
1

Real-Time Systems

Stefan M. Petters

© NICTA 2007/2008 No: 2

Lecture Content

• Definition of Real-Time Systems (RTS)

• Scheduling in RTS

• Schedulability Analysis

• Worst Case Execution Time Analysis

• Time and Distributed RTS

• Rate Based Scheduling

© NICTA 2007/2008 No: 3

Definition

• A real-time system is any information processing
system which has to respond to externally
generated input stimuli within a finite and
specified period

– the correctness depends not only on the logical
result but also the time it was delivered

– failure to respond is as bad as the wrong
response!

© NICTA 2007/2008 No: 4

Real-Time Systems

© NICTA 2007/2008 No: 5

Real-Time Systems

© NICTA 2007/2008 No: 6

Real-Time Systems

2

© NICTA 2007/2008 No: 7

Real-Time Systems

© NICTA 2007/2008 No: 8

Real-Time Systems

Is there a pattern?

• Hard real-time systems

• Soft real-time systems

• Firm teal-time systems

• Weakly hard real-time

• A deadline is a given time after a triggering event, by
which a response has to be completed.

• Therac 25 example

© NICTA 2007/2008 No: 9

• Fast context switches?

• Small size?

• Quick response to external triggers?

• Multitasking?

• “Low Level” programming interfaces?

• High processor utilisation?

What’s needed of an RTOS

• Fast context switches?

– should be fast anyway

• Small size?

– should be small anyway

• Quick response to external triggers?

– not necessarily quick but predictable

• Multitasking?

– often used, but not necessarily

• “Low Level” programming interfaces?

– might be needed as with other embedded systems

• High processor utilisation?

– desirable in any system (avoid oversized system)

© NICTA 2007/2008 No: 10

Hard Real-Time Systems

• An overrun in response time leads to potential loss of life
and/or big financial damage

• Many of these systems are considered to be safety
critical.

• Sometimes they are “only” mission critical, with the
mission being very expensive.

• In general there is a cost function associated with the
system.

DeadlineCost

Time

Triggering
Event

© NICTA 2007/2008 No: 11

Soft Real-Time

• Deadline overruns are tolerable, but not desired.

• There are no catastrophic consequences of missing one
or more deadlines.

• There is a cost associated to overrunning, but this cost
may be abstract.

• Often connected to Quality-of-Service (QoS)

Time

DeadlineCost

Triggering
Event

Example Cost
Function

© NICTA 2007/2008 No: 12

Firm Real-Time Systems

• The computation is obsolete if the job is not finished on
time.

• Cost may be interpreted as loss of revenue.

• Typical example are forecast systems.

DeadlineGain

Triggering
Event

Example Gain
Function

3

© NICTA 2007/2008 No: 13

Weakly Hard Real-Time Systems

• Systems where m out of k deadlines have to be
met.

• In most cases feedback control systems, in which
the control becomes unstable with too many
missed control cycles.

• Best suited if system has to deal with other
failures as well (e.g. Electro Magnetic
Interference EMI).

• Likely probabilistic guarantees sufficient.

© NICTA 2007/2008 No: 14

Non Real-Time Systems?

• Yes, those exist!

• However, in most cases the (soft) real-time
aspect may be constructed (e.g. acceptable
response time to user input).

• Computer system is backed up by
hardware (e.g. end position switches)

• Quite often simply oversized computers.

© NICTA 2007/2008 No: 15

Requirement, Specification, Verification

• Functional requirements: Operation of the system and
their effects.

• Non-Functional requirements: e.g., timing constraints.

– F & NF requirements must be precisely defined and together used
to construct the specification of the system.

• A specification is a mathematical statement of the
properties to be exhibited by a system. It is abstracted
such that

– it can be checked for conformity against the requirement.

– its properties can be examined independently of the way in which
it will be implemented.

© NICTA 2007/2008 No: 16

Requirement, Specification, Verification

• The usual approaches for specifying computing system
behavior entail enumerating events or actions that the
system participates in and describing orders in which they
can occur. It is not well understood how to extend such
approaches for real-time constraints.

• F18, therac-25 example

© NICTA 2007/2008 No: 17

Scheduling in Real-Time Systems

© NICTA 2007/2008 No: 18

Overview

• Specification and religious believes

• Preemptive vs. non preemptive scheduling

• Scheduling algorithms

• Message based synchronisation and
communication

• Overload situations

• Blocking and Priority Inversion

4

© NICTA 2007/2008 No: 19

Requirements

• Temporal requirements of the embedded system

– Event driven

• Reactive sensor/actuator systems

• No fixed temporal relation between events (apart from
minimum inter arrival times)

– Cyclic

• Feedback control type applications

• Fixed cycles of external triggers with minimal jitter

– Mixed

• Anything in between

© NICTA 2007/2008 No: 20

Specification

• Event triggered systems:

– Passage of a certain amount of time

– Asynchronous events

• Time triggered systems:

– Predefined temporal relation of events

– Events may be ignored until it’s their turn to be served

• Matlab/Simulink type multi rate, single base rate
systems:

– All rates are multiples of the base rate

• Cyclic

– feedback control loop

© NICTA 2007/2008 No: 21

Task Model

• Periodic tasks

– Time-driven. Characteristics are known a priori

– Task ττττi is characterized by (Ti, Ci)

– E.g.: Task monitoring temperature of a patient in an ICU.

• Aperiodic tasks

– Event-driven. Characteristics are not known a priori

– Task ττττi is characterized by (Ci, Di) and some probabilistic profile
for arrival patterns (e.g. Poisson model)

– E.g.: Task activated upon detecting change in patient’s condition.

• Sporadic Tasks

– Aperiodic tasks with known minimum inter-arrival time (Ti, Ci)

© NICTA 2007/2008 No: 22

Task Model

Ci= Computation time (usually Worst-Case
Execution Time, WCET)

Di= Deadline

Ti = Period or minimum interarrival time

Ji = Release jitter

Pi = Priority

Bi = Worst case blocking time

Ri= Worst case response time

© NICTA 2007/2008 No: 23

Task Constraints

• Deadline constraint

• Resource constraints

– Shared access (read-read), Exclusive access (write-x)

– Energy

• Precedence constraints

– ττττ1 ⇒ ττττ2: Task ττττ2 can start executing only after ττττ1
finishes its execution

• Fault-tolerant requirements

– To achieve higher reliability for task execution

– Redundancy in execution

© NICTA 2007/2008 No: 24

Preemption

• Why preemptive scheduling is good:

– It allows for shorter response time of high priority tasks

– As a result it is likely to allow for a higher utilisation of
the processor before the system starts missing
deadlines

• Why preemptive scheduling is bad:

– It leads to more task switches then necessary

– The overheads of task switches are non-trivial

– The system becomes harder to analyse whether it is
able to meet all its deadlines

– Preemption delay (cache refill etc.) becomes more
expensive with modern processors

5

© NICTA 2007/2008 No: 25

Preemption

• Cooperative preemption?

– Applications allow preemption at given points

– Reduction of preemptions

– Increase of latency for high priority tasks

© NICTA 2007/2008 No: 26

Event Triggered Systems

‘‘... The asynchronous design of the [AFTI-F16] DFCS
introduced a random, unpredictable characteristic into the
system. The system became untestable in that testing for
each of the possible time relationships between the
computers was impossible. This random time relationship
was a major contributor to the flight test anomalies.
Adversely affecting testability and having only postulated
benefits, asynchronous operation of the DFCS
demonstrated the need to avoid random, unpredictable,
and uncompensated design characteristics.’’

D. Mackall, flight-test engineer AFTI-F16 AFTI-F16 flight
tests

© NICTA 2007/2008 No: 27

Fixed Priority Scheduling

• Priorities may assigned by

– Deadline: shortest deadline ⇒ highest priority

– Period: shortest period ⇒ highest priority

– “Importance”

• Scheduler picks from all ready tasks the one with the highest priority
to be dispatched.

• Benefits:

– Simple to implement

– Not much overhead

– Minimal latency for high priority tasks

• Drawbacks

– Inflexible

– Suboptimal (from analysis point of view)

© NICTA 2007/2008 No: 28

Fixed Priority Scheduling(FPS)

5050153Task ττττ3

203082Task ττττ2

202051Task ττττ1

DTCPriority

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 29

Earliest Deadline First (EDF)

• Dynamic priorities

• Scheduler picks task, whose deadline is due next

• Advantages:

– Optimality

– Reduces number of task switches

– Optimal if system is not overloaded

• Drawbacks:

– Deteriorates badly under overload

– Needs smarter scheduler

– Scheduling is more expensive

© NICTA 2007/2008 No: 30

FPS vs. EDF

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

6

© NICTA 2007/2008 No: 31

FPS vs. EDF

Task ττττ2

Task ττττ3

Task ττττ1

4040153Task ττττ3

203082Task ττττ2

202051Task ττττ1

DTCPriority

© NICTA 2007/2008 No: 32

FPS vs. EDF

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 33

Time Triggered/Driven Scheduling

• Mostly static scheduling

• Time triggered scheduling allows easier
reasoning and monitoring of response times

• Can be used to avoid preemption

• Can be used in event triggered systems, but
increases greatly the latency

• Most often build around a base rate

• Can be implemented in big executive, using
simple function calls

© NICTA 2007/2008 No: 34

Time Triggered Scheduling

• Advantages:

– Very simple to implement

– Very efficient / little overhead (in suitable case)

• Disadvantages:

– Big latency if event rate does not match base rate

– Inflexible

– Potentially big base rate (many scheduling decisions) or
hyperperiod

ττττ2 ττττ1 ττττ3ττττ4ττττ3ττττ1
ττττ1 ττττ1ττττ2

Hyperperiod BMW example

© NICTA 2007/2008 No: 35

Message Based Synchronisation

• Tasks communicate via messages

• Task wait for messages (blocked until message
arrives)

• Suitable to enforce precedence relations

• Enables messages to be used to transport
deadlines

ττττ2ττττ4

ττττ3

ττττ1

ττττ5

© NICTA 2007/2008 No: 36

Overload Situations

• Caused by faulty components of the system

– Babbeling idiot or

– A receiver part erroneously “receiving input”

– EMI

• Or caused by wrong assumptions regarding
the embedding environment

– Basically wrong event rates or event correlation

7

© NICTA 2007/2008 No: 37

Overload Situations in FPS

Task ττττ2

Task ττττ3

Task ττττ1

Old

5050153Task ττττ3

2020122Task ττττ2

202051Task ττττ1

DTCPriority

© NICTA 2007/2008 No: 38

Overload Situations in FPS

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 39

Overload Situations in EDF

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 40

Overload Situations in EDF

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

{{

© NICTA 2007/2008 No: 41

Priority Inversion

• Happens when task is blocked in acquiring
semaphore from held by lower priority task
which is preempted by medium priority
task.

• Similar case for server tasks.

• Pathfinder example

© NICTA 2007/2008 No: 42

Non-Preemptable Critical Sections

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ5

Task ττττ4

• 2 shared resources

• One shared by 3 (nested by one)

• One shared by 2

8

© NICTA 2007/2008 No: 43

Non-Preemptable Critical Section

• GOOD

– Simple

– No deadlock.

– No unbounded priority inversion

– No prior knowledge about resources.

– Each task blocked by at most 1 task of lower priority

– Works with fixed and dynamic priorities. (especially good for short critical
sections with high contention)

• BAD

– Tasks blocked even when no contention exists.

© NICTA 2007/2008 No: 44

Priority Inheritance

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ5

Task ττττ4

Note the indirect inheritance

© NICTA 2007/2008 No: 45

Priority Inheritance

• When lower priority job blocks, it inherits priority of
blocked job.

• GOOD

– No unbounded priority inversion

– Simple

– No prior knowledge required

– Works with fixed and dynamic priorities.

• BAD

– Possible Deadlock.

– Blocking of jobs not in resource contention.

– Blocking time could be better

– Indirection a pain in the neck

© NICTA 2007/2008 No: 46

Basic Priority Ceiling Protocol

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ5

Task ττττ4

© NICTA 2007/2008 No: 47

Basic Priority Ceiling Protocol

• Lower priority task inherits priority of blocked task.

• Task may be denied resource even when available.

• Also known as Original Priority Ceiling Protocoll (OPCP)

• GOOD

– No deadlock.

– No unbounded priority inversion.

– Blocking time reduced.

• BAD

– Task may be denied resource even when available.

– Need a priori knowledge of use of resources.

)(),(max
1

kCikusageB
K

k

i

=

= ∑
=

=
K

k

i kCikusageB
1

)(),(

Basic Priority Ceiling Priority Inheritance

© NICTA 2007/2008 No: 48

Immediate Priority Ceiling Protocol

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ5

Task ττττ4

9

© NICTA 2007/2008 No: 49

Immediate Priority Ceiling Protocol

• Lower priority task inherits priority of potentially blocked

task. Task may be denied resource even when available.

• GOOD

– Simple.

– Shared run-time stack.

– Reduced Context-Switching

– No deadlock.

– No unbounded priority inversion.

• BAD

– Task may be denied resource even when available

– Task may be affected by blocking effect without using any

resources

– Need a priori knowledge of use of resources.

– No self suspension while holding a resource

© NICTA 2007/2008 No: 50

Implementation Comparison

• Non-preemptable critical sections

– Easy to implement. Either blocking interrupts or syscall to have that
implemented on behalf of task

• Priority Inheritance

– Fairly straightforward, however requires various references (e.g.
which thread is holding a resource)

• Basic Priority Ceiling

– Requires application designer to explicitly identify which resources
will be requested later (when first resource request of nested
requests is made) on top of references

• Immediate priority ceiling

– Very easy to implement: Only requires ceilings associated with each
resource mutex (that’s something which may be automated if all tasks
known

– Alternatively server task encapsulating the critical section

© NICTA 2007/2008 No: 51

Reflective/Feedback-based Scheduling

• Adaptive systems

• By definition soft real time

• Adjusts scheduling based on information
about change

• Capable of better coping with “the
unknown”

• Connects quite well with adaptive
applications

© NICTA 2007/2008 No: 52

Schedulability Analysis of Real-Time Systems

© NICTA 2007/2008 No: 53

Schedulability Analysis

• Tries to establish, whether the task system
described is actually schedulable

– In the classical sense this is, whether all the deadlines
are met under all circumstances;

– Recent move to satisfaction of Quality-of-Service
constraints;

• Relies on availability of computation time of tasks

– WCET;

– Execution time profiles.

© NICTA 2007/2008 No: 54

Critical Instant

• Trivial for independent tasks

– All events happen at the same time;

– However, implicitly consider all possible
phases (take nothing for granted).

• However, get’s more tricky (but tighter)
having dependencies

– What phasing of other activities produces the
biggest load.

– An activity is a string of tasks triggered by a
single event.

10

© NICTA 2007/2008 No: 55

Response Time Analysis

• Does not directly consider deadlines

• Makes the assumption of jobs being

executed in order

• Usually used in fixed priority systems

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 56

Response Time Analysis

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

Task ττττ2

Task ττττ3

Task ττττ1

5050153Task ττττ3

203082Task ττττ2

202051Task ττττ1

DTCPriority

Task ττττ2

Task ττττ3

Task ττττ1

© NICTA 2007/2008 No: 57

Formal RTA

• Assumptions j<i ⇒priority j is lower than
priority i

• Critical instant

• Iterative process
ii Cw =0

j

ij j

n

i
i

n

i C
T

w
Cw *

1 ∑
<∀

+












+=

© NICTA 2007/2008 No: 58

Blocking Time and Other Nasties

)(* ,

1

jij

ij j

n

ij

ii

n

i C
T

wJ
BCw δ+











 +
++= ∑

<∀

+

• Blocking time

• Jitter

• Pre-emption delay

© NICTA 2007/2008 No: 59

Rate Monotonic Analysis

• Looks at utilisation do determine whether a task is

schedulable

• Initial work had following requirements:

– All tasks with deadlines are periodic

– All tasks are independent of each other (there exists no

precedence relation, nor mutual exclusion)

– Ti= Di

– Ci is known and constant

– Time required for context switching is known

© NICTA 2007/2008 No: 60

Rate Monotonic Analysis contd

• Bound is given by:

)12(*
1

−≤







= ∑

∀

n

i i

i n
T

C
µ

• Has been relaxed in various ways, but still it is only
an approximate technique.

• Further info can be found here:

http://www.heidmann.com/paul/rma/PAPER.htm

11

© NICTA 2007/2008 No: 61

Graphical EDF Analysis

Time

Computation
Request

Events

Deadlines

Task 1

Task 2

Task 3

© NICTA 2007/2008 No: 62

Graphical EDF Analysis

Time

Computation
Request

Events

Deadlines

Task 1

Task 2

Task 3

© NICTA 2007/2008 No: 63

Worst Case Execution Time Analysis

© NICTA 2007/2008 No: 64

Problem Definition

execution time

Average
Maximum Observed

"Real" Worst-case

Safe upper bound
Best-case

• All of the scheduling analysis presented previously
requires the Worst-Case Execution time to be known

• Target is to come up with

– a safe upper bound

– as close as possible to the “real” worst case.

– Ideally with more than just single number (probabilistic
analysis)

Safe upper bound

p WCET profile

© NICTA 2007/2008 No: 65

Problem Definition contd

Average

Maximum Observed

"Real" Worst-case

Safe upper bound

execution time

Best-case

execution time

Average

Maximum Observed

"Real" Worst-case

Safe upper bound
Best-case

Complex Code + Advanced processors

Simple Code + Simple Processors

© NICTA 2007/2008 No: 66

Is it a Problem?

• Safety critical computer systems exist and
are deployed

• Yes, but …

– Safety critical systems have been

• highly restrictive in terms of HW/SW used

• highly restrictive in terms of complexity

• used a lot of manual inspection and pen and paper
work

12

© NICTA 2007/2008 No: 67

Is it a Problem? contd

– The stuff in the last slide doesn’t scale!

– industry not in the safety critical arena have
been using measurements with safety factors.

• Worked fine with simple architectures, but doesn’t
work good with more advanced computers

• Excessive overestimation and underestimation with
same factor for different programs, parameterisation
doesn’t help too much

• Large body of academic work, but little
industrial uptake: YET

© NICTA 2007/2008 No: 68

Generic Problem Partitioning

Structural
Analysis

Constraint/Flow
Analysis

Computation

Low-Level
Analysis

Program

WCET

• Some analysis methods integrate some aspects of these,
but the general requirements are the same

© NICTA 2007/2008 No: 69

Structural Analysis

• Can work on:

– Source code and/or

– Object code or

– Assembly Code

© NICTA 2007/2008 No: 70

Structural Analysis contd

• Object Code

– Pros:

– All compiler optimisations are done

– This is what really is running, no trouble with
macros, preprocessors

– Cons:

– Needs to second guess what all the variables
meant

– A lot of the original information is lost

• E.g. multiple conditions, indirect function calls,
object member functions

© NICTA 2007/2008 No: 71

Structural Analysis contd

• Assembly Code

– Pros:

– All compiler optimisations done

– Cons:

– Same as Object Code +

– Potentially still some macros

© NICTA 2007/2008 No: 72

Structural Analysis contd

• Source Code

– Pros:

– All information the user has put there is there

– Structure in pure form (e.g. multiple loop
continue conditions, object member functions,
indirect calls)

– Cons:

– Trouble with macros, preprocessors etc.

– Needs to second guess what the compiler will
do

13

© NICTA 2007/2008 No: 73

Multiple Continue conditions explained

for (; first condition || other cond;){

Func();

}

May look like

for (; first condition;){

for (; other cond;){

Func();

}

}

Func()

first

second

© NICTA 2007/2008 No: 74

Flow information

• For low level analysis and computation we
need to restrict flow to reasonable subset.

• This information can be gained:

– By static analysis (most importantly abstract
interpretation)

– By observation (worst case?)

– By user annotations

© NICTA 2007/2008 No: 75

Example program

Flow Info Characteristics

do
{

if(...)

do
{

if(...)

...

else

...
if(...)

...

else
...

} while(...)

else
...

} while(...)

...

Basic finiteness

Statically allowed

Actual feasible

paths

// A// A

// B// B

// C// C

// D // D

// E// E

// F// F

// G// G

// H // H

// I// I

// J// J

Structurally possible

flows (infinite)

Relation between possible
executions and flow info

max = 10max = 10

max = 20max = 20

samepath(D,Gsamepath(D,G))

WCET found here = WCET found here =

desired resultdesired result

A

B

C D

F G

H

E

Basic block graph

J

I

WCET found here =WCET found here =

overestimationoverestimation

© NICTA 2007/2008 No: 76

XAB=XA

XE=XCE+XDE

XA=XfooA+XGA

XBC+XBD=XB

�� Program Program

structurestructure

• Constraints:
Foo()

C

A

B

D

E

F

G

end

Constraints Generated

XXAA

XXBB

XXCC XXDD

XXEE

XXFF

XXGG

XXGAGA

XXABAB

XXBCBC XXBDBD

XXDEDE

XXEGEG

XXCECE

XXEFEF

XXFGFG

XXfooAfooA

Xfoo=1

Xend =1

�� Start and end Start and end
conditioncondition

X
A
<=100�� Loop boundsLoop bounds

XC+XF<=XA

�� Other flow Other flow
informationinformation

© NICTA 2007/2008 No: 77

Hardware

• WCET analysis requires a deep
understanding of

– hardware features of processors

– Interaction of software and hardware

© NICTA 2007/2008 No: 78

Static Analysis

• Looking at basic blocks in isolation (tree based,
IPET based)

– Problem of caching effects

• Path based analysis: popular but very expensive

• Problem of conservative assumptions

• Hardware analysis is very expensive

– Data caches and modern branch prediction are very
hard to model right.

– Call for simpler hardware, e.g. scratchpad memory
instead of caches

14

© NICTA 2007/2008 No: 79

Measurement Based Analysis

• End-to-end measurements + safety factor used
for industrial soft-real time system development

– Failed for modern processors as WC could hardly be
expressed as function of AC

• Measurement on basic block level

– Safer than end-to-end measurements but potentially
very pessimistic

• What is the worst-case on HW?

• Can it be reliably produced?

• What about preemption delay?

© NICTA 2007/2008 No: 80

Path Based Computation

• Follows each individual paths

• Becomes quickly intractable for large applications

• Altenbernd and Co have tried a simplified
approach:

– Starting out from the entry point of a function follow a
path in the CFG and annotate each node with the
execution time up to this node

– Do so with any other path, but whenever a join node is
reached compare new value up to this point with
annotated value

© NICTA 2007/2008 No: 81

Path Based Computation

– Continue if new value is larger or not smaller than the
the old value minus the smallest of the largest 5 overall
execution times paths computed so far. (otherwise start
next path)

– If overall path is larger than smallest of the largest 5
overall execution times, keep (remove the compared
smallest of the largest 5 overall execution time paths.

– Check feasibility of 5 longest paths (path may actually
happen)

© NICTA 2007/2008 No: 82

1

2

3

4

65

7

8

9

2

Alt

Void

Loop

Void

1 3 9

Sequence

65

Alt4 7 8

Sequence

Tree Representation

© NICTA 2007/2008 No: 83

• WCET=

max Σ(xentity * tentity)

– Where each xentity

satisfies all constraints

Foo()

C

A

B

D

E

F

G

end

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=20

IPET Calculation

XXAA

XXBB

XXCC XXDD

XXEE

XXFF

XXGG

XXGAGA

XXABAB

XXBCBC XXBDBD

XXDEDE

XXEGEG

XXCECE

XXEFEF

XXFGFG

XXfooAfooA

Xfoo=1

XAB=XA

XE=XCE+XDE

XA=XfooA+XGA

XBC+XBD=XB
XA<=100

XC+XF=100

© NICTA 2007/2008 No: 84

• Solution methods:

– Integer linear programming

– Constraint satisfaction

• Solution:

– Counts for each

individual node and edge

– The value of the WCET

Foo()

C

A

B

D

E

F

G

end

Calculation methods

XXAA=100=100

XXBB=100=100

XXCC=100=100 XXDD=0=0

XXEE=100=100

XXFF=0=0

XXGG=100=100

WCET=4800WCET=4800

XXfoofoo=1=1

XXendend=1=1

15

© NICTA 2007/2008 No: 85

Multiprocessor/Multithreaded Real-Time
Systems

© NICTA 2007/2008 No: 86

WHY

• Performance

– Responsiveness in the presence of many
external events

• Throughput

– Managing continuous load

• Fault tolerance

– Managing bugs, HW faults

• Reliability

– Ensuring uptime, HW/SW upgrades …

© NICTA 2007/2008 No: 87

Hardware

• Symmetric Multithreading (SMT)

– Contention on execution units, caches, memory

• Symmetric Multiprocessor (SMP)

– Contention on memory, cache coherency, eg NUMA

• Asymmetric Multiprocessor

– Specialised units, coherency

• Distributed System

– Latency in communication, loosely coupled

© NICTA 2007/2008 No: 88

SMT

Almost an SMT:

Image taken from http://www.tommesani.com/images/P3Architecture.jpg

© NICTA 2007/2008 No: 89

SMP

Image taken from http://linuxdevices.com/files/misc/arm-mpcore-architecture-big.jpg

© NICTA 2007/2008 No: 90

Distributed System

CPU

Caches

Memory

NIC

CPU

Caches

Memory

NIC

CPU

Caches

Memory

NIC

CPU

Caches

Memory

NIC

Network

16

© NICTA 2007/2008 No: 91

Issues

• Resource contention

– Execution units

– Caches

– Memory

– Network

• Adding a CPU does not help

– Example double the load, 2 instead of 1 CPU

© NICTA 2007/2008 No: 92

Solutions??

• Partitioning

– Resource contention still there!

– Assignment using heuristics

• Non partitioning

– mostly theoretical so far

– Assumptions:

• Zero preemption cost

• Zero migration cost

• Infinite time slicing

– Don’t translate into reality

– Acceptance test and no task migration a way to make it work

© NICTA 2007/2008 No: 93

Solutions??

• Quite often non-preemptive

– Fewer context switches

– Reasoning is easy

• IEEE Computer reference to insanity

– Testing is easier??

– Reduce need for blocking

• But!

© NICTA 2007/2008 No: 94

Non-Preemptive

• But!!!

– Less efficient processor use

– Anomalies: response time can increase with

• Changing the priority list

• Increasing number of CPUs

• Reducing execution times

• Weakening the precedence constraints

– Bin packing problem NP hard

– Theoretically: time slicing into small quantums (PFAIR),
but practically useless, as preemption and task
migration overhead outweigh gains of Multiprocessors.

© NICTA 2007/2008 No: 95

And now?

• No global solution.

• Partitioning and reducing it to single CPU problem
good, but still contention of resources.

• Next step: After figuring out how to do the
scheduling, what about preemption delay?

• Industry works with SMP/SMT, but most often on
a very ad hoc basis.

• Active and unsolved research area

• Why does it work on non-RT?

– Running the “wrong” task is not critical.

© NICTA 2007/2008 No: 96

Integrating Real-Time and
General-Purpose

Computing

Many thanks to: Scott A. Brandt

University of California, Santa Cruz

17

© NICTA 2007/2008 No: 97

Real-Time vs. General-Purpose OS

• Real-time and general-purpose operating systems
implement many of the same basic operations

– Process mgmt., memory mgmt, I/O mgmt, etc.

• They aim for fundamentally different goals

– Real-time: Guaranteed performance, timeliness, reliability

– General-purpose: Responsiveness, fairness, flexibility,
graceful degradation, rich feature set

• They have largely evolved separately

– Real-time system design lags general-purpose system
design by decades

• They need to merge

© NICTA 2007/2008 No: 98

Why?

• We want both flexible general-purpose processing and robust real-
time processing

– Multimedia is ubiquitous in general-purpose systems

– Real-time systems are growing in size and complexity

• Such systems are possible

– Look at the popularity of RTLinux

– GP hardware has grown powerful enough to support traditional hard real-
time tasks (multimedia, soft modems, etc.)

– Windows, MacOS, etc., are already headed in this direction

• Existing solutions are ad hoc

– RTLinux, MacOS, Windows?

• The world is already headed that way

– Microsoft, HP, Intel, Dell all want to develop integrated home systems

– Complex distributed real-time systems do more than hard real-time

• We need to get out in front and lead the way

© NICTA 2007/2008 No: 99

How?

• We need integrated solutions for each type of resource

– CPU, storage, memory, network, …

• They must be hard real-time at their core

– This is the only way to guarantee the hardest constraints

• They must provide native hard real-time, soft real-time,
and best-effort support

– SRT and BE support cannot be added as an afterthought

– Neither can HRT

• We need an overall model for managing the separate
resources

– Each process must be able to specify it’s per-resource constraints

– Defaults should be reasonable, and helpful

© NICTA 2007/2008 No: 100

Kinds of Timeliness Requirements

• Hard Real-Time (HRT) [e.g.
flight control]

– Hard deadlines, WCET

• Rate-Based (RB) [e.g.
desktop audio]

– Continuous processing
requirements

• Soft Real-Time (SRT) [e.g.
desktop video]

– Non-critical deadlines and/or
variable processing needs,
worst-case, average-case, or
no estimates

• Best Effort (BE) [e.g. editor or
compiler]

– Undefined timeliness
requirements

Constrained

Unconstrained

• We want to run processes with
different timeliness requirements
in the same system

– HRT, RB, SRT, and BE

• Existing schedulers largely
provide point solutions:

– HRT or RB or one flavor of
SRT or BE

• Hierarchical scheduling is a
partial solution

– Allows apps with a variety of
timeliness requirements, BUT

– Static, inflexible hierarchies

• Goal: Uniform, fully dynamic
integrated real-time scheduling

– Same scheduler for all types of
applications

© NICTA 2007/2008 No: 101

Separate Resource Allocation and Dispatching

• Observation: Scheduling
consists of two distinct
questions:

Resource allocation
– How much resources to allocate

to each process

Dispatching
– When to give each process the

resources it has been allocated

• Existing schedulers integrate
their management
– Real-time schedulers implicitly

separate them somewhat via job
admission

R
e
so

u
rc

e
 A

ll
o

c
a

ti
o

n

Missed

Deadline

SRT

Dispatching

unconstrained

u
n

co
n
st

ra
in

ed
co

n
st

ra
in

ed

Resource

Allocation

SRTSoft

Real-

Time

Best

Effort

CPU-

Bound

I/O-

Bound

Hard

Real-

Time

R
ate-B

ased

constrained

© NICTA 2007/2008 No: 102

The (RAD) Scheduling Model

• Separate management of Resource Allocation
and Dispatching

– and separate policy and mechanism

Runtime System

Resource

Allocation

Dispatching

Scheduling

Policy
How

much?

When?

Best-Effort

Soft

Real-Time

Rate-Based

Hard

Real-Time

Packets/sec

Frames/sec

ACET

Priority

PeriodWCET

Scheduler

P0

Scheduling

MechanismScheduling

Parameters

Feedback

18

© NICTA 2007/2008 No: 103

Rate-Based Earliest Deadline Scheduler

• Basic Idea
– EDF provides hard guarantees

– Varying rates and periods provide
flexibility

– Programmable timer interrupts
guarantee isolation between
processes

• RBED policy
– Resource allocation: Target rate-

of-progress for each process (S ≤
100%)

– Dispatching: Period based on
process timeliness needs

• RBED mechanism
– Rate-Enforcing EDF: EDF +

programmable timer interrupts

Runtime System

Rate

Period

Scheduling

Policy
How

much

?

When?

EDF

w/timers

P0

Scheduling

Mechanism
Period,

WCET

Dispatch,

block, etc.

rate = utilization

WCET = rate*period

RBED: RAD Scheduler using

rate and period to control

resource allocation and dispatching

© NICTA 2007/2008 No: 104

Adjusting Rates at Runtime

Now

HRT

Process

BE

Process 1

New BE process enters
Time

C
u

m
u

la
ti

v
e

C
P

U
 T

im
e

© NICTA 2007/2008 No: 105

Adjusting Rates at Runtime

Now

HRT

Process

BE

Process 1

New BE process enters
Time

C
u

m
u

la
ti

v
e

C
P

U
 T

im
e

BE

Process 2

© NICTA 2007/2008 No: 106

RBED Periodic Task Model

EDF

• Period and WCET are

specified per task

– Ti has sequential jobs Ji,k

– Ji,k has release time ri,k,

period pi, deadline di,k

– ri,k = di,k-1, and di,k= ri,k+ pi

– ui = ei/pi and U = Σ ui

RBED

• Period and WCET are

specified per job

– Ti has sequential jobs Ji,k

– Ji,k has release time ri,k,

period pi,k, deadline di,k

– ri,k= di,k-1, and di,k = ri,k+ pi,k

– ui,k= ei,k/pi,k and U = Σui,k

• Theorem 1: EDF is optimal under the new task model

– Corollary: A new task may enter the system at any time, as long
as resources are available for it

1

© NICTA 2007/2008 No: 107

Two Observations

• At deadlines, a task’s actual resource allocation is
equal to its target resource allocation

• Actual resource allocation is bounded to the
feasible region

deadline

p
ro

g
re

ss

timejob release

1

© NICTA 2007/2008 No: 108

Increasing Rate (= increasing WCET)

• Theorem 2: The resource usage of any task can be
increased at any time, within the available resources

– Given a feasible EDF schedule, at any time task Ti may
increase utilization by any amount up to 1−U without
causing any task to miss deadlines in the resulting EDF
schedule

p
ro

g
re

ss

time

Now

19

© NICTA 2007/2008 No: 109

Increasing Rate (= increasing WCET)
p

ro
g
re

ss

time

Now

• Theorem 2: The resource usage of any task can be
increased at any time, within the available resources

– Given a feasible EDF schedule, at any time task Ti may
increase utilization by any amount up to 1−U without
causing any task to miss deadlines in the resulting EDF
schedule

© NICTA 2007/2008 No: 110

Increasing Rate (= increasing WCET)

• Theorem 2: The resource usage of any task can be
increased at any time, within the available resources

– Given a feasible EDF schedule, at any time task Ti may
increase utilization by any amount up to 1−U without
causing any task to miss deadlines in the resulting EDF
schedule

p
ro

g
re

ss

time

Now

A task can

never be in

this region

if resources

are available!

© NICTA 2007/2008 No: 111

Increasing Rate (= increasing WCET)

p
ro

g
re

ss

time

Now

• Theorem 2: The resource usage of any task can be
increased at any time, within the available resources

– Given a feasible EDF schedule, at any time task Ti may
increase utilization by any amount up to 1−U without
causing any task to miss deadlines in the resulting EDF
schedule

© NICTA 2007/2008 No: 112

RBED EDF Mode Change Theory

• Theorem 1: EDF is optimal under this task model

• Corollary: A new task may enter at any time, within available resources

• Theorem 2: The rate of any task can be increased at any time, within
available resources

• Theorem 3: The period of any task can be increased at any time

• Theorem 4: The rate of any task can be lowered at any time, down to
what it has already used in the current period

• Theorem 5: The period of any task can be reduced at any time, down
to the time corresponding to the current period’s resource usage

• Corollary: The period of any task can be increased at any time (without
changing WCET)

• Corollary: The period of a job which is ahead of its target allocation can
be reduced at any time, down to the time corresponding to its current
resource usage (without changing WCET) as long as the resources are
available for the rate change

© NICTA 2007/2008 No: 113

RBED Theory Summary

• Rate and period can be changed without causing
missed deadlines

– At deadlines, rate and period changes are
unconstrained (except by available resources)

– In between, decreases are constrained by resource
usage in the current period

– The changes may be combined

• Isolation between processes is guaranteed

© NICTA 2007/2008 No: 114

Better Slack Management: BACKSLASH

• Existing algorithms tend to ignore the needs of
“background” tasks

– Slack provided when everything else is idle

– Aim for “fair” allocation and 100% utilization

• Slack reclamation is critical in an integrated real-time
system

– Utilization is important for best-effort systems

– Soft real-time and best effort performance depends on the
effective use of slack

• BACKSLASH improves performance via slack scheduling

– Focuses on when slack is allocated, and to which process

20

© NICTA 2007/2008 No: 115

When To Allocate Slack?

102.5T3

8.04.0T2

6.01.5T1

PeriodReservationTask

Answer: Allocate

slack as early as

possible

Solution

© NICTA 2007/2008 No: 116

Who To Allocate Slack To?

102.5T3

8.04.0T2

6.01.5T1

PeriodReservationTask

Answer: Allocate

slack to the task

with the earliest

deadline

Solution

© NICTA 2007/2008 No: 117

How To Use Future Slack?

83T3

8.01.0T2

3.01.5T1

PeriodReservationTask

Answer: Borrow

resources (potential

slack) from the next

job to meet the

current deadline

Solution

© NICTA 2007/2008 No: 118

83T3

8.01.0T2

3.01.5T1

PeriodReservationTask

How to Allocate Slack to Past Overruns?

Answer: Back-

donate slack to tasks

that borrowed from

the future

Solution

© NICTA 2007/2008 No: 119

SRAND

SLAD

Principles

1. Allocate slack as early as possible

– With the priority of the donating task

2. Allocate slack to the task with highest priority
(earliest original deadline)

– Task deadline, not server deadline

3. Allow tasks to borrow against their own future
resource reservations to complete their current
job

– With the priority of the donating job

4. Retroactively allocate slack to tasks that have
borrowed from their current budget to complete a
previous job

SLASH

BACK
SLASH

+

+

+

© NICTA 2007/2008 No: 120

BACKSLASH Conclusions

• In an integrated system supporting HRT, SRT and BE,
the performance of SRT (and BE) depends on the
effective reclamation and distribution of slack

• Four principles for effective slack reclamation and
distribution:

1. Distribute slack as early as possible

2. Give slack to the ready task with the highest priority

3. Allow tasks to borrow against future reservations

4. Retroactively give slack to tasks that needed it

5. SMASH: Conserve slack across idle times!

• Our results show that these principles are effective:
BACKSLASH significantly outperforms the other
algorithms and improves SRT (and/or BE) performance

21

© NICTA 2007/2008 No: 121

Bandwidth Enforcement in RBED and Power
Management

Average
Maximum Observed

"Real" Worst-case

Safe upper bound
Best-case

execution
time

start of
job

reserved budget

Task model

dynamic slack time
k

execution time
k

k

release
time

deadline

k

trelease
timek+1

© NICTA 2007/2008 No: 122

Some Slack Management in SLASH

Dynamic slack donation

t

t

release time deadline t

preemption

deadline

X

Future Slack Borrowing

© NICTA 2007/2008 No: 123

Modelling Time

...2211 ++= PMCPMCC
mem

αα

...2211 ++= PMCPMCCbus ββ...+++=
bus

bus

mem

mem

cpu

cpu

f

C

f

C

f

C
T

f
CPU

performance

CPU bound application

performance

f
CPU

Memory bound application

...−−−= busmemtotcpu CCCC

© NICTA 2007/2008 No: 124

Modelling Energy

∫+=
T

dynstattot dtPTPE
0

dynstattot EEE +=

()...2211

2 +++ PMCPMCV φφ

f
CPU

energy

f = f
opt min

f
CPU

energy

f < f
optmin

() tffVE busbuscpucpudyn ∆++= ...2 χχ

22 cyclesVtfVEdyn ∝∆∝

tfmemmem ∆+ χ

...2211 +++ PMCPMC γγ

© NICTA 2007/2008 No: 125

Integration of DVFS

Dynamic slack donation

t

t

t

t

Job stretching wasted cycles

© NICTA 2007/2008 No: 126

Integration of DVFS: Do we really switch?

t

t

Job stretching

or
t

t

22

© NICTA 2007/2008 No: 127

Algorithm

• Switch to another frequency setting if

– Job can finish on time in the frequency setting
(inclusive switching cost)

– System energy will be minimised

newEnergy = energyAtCurrentFrequency

newFrequency = currentFrequency

for frequency in frequencySetPoints

if WCETAtSwitchedFrequency + switching.WCET < remainingBudet
&& switching.Energy + energyAtSwitchedFrequency < newEnergy

newEnergy = switchingCost.Energy + energyAtSwitchedFrequency;

newFrequency = frequency;

if newFrequency != currentFrequency

switchFrequency (newFrequency);

© NICTA 2007/2008 No: 128

Effects of Switching Times

t

t

Ideal World

f
f

f

1

2

t

t

Real World

f

f

1

2

© NICTA 2007/2008 No: 129

Switching Time Accounting

release

time

deadline

t

reserved budget

execution time dynamic slack

New task model

release

time

k

kkk k+1

release time tdeadline

t

t tswitch switch

© NICTA 2007/2008 No: 130

Books and other Info

Burns, Alan & Wellings, Andrew: Real-Time Systems and
Programming Languages (3rd ed), Addison Wesley, 2001

Kopetz, Hermann: Real-time Systems : Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1997

Joseph, Mathai: Real-time Systems: Specification, Verification
and Analysis, 2001

http://ebook.ieeelab.com/Embedded/RTSbook.pdf

Dale A. Mackall: Development and flight test experiences with
a flight-crucial digital control system. NASA Technical Paper
2857, NASA Ames Research Center, Dryden Flight
Research Facility, Edwards, CA, 1988.

© NICTA 2007/2008 No: 131

Basic Priority Ceiling Protocol

• Scheduling:

– Highest priority task in ready queue gets scheduled. Priority
exceptions as below

• Each resource has a ceiling priority equivalent of highest priority using
task

• Allocation

– If resource locked, block

– If (potentially modified) priority of task higher than the ceiling of
any resource not used by that task but used at the time, allocate

– Else, block

• Priorities:

– If task ττττ1 blocked at resource held by task ττττ2:

• ττττ2 is lifted in priority to task ττττ1

• revert to original priority once all resources are released

© NICTA 2007/2008 No: 132

Basic Priority Ceiling and Deadlock

• At any time the priority of task ττττi > ceiling
priority of resource currently in use THEN

1. task ττττI will not require any resource currently
in use

2. Any task ττττk with priority greater than task ττττI
will not require any resource currently in use

– i.e.:

– No task currently holding a resource can

inherit a higher priority and preempt task ττττI w

