
10/17/2008

1

From imagination to impact

Dhammika Elkaduwe

Philip Derrin

Kevin Elphinstone

Kernel Design for Isolation and
Assurance of Physical Memory

Embedded Systems

• Increasing functionality

• Increasing software complexity

– Millions of lines of code

– Mutually untrusted SW vendors

• Consolidate functionality

Connectivity

– Attacks from outside

• No longer close systems

– Download SW

IIES08/seL4 1

Embedded Systems

• Diverse applications

– Real-time Vs. best effort

• Tight resource budgets

• Mission/life- critical applications

• Sensitive information

Reliability is paramount Reliability is paramount Reliability is paramount Reliability is paramount

IIES08/seL4 2

Small Kernel Approach

Supervisor OS

Linux
Server

Device
Driver

Trusted
Service Device

Driver

Legacy
App.Legacy
App.Legacy
App.Legacy
App.

Trusted
ServiceTrusted
Service
Trusted
Service

Device
Driver

Sensitive
App.Sensitive
App.Sensitive
App.Sensitive
App.

Hardware

Untrusted Trusted

Small kernel (e.g. Microkernel)

• Smaller, more trustworthy foundation

– Hypervisor, microkernelmicrokernelmicrokernelmicrokernel, isolation

kernel, …..

• Facilitate controlled integration and

isolation

– Isolate: fault isolation, diversity

– Integrate: performance

IIES08/seL4 3A

Small Kernel Approach

• Smaller, more trustworthy foundation

– Hypervisor, microkernelmicrokernelmicrokernelmicrokernel, isolation

kernel, …..

• Facilitate controlled integration and

isolation

– Isolate: fault isolation, diversity

– Integrate: performance

IIES08/seL4 3B

• Microkernel should:
• Provide sufficient API
• Correct realisation of API
• Adhere to isolation/integration
requirements of the system

Supervisor OS

Linux
Server

Device
Driver

Trusted
Service Device

Driver

Legacy
App.Legacy
App.Legacy
App.Legacy
App.

Trusted
ServiceTrusted
Service
Trusted
Service

Device
Driver

Sensitive
App.Sensitive
App.Sensitive
App.Sensitive
App.

Hardware

Small kernel (e.g. Microkernel)

Untrusted Trusted

10/17/2008

2

Issue

• Kernel consumes resources

– Machine cycles

– Physical memory (kernel metadata)

Example:

– threads – thread control block,

– address space – page-tables

– bookkeeping to reclaim memory

Supervisor OS

Linux
Server

Device
Driver

Trusted
Service Device

Driver

Legacy
App.Legacy
App.Legacy
App.Legacy
App.

Trusted
ServiceTrusted
Service
Trusted
Service

Device
Driver

Sensitive
App.Sensitive
App.Sensitive
App.Sensitive
App.

Untrusted Trusted

Microkernel

TC
B

TC
B

P
T

P
T

IIES08/seL4 4

Possible Approaches

How do we manage kernel

metadata?

• Cache like behaviour [EROS,Cache
kernel, HiStart..]

– No predictability, limited RT applicability

• Static allocations

– Works for static systems

– Dynamic systems: overcommit or fail

under heavy load

• Domain specific kernel

modifications? Supervisor OS

Linux
Server

Device
Driver

Trusted
Service Device

Driver

Legacy
App.Legacy
App.Legacy
App.Legacy
App.

Trusted
ServiceTrusted
Service
Trusted
Service

Device
Driver

Sensitive
App.Sensitive
App.Sensitive
App.Sensitive
App.

Untrusted Trusted

Microkernel

TC
B

TC
B

P
T

P
T

IIES08/seL4 5

Modified ≠ Verified

• LLLL4444.Verified project:.Verified project:.Verified project:.Verified project:

Formally verify the implementation correctness

of the kernel

� Properties:

–Isolation, information flow ...

• Formal refinement

–Formally connect the properties with the

kernel implementation

Abstract Model

C Code HW

Property
preserving
refinement

Mathematically
proven

properties

IIES08/seL4 6A

Modified ≠ Verified

• LLLL4444.Verified project:.Verified project:.Verified project:.Verified project:

Formally verify the implementation correctness

of the kernel

� Properties:

–Isolation, information flow ...

• Formal refinement

–Formally connect the properties with the

kernel implementation

Abstract Model

C Code HW

Property
preserving
refinement

Mathematically
proven

properties

IIES08/seL4 6B

Modified ≠ Verified

• L4.Verified project:L4.Verified project:L4.Verified project:L4.Verified project:

Formally verify the implementation correctness

of the kernel

� Properties:

–Isolation, information flow ...

• Formal refinement

–Formally connect the properties with the

kernel implementation

–Modifications invalidate refinement

–Verification is labour intensive

• 10K C-lines = 100K proof lines (1st refinement)

• Memory management is core functionality

Abstract Model

C Code HW

Property
preserving
refinement

Mathematically
proven

properties

IIES08/seL4 6C

Approach in a nutshell

• No implicit allocations within

the kernel

– No heap, no slab allocation etc..

• All abstractions are provided

by first-class kernel objects

– Threads – TCB object

– Address space – Page table

objects

• All objects are created upon

explicit user request

IIES08/seL4 7

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel heap

10/17/2008

3

Memory Management Model

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

untyped
object1

untype
d

object2

untype
d

object
n

..

� No implicit allocations within the kernel

� Physical memory is divided into untyped

objects

� Authority conferred via capabilities

� Untyped capability is sufficient

authority to allocate kernel objects

� All abstractions are provided via first

class kernel objects

� Allocate on explicit user request

� Creator gets the full authority

� Distribute capabilities to allow other

access the service

IIES08/seL4 8A

Memory Management Model

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

TC
B

untype
d

object2

untype
d

object
n

..TC
B

� Kernel objects

� Untyped
� TCB (Thread Control Blocks)
� Capability tables (CT)
� Comm. ports

IIES08/seL4 8B

� No implicit allocations within the kernel

� Physical memory is divided into untyped

objects

� Authority conferred via capabilities

� Untyped capability is sufficient

authority to allocate kernel objects

� All abstractions are provided via first

class kernel objects

� Allocate on explicit user request

� Creator gets the full authority

� Distribute capabilities to allow other

access the service

Memory Management Model

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

TC
B

untype
d

object
n

..TC
B

� Kernel objects

� Untyped
� TCB (Thread Control Blocks)
� Capability tables (CT)
� Comm. ports

� Objects are managed by user-level

IIES08/seL4 8C

� No implicit allocations within the kernel

� Physical memory is divided into untyped

objects

� Authority conferred via capabilities

� Untyped capability is sufficient

authority to allocate kernel objects

� All abstractions are provided via first

class kernel objects

� Allocate on explicit user request

� Creator gets the full authority

� Distribute capabilities to allow other

access the service

PT PT

Memory Management Model ...

� Delegate authority

� Allow others to obtain services

� Delegate resource management

� Memory management policy is completely

in user-space

� Isolation of physical memory = Isolation of physical memory = Isolation of physical memory = Isolation of physical memory =

Isolation of authority (capabilities)Isolation of authority (capabilities)Isolation of authority (capabilities)Isolation of authority (capabilities)

� Capability dissemination is controlled by

a “Take-Grant” like protection model

supervisory OS

Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

TC
B

untype
d

object2

untype
d

object
n

..TC
B

IIES08/seL4 8D

Memory Management Model ...

� De-allocation upon explicit user

request

� Call revoke on the Untyped capability

� Memory can be reused

� Kernel tracks capability derivations

� Recorded in capability derivation tree

(CDT)

� Need bookkeeping

� Doubly-linked list through capabilities

� Space allocated with capability tables

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

TC
B

untype
d

object2

untype
d

object
n

..TC
B

unty
ped
cap
1

T
C
B

T
C
BT

C
B

copy

CDT

IIES08/seL4 9

Capability Derivation Tree

� For allocation:For allocation:For allocation:For allocation:

� The untyped capability should not

have any CDT children

� Guarantees that there are no

previously allocated objects

� Size of the object(s) must be small

or equal to untyped object

supervisory OS

seL4 Microkernel

Truste
d

OS
server

Legacy
OS

server

Kernel
Code

TC
B

untype
d

object2

untped
object

n

..TC
B

unty
ped
cap
1

T
C
B

T
C
BT

C
B

copy

CDT

IIES08/seL4 10

10/17/2008

4

Evaluation

� Formal properties:Formal properties:Formal properties:Formal properties:

� Formalised the protection model in Isabelle/HOL

� Machine checked, abstract model of the kernel

� Formal, machine checked proof that mechanisms are sufficient for

enforcing spatial partitioning

� Proof also identify the invariants the “supervisory OS” needs to enforce

for isolation to hold

supervisory OS

....

seL4 Microkernel

IIES08/seL4 11A

Evaluation

� Formal properties:Formal properties:Formal properties:Formal properties:

� Formalised the protection model in Isabelle/HOL

� Machine checked, abstract model of the kernel

� Formal, machine checked proof that mechanisms are sufficient for

enforcing spatial partitioning

� Proof also identify the invariants the “supervisory OS” needs to enforce

for isolation to hold

supervisory OS

....

seL4 Microkernel

IIES08/seL4 11B

• Can not share modifiable
page/capability tables

• Can not share thread control blocks
• Can not have communication

channels that allow capability
propagation

Evaluation ...

� Performance Performance Performance Performance

� Used paravirtualised Linux as an

example

� Compared with L4/Wombat (Linux) for

running LMBench
supervisory OS

Linux

....

seL4 Microkernel

Driv
ers

Iguana

Linux
(Wom
bat)

L4 Microkernel

Driv
ers

Bench mark Gain(%)

fork 4570 3083 32.5
exec 5022 3440 31.5

shell 29729 19999 32.7
page faults 34 18.7 45.4

3.4 2.9 11

10.7 9.3 7.6

L4 (s) seL4(+s)

Null Syscall

ctx
Proxy via Iguana

IIES08/seL4 12

Status

• Empirical workEmpirical workEmpirical workEmpirical work

– Runs on ARM11

– Investigate performance as a

virtualisation platform

• Formal work Formal work Formal work Formal work

– Information flow properties

(example: Clark-Wilson)

– Formal refinement work in

progress

Abstract Model

C Code HW

Property
preserving
refinement

Mathematically
proven

properties

IIES08/seL4 13

Performance

Conclusion

• No implicit allocations within the kernel

– Users explicitly allocate kernel objects

– No heap, slab .. (no hidden bookkeeping)

– Authority confinement guarantees control of kernel memory

• All kernel memory management policy is outside the kernel

– Different isolation/integration configurations

– Support diverse, co-existing policies

– No modification to the kernel (remains verified)

• Hard guarantees on kernel memory consumption

– Facilitate formal reasoning of physical memory consumption

• Improve performance by controlled delegation

– Similar performance in other case
IIES08/seL4 14

Questions?

10/17/2008

5

From imagination to impact

