
19/09/2008

1

Microkernel Construction

IPC Implementation

IPC Importance

General IPC Algorithm

� Validate parameters

� Locate target thread

� if unavailable, deal with it

� Transfer message

� untyped - short IPC

� typed message - long IPC

� Schedule target thread

� switch address space as necessary

� Wait for IPC

IPC - Implementation

Short IPC

Short IPC (uniprocessor)

� system-call preamble (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

� analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call postamble

The critical path

Short IPC (uniprocessor) “call”

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

� analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningwait to receive

19/09/2008

2

Short IPC (uniprocessor) “send” (eagerly)

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

� analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningrunning

Short IPC (uniprocessor) “send” (lazily)

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

� analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningrunning

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

19/09/2008

3

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

ES

FS

GS

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

CS

SS

DS

EAX

ECX

EDX

IPC

Note
“payload”
from green
thread

Implementation Goal

� Most frequent kernel op: short IPC

� thousands of invocations per second

� Performance is critical:

� structure IPC for speed

� structure entire kernel to support fast IPC

� What affects performance?

� cache line misses

� TLB misses

� memory references

� pipe stalls and flushes

� instruction scheduling

Fast Path

� Optimize for common cases

� write in assembler

� non-critical paths written in C++
� but still fast as possible

� Avoid high-level language overhead:

� function call state preservation

� poor code “optimizations”

� We want every cycle possible!

IPC Attributes for Fast Path

� untyped message

� single runnable thread after IPC

� must be valid IPC call

� switch threads, originator blocks

� send phase:

� the target is waiting

� receive phase:

� the sender is not ready to couple, causing us to block

� no receive timeout

19/09/2008

4

Avoid Memory References!!!

� Memory references are slow

� avoid in IPC:

� ex: use lazy scheduling

� avoid in common case:

� ex: timeouts

� Microkernel should minimize indirect costs

� cache pollution

� TLB pollution

� memory bus

Optimized Memory

stack

thread ID

cpu ID

UTCB

thread state

TCB state,

grouped by

cache lines.

Single TLB entry.

Also: hard-wire TLB

entries for kernel code

and data.

TLB Problem

stack stack stack stack

virtual TCB

area

virtual

addresses

Walking a linked

list has a TLB

footprint.

Avoid Table Lookups

thread nothread ID version

virtual TCB area

TCB = TCB_area +

(thread_no & TCB_size_mask)

Validate Thread ID

thread nothread ID version

virtual TCB area

Are the thread IDs equal?

Branch Elimination

slow = ~receiver->thread_state +

(timeouts & 0xffff) +

sender->resources +

receiver->resources;

if(slow)

enter_slow_path()

Common case: 0

Common case: -1

� Reduces branch prediction
foot print.

� Avoids mispredicts & stalls &
flushes.

� Increases latency for
slow path

19/09/2008

5

TCB Resources

1 1

Debug registers

Copy area

Resources bitfield

� One bit per resource

� Fast path checks entire
word

� if not 0, jump to
resource handlers

Message Transfer

IBM PowerPC 750,

500 MHz,

32 registers

up to 10

physical

registers

virtual register

copy loop

Many cycles

wasted on pipe

flushes for

privileged

instructions.

Slow Path vs. Fast Path

L4Ka::Pistachio IPC performance

Pentium 3

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

number message registers

c
y
c
le
s

Inter C-Path

Inter FastPath

Inter vs. Intra Address Space

L4Ka::Pistachio IPC performance

Pentium 3

0

100

200

300

400

500

600

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

number message registers

c
y
c
le
s

Intra FastPath

Inter FastPath

IPC - Implementation

Long IPC

Long IPC (uniprocessor)

� system-call preamble (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

� – transfer message –

� switch to dest thread & address space

� system-call postamble

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

19/09/2008

6

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

� lock both partners

� – transfer message –

� unlock both partners
� switch to dest thread & address space

� system-call post

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

� lock both partners

� enable intr

� – transfer message –

� disable intr

� unlock both partners
� switch to dest thread & address space

� system-call post

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

� lock both partners

� enable intr

� – transfer message –

� disable intr

� unlock both partners
� switch to dest thread & address space

� system-call post

waitrunning

runningwait to receive

locked waitlocked running

IPC - mem copy

� Why is it needed? Why
not share?

� Security

� Need own copy

� Granularity

� Object small than a
page or not aligned

copy in - copy out

� copy into kernel buffer

copy in - copy out

� copy into kernel buffer

� switch spaces

19/09/2008

7

copy in - copy out

� copy into kernel buffer

� switch spaces

� copy out of kernel buffer

� costs for n words

� 2×2n r/w operations

� 3×n/8 cache lines

� 1×n/8 overhead cache misses (small n)

� 4×n/8 cache misses (large n)

temporary mapping

temporary mapping

� select dest area (4+4 M)

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

� copy data

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

� copy data

� switch to dest space

19/09/2008

8

temporary mapping temporary mapping

� problems

� multiple threads per AS

� mappings might change while
message is copied

current AS

� How long to keep PTE?

� What about TLB?

temporary mapping

current AS

� when leaving curr thread during ipc?

� invalidate PTE

� flush TLB

temporary mapping

current AS

� when leaving curr thread during ipc:

� invalidate PTE

� flush TLB

temporary mapping

� when returning to thread during ipc:

current AS

temporary mapping

� when returning to thread during ipc:

current AS

Reestablishing temp mapping

requires to store

partner id and dest area address
in the sender’s tcb.

Note: receiver’s page mappings

might have changed !

19/09/2008

9

why?

current AS

temporary mapping

Leave thread:

if mytcb.waddr ≠≠≠≠ nil then

myPDE.TMarea := nil ;

if dest AS = my AS then

flush TLB

fi fi .

Start temp mapping:

mytcb.partner := partner ;

mytcb.waddr := dest 8M area base ;

myPDE.TMarea := destPDE.destarea .

Close temp mapping:

mytcb.waddr := nil .

myPDE.TMarea := nil ??optimization only:

avoids second TLB flush if subsequent

thread switch would flush TLB

anyhow current AS

temporary mapping

� Alternative method: Leave thread:

if mytcb.waddr ≠≠≠≠ nil then

myPDE.TMarea := nil ;

flush TLB ;

TLB flushed := true

fi .

Thread switch :

…

if TLB just flushed

then TLB flushed := false

else flush TLB

fi ;

PT root := ...

Requires separation of
TLB flush

and
load PT root

!

Does therefore not work
reasonably on x86.

Load PT root implicitly

includes TLB flush on x86.

current AS

temporary mapping
� Page Fault
Resolution:

current AS

temporary mapping

� Page Fault
Resolution:

current AS

temporary mapping

� Page Fault
Resolution:

current AS

temporary mapping

TM area PF:

if myPDE.TMarea = destPDE.destarea then

tunnel to (partner) ;

access dest area ;

tunnel to (my)

fi ;

myPDE.TMarea := destPDE.destarea .

� Page Fault
Resolution:

19/09/2008

10

Cost estimates

R/W operations

Cache lines

Small n overhead cache misses

Large n cache misses

Overhead TLB misses

Startup instructions

Copy in - copy out Temporary mapping

2 × 2n 2n

3 × n/8 2 × n/8

n/8 0

5 × n/8 3 × n/8

0 n / words per page

0 50

486 IPC costs

0

100

200

300

400

0 2000 4000 6000

msg len

Mach

L4 + cache flush

L4

raw copy

[µs]

� Mach: copy in/out

� L4: temp mapping

Dispatching

Dispatching topics:

� thread switch
� (to a specific thread)

� to next thread to be scheduled

� (to nil)

� implicitly, when ipc blocks

� priorities

� preemption
� time slices

� wakeups, interruptions

� timeouts and wake-ups

� time

� Smaller stack per thread

� Dispatcher is preemptable

� Improved interrupt
latency if dispatching is
time consuming

Switch to ():

Thread A

Thread B

switch to (dispatcher)

select next
ready thread,
assume B

switch to (B)

Dispatcher Thread

� Optimizations :

� disp thread is special
� no user mode,

� no own AS required

� Can avoid AS switch

� no id required

� Freedom from tcb layout
conventions

� almost stateless (see priorities)
� No need to preserve internal

state between invocations

� External state must be
consistent

tcb[A].sp := SP;
SP := disp thread bottom .

Switch to ():

Thread A

Thread B

switch to (dispatcher)

select next
ready thread,
assume B

switch to (B)

Dispatcher Thread

SP := tcb[A].sp ;
if B ≠ A then

switch from A to B
else return

fi .

Why ??

� costs (A → B)

≈ costs (A → disp → B)
� costs (select next)

� costs(A → disp → A) are low

19/09/2008

11

Issue:
If preempted, thread A is not in
a “good” state ⇒⇒⇒⇒

whenever disp thread is left,
stack has to be discarded !
even if with intr or timer

tcb[A].sp := SP;
SP := disp thread bottom .

Switch to ():

Thread A

Thread B

switch to (dispatcher)

select next
ready thread,
assume B

switch to (B)

Dispatcher Thread

SP := tcb[A].sp ;
if B ≠ A then

switch from A to B
else return

fi .

Why does this always work?

Example: Simple Dispatch

Example: Simple Dispatch

Dispatcher stack

tcb B ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

Local Variables

sp

Example: Dispatch with ‘Tick’

Example: Dispatch with ‘Tick’

Dispatcher stack

tcb B edi … eax ssespflgcseipx

tcb A ssespflgcseipx

Local State

Local State

Local Variables

sp

ssespflgcseipxLocal State

Example: Dispatch with ‘Tick’

Dispatcher stack

tcb B ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

Local Variables

sp

19/09/2008

12

Example: Dispatch with Interrupt Example: Dispatch with Interrupt

Dispatcher stack

Int Thrd edi … eax ssespflgcseipx

tcb A ssespflgcseipx

Local State

Local State

Local Variables

sp

ssespflgcseipxLocal State

Example: Dispatch with Interrupt

Dispatcher stack

Int Thrd ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

sp

� dispatcher thread is also

� idle thread
Switch to ():

Thread A

Thread B

switch to (dispatcher)

select next
ready thread,
assume B

switch to (B)

Dispatcher Thread
B := A ;
do

B:= next ready (B) ;
if B ≠≠≠≠ nil

then return
fi ;
idle

od .

disp table

Prio 100

Prio 50

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

Priorities
� ready tcb list per prio

� ‘current tcb’ per list

� 0 (lowest) … 255

� hard priorities

� round robin per prio

� dynamically changeable

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Priorities

� Optimization

� keep highest active prio

19/09/2008

13

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Priorities, Preemption

Prio 110

p= 110

intr/wakeup

highest active p :=
max (new p, highest active p) .

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Priorities, Preemption

� What happens when a prio falls empty ?

Prio 110

?
Remaining

time slice
> 0 ?

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

disp table

Prio 100

Prio 50

Priorities, Preemption

Prio 110

Remaining

time slice

> 0

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

Prio 110

Remaining

time slice

> 0

Prio 110

Remaining

time slice

> 0

� What happens when a prio falls empty ?

disp table

Prio 100

Prio 50

Preemption

� Preemption, time slice exhausted

Remaining

time slice

= 0

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

disp table

Prio 100

Prio 50

Preemption

� Preemption, time slice exhausted

Remaining

time slice
:= new ts

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if current[hi act p] .rem ts = 0
then current[hi act p].rem ts := new ts ;

current[hi act p] := next
fi .

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

readyready

19/09/2008

14

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

waitingready

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

waitingready

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

waitingready

� Whenever reaching a non-ready thread,

� delete it from list

� proceed with next
disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

ready ready

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

ready ready

do
round robin if necessary;
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p]; return
elif highest active p > 0

then highest active p -= 1
else

idle
fi

od .

round robin if necessary:
while curr[hi act p] ≠≠≠≠ nil do

if curr[hi act p].state ≠≠≠≠ ready
then delete from list (curr[hi act p])

elif curr[hi act p].rem ts = 0
then curr[hi act p].rem ts := new ts

else leave round robin if necessary
fi ;
curr[hi act p] := next ;

od .

Timeouts & Wakeups

t

� Operations:

� insert timeout

� Operations:

� insert timeout

� raise timeout

� Operations:

� insert timeout

� raise timeout

� find next timeout

� Operations:

� insert timeout

� raise timeout

� find next timeout

� delete timeout

timeout set timeout expiredcompletion,
no timeout

• raised-timeout costs are uncritical
(occurr only after timeout exp time)

•most timeouts are never raised !

19/09/2008

15

too expensive

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry 20..100 cycles

� find next timeout costs:

� parse entire list n × 10..50 cycles

� raise timeout costs:

� delete found entry 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

Idea 1: unsorted list

too expensive

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry n/2 × 10..50 + 20..100 cycles

� find next timeout costs:

� find list head 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

Idea 2: sorted list

too expensive

too complicated

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry log n × 20..100 + 20..100 cycles

� find next timeout costs:

� find list head 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

Idea 3: sorted tree

Wakeup Classes

t

now

now

soon

late

late late

soon
list

late
list

late late
list

insert timeout (now + ∆)

Wakeup Classes

tnow

now

soon

late

late late

soon
list

late
list

late late
list

19/09/2008

16

Wakeup Classes

tnow

now

soon

late

late late

soon
list

late
list

late late
list

� late list contains soon entries

� late correction phase required

Wakeup Classes

tnow

now

soon

late

late late

soon
list

late
list

late late
list

� late late list contains late entries

� late late correction phase required

Wakeup Classes

tnow

now

soon

late

late late

soon
list

late
list

late late
list

� max s ? (length of soon list)

� s ≤ timeouts to be raised in ττττsoon + new timeouts in ττττsoon

⇒⇒⇒⇒ s is small if ττττsoon is short enough

τsoon

Timeouts & Wakeups

� insert timeout costs:

� select class + add entry 10 + 20..100 cycles

� find next timeout costs:

� search soon class s..n × 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

Idea 4: unsorted wakeup classes

still

too expensive

still

too expensive

• raised-timeout costs are uncritical
(occurr only after timeout exp time)

• BUT most timeouts are never raised !

Lazy Timeouts

tnow

soon

late

late late

soon
list

Late

list

late late
list

t1

insert (t1)

Lazy Timeouts

tnow

soon

late

late late

soon
list

Late

list

late late
list

t1

insert (t
1
)

delete timeout

∅∅∅∅

19/09/2008

17

∅∅∅∅t2

Lazy Timeouts

tnow

soon

late

late late

soon
list

Late

list

late late
list

insert (t
1
)

delete timeout

insert (t2)

Lazy Sorting

� Keep a sorted list for fast lookup

� Don’t sort on insert

� insert is common

� but timeouts are uncommon

� Sort lazily:

� sort when walking wakeup list

� thus we sort only when necessary

Incremental Sorting

� Combine the cost of sorting with cost of finding first
thread to wake

� Problem: every addition to list resets the sorted flag,
and thus we must perform entire list walk. But we
want to avoid this.

� Alternative: maintain sorted list, and unsorted list.
Merge the two lists when necessary.

� merge can be incremental bubble sort

� iow: we keep a list of new additions, so that we
can remove the additions, without requiring a
resort

Issue

� How common is insertion compared to wake
up list searching/sorting?

� Very

� IPC more frequent than ‘ticks’

� Wakeup queues always unsorted

� Approach seems dubious

Security

Is your system secure?

Security defined by policy

� Examples

� All users have access to all objects

� Physical access to servers is forbidden

� Users only have access to their own files

� Users have access to their own files, group
access files, and public files (UNIX)

19/09/2008

18

Security policy

� Specifies who has what type of access to
which resources

Authentication

Authorization

All access is via IPC

� What microkernel mechanisms are needed for
security?

� How do we authenticate?

� How do we perform authorization?

� How do we implement arbitrary security
policies?

� How do we enforce arbitrary security
policies?

Authentication

� Unforgeable thread identifiers

� Thread identifiers can be mapped to

� Tasks

� Users

� Groups

� Machines

� Domains

� Authentication is outside the microkernel,
any policy can be implemented.

Authorization

� Servers implement objects; clients access
objects via IPC.

� Servers receive unforgeable client identities
from the IPC mechanism

� Servers can implement arbitrary access
control policy

� No special mechanisms needed in the
microkernel

Is this really true???

Example Policy:
Mandatory Access Control

� Objects assigned security levels

� Top Secret, Secret, Classified, Unclassified
� TS > S > C > UC

� Subjects (users) assigned security levels

� Top Secret, Secret, Classified, Unclassified

� A subject (S) can read an object (O) iff

� level(S) >= level(O)

� A subject (S) can write an object (O) iff

� level(S) <= level(O)

Secure System

Client (UC)

Server

C
UC

S TS

Client (C) Client (S)

Client (TS)

19/09/2008

19

Problem

Client (UC)

Server

C
UC

S TS

Client (C) Client (S)

Client (TS)

Conclusion

To control information flow we must
control communication

� We need mechanisms to not only implement a policy
– we must also be able to enforce a policy!!!

� Mechanism should be flexible enough to implement
and enforce all relevant security policies.

Clans & Chiefs

Clans & Chiefs

Within all system based on direct message transfer, protection is essentially

a matter of message control. Using access control lists can be done at the

server level, but maintenance of large distributed access control lists

becomes hard when access rights change rapidly. The clan concept permits

to complement the mentioned passive entity protection by active protection

based on intercepting all communication of suspicious subjects.

A clan is a set of tasks headed by a chief task. Inside the clan all messages

are transferred freely and the kernel guarantees message integrity. But

whenever a message tries to cross a clan’s borderline, regardless of

whether it is outgoing or incoming, it is redirected to the clan’s chief. This

chief may inspect the message (including the sender and receiver ids as

well as the contents) and decide whether or not it should be passed to the

destination to which it was addressed. Obviously subject restriction and local

reference monitors can be implemented outside the kernel by means of

clans. Since chief are tasks at user level, the clan concept allows more

sophisticated and user definable checks as well as active control.

clan
chief

tasks

Clans & Chiefs

� A clan is a set of tasks
headed by a chief task

clan
chief

tasks

� Direct IPC by microkernel

Intra-Clan IPC

19/09/2008

20

clan
chief

tasks

� Microkernel redirects IPC to next chief

� Chief (user task) can forward IPC or modify or …

Inter-Clan IPC

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

Direction-Preserving Deceiving

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Direction-Preserving Deceiving

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

Direction-Preserving Deceiving

“from T2”

“from T2”

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Direction-Preserving Deceiving

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C2?
Yes!

Direction-Preserving Deceiving

19/09/2008

21

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C2?
Yes!

Direction-Preserving Deceiving

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C1?
Yes!

Direction-Preserving Deceiving

C1

T1 T2

T3

C2

T4

T5

C3

“from T2”

“from T2”

Can I trust C1?
Yes!

Direction-Preserving Deceiving Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 wants to get some private

information from T1.

C1

C2

T1 T2

T3

Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 want to get some private

information from T1.

The chief C2 can send an IPC to T1 so

it appears that it came from T2.

C1

C2

T1 T2

T3

“From T2”

Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 want to get some private

information from T1.

The chief C2 can send an IPC to T1 so

it appears that it came from T2.

The important fact is that with DPD

when T1 gets an IPC from C2 then he

definitely knows that the message

came from inside the clan C2. Vice

versa is the same.

C1

C2

T1 T2

T3

“From T2”

19/09/2008

22

Node A Node B

Remote IPC

� Remote IPC

� Multi-level security

� Debugging

� Heterogeneity

Clans & Chiefs

Secure System using Clans & Chiefs

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S)

Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Chief

Problems with Clans & Chiefs

� Static

� A chief is assigned when task is started

� If we might want to control IPC, we must
always assign a chief

� General case requires many more IPCs

� Every task has its own chief

The most general system
configuration

� If a pair could communicate
freely we still require 3 IPCs
where one would suffice

Client

Client

Client

Client

Chief

Chief

Chief

Chief

IPC Redirection

19/09/2008

23

IPC Redirection

Source

Intermediary

Destination

IPC fails

� For each source and destination we actually
deliver to X, where X is one of:

� Destination

� Intermediary

� Invalid

IPC Redirection

� If X is

� Destination

� We have a fast path when source and
destination can communication freely

Source Destination

IPC Redirection

� If X is

� Invalid

� We have a barrier that prevents communication
completely

Source Destination

IPC fails

IPC Redirection

� If X is

� Intermediary

� Enforce security policy

� Monitor, analyze, reject, modify each IPC

� Audit communication

� Debug

Source

Intermediary

Destination

Deception

� To be able to transparently insert an
intermediary, intermediaries must be able to
deceive the destination into believing the
intermediary is the source.

� An intermediary (I) can impersonate a source
(S) in IPC to a destination (D)

� I [S]=> D

� Iff R(S,D) = I or

� R(S,D) = x and I[x]=>D

Case 1

� I[S]=>D if R(S,D) = I

Source

Intermediary

Destination

From S

19/09/2008

24

Case 2

� I[S]=>D if R(S,D) = x, and I[x]=>D

Source Destination

From S

Intermediary

X

Secure System using IPC Redirection

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S)Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Redirection
Controller

IPC Redirection can implement
Clans & Chiefs

Client (UC)

Server

C
UC

S TS

Client (C)

Client (S)

Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Chief

Redirection
Controller

Disadvantages and Issues

� The check for if impersonation is permitted is defined
recursively

� Could be expensive to validate

� Dynamic insertion of transparent intermediaries is
easy, removal is hard.

� There might be “state” along a path of
intermediaries, redirection controller cannot know
unless it has detailed knowledge and/or
coordination with intermediaries.

� Cannot determine IPC path of an impersonated
message as path may not exist after message arrives

� Centralized redirection controller

Summary

� In microkernel based systems information flow is via
communication
� Communication control is necessary to enforce
security policy.

� Any mechanism for communication control must be
flexible enough to implement arbitrary security
policies.

� We examined two “policy-free” mechanisms to
provide communication control
� Clans & Chiefs
� Redirection

� Neither is perfect

� Current research: Virtual Threads, Capabilities

