At least one CPU must load the other's new value
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Other Memory Models

 Modern hardware features can interfere with store order:
• write buffer (or store buffer or write-behind buffer)
• instruction reordering (out-of-order completion)
• superscalar execution
• pipelining

 Each CPU keeps its own data consistent, but how about others?
• multiprocessing
• DMA
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Total Store Ordering

 Stores go to write buffer to hide memory latency
 Loads read from write buffer if possible
 Stores are guaranteed to occur in FIFO order

 CPU 0 CPU 1
      store  r1, adr1 store  r1, adr2
   load   r2, adr2 load   r2, adr1

 Both CPUs may read old value!
 Need hardware support, e.g.

• atomic swap
• test & set
• load-linked + store-conditional
• memory barriers

 Stall pipeline and drain (and bypass) write buffer
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Partial Store Ordering

 All stores go to write buffer
 Loads read from write buffer if possible
 Redundant stores are cancelled

  load  r1, counter
  add   r1, r1, 1
  store r1, counter
  barrier
  store zero, mutex

 Store to mutex can overtake store to counter
 Need to use memory barrier
 Failure to do so will introduce subtle bugs:

• changing process state after saving context
• initiating I/O after setting up parameter buffer
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Observation

 Locking primitives require exclusive access to the “lock”

 Care required to avoid excessive bus/interconnect traffic
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Focus on locking in the Common Case

 Bus-based UMA, per-CPU write-back caches, snooping coherence 
protocol. 
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Kernel Locking

 Several CPUs can be executing kernel code concurrently.

 Need mutual exclusion on shared kernel data.

 Issues:
• Granularity of locking

• Lock implementation
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• Fast communication
➝  shared data structures

• Expensive communication
➝  distributed data structures

Multiprocessing Options
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• Scheduling domain
➔ Hardware thread contexts of an SMT core
➔ Multiple cores on a chip with fast cache migration, inter-core interrupts

• Separate domains where communication is slow 
➔ Multiple cores without shared caches
➔ Bus-connected processors
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Lock Granularity

 Fine-grained vs coarse-grained?
• tradeoff is highly dependent on

− length of system calls
− number of fine-grained

locks required
− cost of individual locks
− ...
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Mutual Exclusion Techniques

 Disabling interrupts (CLI — STI).
• Unsuitable for multiprocessor systems.

 Spin locks.
• Busy-waiting wastes cycles.

 Lock objects.
• Flag (or a particular state) indicates object is locked.

• Manipulating lock requires mutual exclusion.
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Hardware Provided Locking Primitives

• int test_and_set(lock *);
• int compare_and_swap(int c, int v, lock *);
• int exchange(int v, lock *)
• int atomic_inc(lock *)

• v = load_linked(lock *) / bool 
store_conditional(int, lock *)

• LL/SC can be used to implement all of the above
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Spin locks

void lock (volatile lock_t *lk) {
while (test_and_set(lk)) ;

}
void unlock (volatile lock_t *lk) {

*lk = 0;
}

 Busy waits. Good idea?
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Spin Lock Busy-waits Until Lock Is Released

 Stupid on uniprocessors, as nothing will change while spinning.
• Should release (yield) CPU immediately.

 Maybe ok on SMPs: locker may execute on other CPU.
• Minimal overhead (if contention low).
• Still, should only spin for short time.

 Generally restrict spin locking to:
• short critical sections,
• unlikely to be contended by the same CPU.
• local contention can be prevented

− by design
− by turning off interrupts
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Spinning versus Switching

• Blocking and switching
−  to another process takes time

• Save context and restore another
• Cache contains current process not new

» Adjusting the cache working set also takes time
• TLB is similar to cache

− Switching back when the lock is free encounters the same again
• Spinning wastes CPU time directly

 Trade off
• If lock is held for less time than the overhead of switching to and back
⇒ It’s more efficient to spin 



©2008 Gernot Heiser UNSW, with contributions from Kevin Elphinstone 25

Spinning versus Switching

 The general approaches taken are
• Spin forever

• Spin for some period of time, if the lock is not acquired, block and switch
− The spin time can be 

• Fixed (related to the switch overhead)
• Dynamic 

» Based on previous observations of the lock acquisition time
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Interrupt Disabling

 Assume no local contention by design, is disabling interrupt important?

 Hint: What happens if a lock holder is preempted (e.g., at end of its 
timeslice)?

 All other processors spin until the lock holder is re-scheduled
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Alternative: Conditional Lock

bool cond lock (volatile lock_t *lk) {

if (test and set(lk))

return FALSE; //couldn’t lock
else

return TRUE; //acquired lock
}

 Can do useful work if fail to aquire lock.

 But may not have much else to do.

 Starvation: May never get lock!
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More Appropriate Mutex Primitive:

void mutex lock (volatile lock t *lk) {
while (1) {

for (int i=0; i<MUTEX N; i++)
if (!test and set(lk))

return;
yield();

}
}
 Spins for limited time only

• assumes enough for other CPU to exit critical section
 Useful if critical section is shorter than N iterations.
 Starvation possible.
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Common Multiprocessor Spin Lock

void mp spinlock (volatile lock t *lk) {
cli(); // prevent preemption
while (test and set(lk)) ; // lock

}
void mp unlock (volatile lock t *lk) {

*lk = 0;
sti();

}
 Only good for short critical sections
 Does not scale for large number of processors
 Relies on bus-arbitrator for fairness
 Not appropriate for user-level
 Used in practice in small SMP systems
[Anderson, 1990]
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