19/09/2008

IPC Importance

Microkernel Construction

(]

IPC Implementation 7 I:I

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

O e

General IPC Algorithm

= Validate parameters
= Locate target thread .
« if unavailable, deal with it IPC - Implementation
= Transfer message
= untyped - short IPC
= typed message - long IPC Short IPC
= Schedule target thread
= switch address space as necessary
= Wait for IPC

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T B e i K (T

Short IPC (uniprocessor) Short IPC (uniprocessor) “call”
................................ -
4 system-call preamble (disable intr) = system-call pre (disable intr)
« identify dest thread and check » identify dest thread and check
same chief / no ipc redirection? same chief / no ipc redirection?
ready-to-receive? ready-to-receive?
J analyze msg and transfer = analyze msg and transfer
short: no action required short: no action required
s switch to dest thread & address space » switch to dest thread & address space
4 system-call postamble _ » system-call post
[critca path |

19/09/2008

Short IPC (uniprocessor) “send” (eagerly) Short IPC (uniprocessor) “send” (lazily)
_ = system-call pre (disable intr) _ = system-call pre (disable intr)
» identify dest thread and check » identify dest thread and check
same chief / no ipc redirection? same chief / no ipc redirection?
ready-to-receive? ready-to-receive?
= analyze msg and transfer _ = analyze msg and transfer
short: no action required short: no action required
» switch to dest thread & address space » switch to dest thread & address space
_ = System-call post — = System-call post

DU e e

DU e

IPC

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T

B e i K (T

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i Kb (T

B e i K (T

19/09/2008

EFLAGS

cs ES

SS| FS

DS Gs

O e

IPC

THE UNIVERSITY OF
NEW SOUTH WALES
B e s e

i

Note :
“payload”

IPC

from green
thread

ESP

EFLAGS
EIP

cs ES
ss Fs
DS Gs

THE UNIVERSITY OF
NEW SOUTH WALES

il arlaa

i

Implementation Goal

= Most frequent kernel op: short IPC

= thousands of invocations per second
= Performanceis critical:

= structure IPC for speed

= structure entire kernel to support fast IPC
= What affects performance?

= cache line misses

= TLB misses

= memory references

= pipe stalls and flushes

= instruction scheduling

THE UNIVERSITY OF
NEW SOUTH WALES
B e s e

i

Fast Path

= Optimize for common cases
= write in assembler

= non-critical paths written in C++
= but still fast as possible

= Avoid high-level language overhead:
= function call state preservation
= poor code “optimizations”

= We want every cycle possible!

THE UNIVERSITY OF
NEW SOUTH WALES

il arlaa

il

IPC Attributes for Fast Path

= untyped message
= single runnable thread after IPC
= must be valid IPC call
= switch threads, originator blocks
= send phase:
= the target is waiting
= receive phase:
= the sender is not ready to couple, causing us to block
= NO receive timeout

THE UNIVERSITY OF
NEW SOUTH WALES
B e s e

il

19/09/2008

Avoid Memory References!!! Optimized Memory

Also: hard-wire TLB
= Memory references are slow entries for kermel code
= avoid in IPC: M and data.
= ex: use lazy scheduling
= avoid in common case:
= ex: timeouts

lstack

= Microkernel should minimize indirect costs
= cache pollution
= TLB pO”utiOn thread state

> Single TLB entry.

UTCB TCB state,
= memory bus B0 grouped by
— cache lines.
thread ID J

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T

B e i K (1

TLB Problem Avoid Table Lookups

lslack

lslack lstack

]

thread ID

]

virtual TCB area

virtual TCB
area
TCB= TCB_area +

(thread_no & TCB_size_mask)

virtual
addresses

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T

B e i K (T

Validate Thread ID Branch Elimination

thread ID

slow = ~receiver->thread_statt
(timeouts & Oxffff)
sender->resources
receiver->resources;

virtual TCB area

if(slow)
enter_slow_path()

Are the thread IDs equal? = Reduces branch prediction

foot print.
= Avoids mispredicts & stalls &
flushes.
= Increases latency for
slow path

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i Kb (T

B e i K (T

19/09/2008

TCB Resources

= One bit per resource
= Fast path checks entire
word
= if not 0, jump to
resource handlers

Resources bitfield

Debug registers

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

Message Transfer

inter-address space 1PC

250 : - - T T
ies fer 170 ——
I1BM PowerPC 750,
500 MHz,
32 registers

2o
200

up to 10
160 g

physical
Lo registers

virtual register
140 copy loop
120
io 20 0 ° o o
nessage registers copied
e e)

Slow Path vs. Fast Path

L4Ka::Pistachio IPC performance
Pentium 3

600
500 M
w00 /__,,._/4—"‘"

e
300

$
S 3 —=— Inter C-Path
200 —e—Inter FastPath
100
0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
number message registers

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

Inter vs. Intra Address Space

L4Ka::Pistachio IPC performance
Pentium 3

w00 /__‘,._/4—"‘"
" ﬂ

—&—Intra FastPath

100 —+— Inter FastPath

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

number message registers

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

IPC - Implementation

Long IPC

THE UNIVERSITY OF
NEW SOUTH WALES

B e i Kb (T

Long IPC (uniprocessor)

system-call preamble (disable intr)
identify dest thread and check
same chief
ready-to-receive?
analyze msg and transfer

long/map:

= —transfer message —

switch to dest thread & address space
system-call postamble

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

19/09/2008

THE UNIVERSITY OF
NEW SOUTH WALES

Long IPC (uniprocessor)

system-call pre (disable intr)
identify dest thread and check
same chief
ready-to-receive?
analyze msg and transfer
long/map:
= lock both partneys,

= — transfer message —

= unlock both partners
switch to dest thread & address space
system-call post

Long IPC (uniprocessor)

system-call pre (disable intr)
identify dest thread and check
same chief
ready-to-receive?
analyze msg and transfer
long/map:
= lock both partneys,
= enable intr
= —transfer message —
= disable intr
= unlock both partners
switch to dest thread & address space
system-call post

THE UNIVERSITY OF
NEW SOUTH WALES

F XVt

B ke e) B ke e)
Long IPC (uniprocessor) IPC - mem copy
_................................-
- desteTy'za" Prs <d‘§ab‘z mr:r)k = Why is it needed? Why
= identify dest thread and checi 2
same chief not share'. :l :l
ready-to-receive? = Security
= analyze msg and transfer = Need own copy
long/map: = Granularity
=« lock both partners Jocked wait « Object small than a
. enable intr page or not aligned
= — transfer message —
= disable intr
= unlock both partners p—
= switch to dest thread & address space 2
= system-call post
[0 e e] E EHSIRTAR A il Kauleruha (1)
copy in - copy out copy in - copy out o
« copy into kernel buffer = copy into kernel buffer C

= switch spaces

[NV Rt

19/09/2008

copy in - copy out

= copy into kernel buffer
= switch spaces
= copy out of kernel buffer

= costs for nwords

= 2x27, r/w operations

= 3xn/8 cache lines
1xn/8 overhead cache misses (small)
4xn/8 cache misses (large 1)

—

DU e e

temporary mapping

DU e

temporary mapping

= select dest area (4+4 M)

D e

temporary mapping

= select dest area (4+4 M)
= map into source AS (kernel)

D e

temporary mapping

= select dest area (4+4 M)
= map into source AS (kernel)
= copy data

D e

temporary mapping

= select dest area (4+4 M)

= map into source AS (kernel)
= copy data

= switch to dest space

DU e

19/09/2008

temporary mapping temporary mapping

= problems
= multiple threads per AS

= mappings might change while
message is copied

ng to keep PTE?

bout TLB?
—_— —_—
— —
[0 e e] E EHSIRTAR A il Kauleruha (1)
temporary mapping temporary mapping
= invalidate PTE = invalidate PTE
= flush TLB = flush TLB
= wh curr thread duringipc? = when leaving|curr thread auringipc:
—_— —_—
— —
E REW SOUTITWALZS Ui K <L (O el

temporary mapping temporary mapping

Reestablishing temp mapping
requires to store Note: receiver’s page mappings

partner idand dest area address might have changed !

in the sender’s tcb.

= wh g to thread duringipc: g to thread duringipc:

\

THE UNIVERSITY OF
NEW SOUTH WALES
B e i Kb (T

[NV Rt

19/09/2008

temporary mapping temporary mapping
Start temp mapping: Leave thread: = Alternative method: Leave thread:
mytcb.partner := partner ; if mytcb.waddr # ni/ then if mytcb.waddr # ni/ then
mytcb.waddr := dest 8M area base ; myPDE.TMarea := nil; myPDE.TMarea := ni/;
myPDE.TMarea := destPDE.destarea . if dest AS AS the flush TLB ;
Requires separation of TLB flushed := true
TLB flush fi.
and
load PT root Thread switch :
1
if TLB just flushed
. why? Does therefore not work then TLB flushed := false
Close temp mapping: : reasonably on x86. ﬁ else flush TLB
mytcb.waddr := nil . L fi;
_ Load PT root implicitly PT root = ...
optimization only: includes TLB flush on x86.
avoids second TLB flush if subsequent
thread switch would flush TLB

anyhow

THE UNIVERSITY OF —
NEW SOUTH WALES
B e i K (T

current AS
E THEUNIVERSITY OF
KW SOUTTWALES

temporary mapping temporary mapping
= Page Fault = Page Fault
Resolution: Resolution:
—_— —_—
— —
5 5
temporary mapping temporary mapping
= Page Fault = Page Fault TM area PF:

Resolution: Resolution: if myPDE.TMarea = destPDE.destarea then
tunnel to (partner) ;
access dest area ;
tunnel to (my)

fi;

yPDE.TMarea := destPDE.destarea .

N N

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i Kb (T B e i K (T

19/09/2008

Cost estimates

Copy in - copy Temporary mapping

R/W operations 2x2n 2n
Cache lines 3xn/8 2 xn/8
Small n overhead cache misses n/8 0
Large n cache misses 5xn/8 3xn/8
Overhead TLB misses 0 n / words per page
Startup instructions 0 50

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

THE UNIVERSITY OF
NEW SOUTH WALES

486 IPC costs

[us] Mach
400
= Mach: copy infout
= L4: temp mapping
300
200

L4 + cache flush

L4

raw copy

0 2000 4000 6000
msg len

B e i K (1

Dispatching

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

THE UNIVERSITY OF
NEW SOUTH WALES

Dispatching topics:

= thread switch
(to a specific thread)
to next thread to be scheduled
= (tonil)
= implicitly, when ipc blocks

= priorities
= preemption
time slices
wakeups, interruptions

= timeouts and wake-ups
= time

B e i K (T

= Smaller stack per thread
= Dispatcher is preemptable
= Improved interrupt
latency if dispatching is
time consuming

Switch to ():

Thread A

Dispatcher Thread
switch to (dispatcher)

select next
ready thread,
assume 8

switch to (8)

Thread B

THE UNIVERSITY OF
NEW SOUTH WALES
B e i Kb (T

Thread A

switch to (dispatcher)

= Optimizations :
= disp thread is special
= No user mode,
no own AS required
= Can avoid AS switch
no id required
« Freedom from tcb layout
conventions
= almost stateless (see priorities)

No need to preserve internal
state between invocations

External state must be

Switch to ():

tcb[A]sp i= SP;
SP := disp thread bottom .

Dispatcher Thread

consistent
select next
ready thread,
assume B = costs (A B)

~ costs (A — disp — B)
» costs (select next)
costs(A — disp — A) are low

Thread 8

SP := tcb[Alsp ;
if B = A then
switch from A to B
else refurn
fi.

AT e e

10

19/09/2008

Switch to (): Example: Simple Dispatch

tcb[Alsp := SP;
SP := disp thread bottom .

Thread A

Issue:
Dispatcher Thread If preempted, thread A is not in

switch to (dispatcher a“good” state > .
whenever disp thread is left,

select next .
ready thread, s'rack.has"ro I;e dlscar"ded !
assume 8 even if with intr or timer

switsqto (8)

Why, does this always work?

Thread 8
SP := tcb[Alsp ;
if B # A then
switch from A to B
else return
TSR fi. B e
(O e Tl =1 il Kariesha (1

Example: Simple Dispatch Example: Dispatch with ‘Tick’

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T B e i K (T

Example: Dispatch with ‘Tick’ Example: Dispatch with ‘Tick’

edi... eax (I=IEICH X eip cs fig esp ss
edi... eax (GEIRSIEICH X | eip cs flg esp ss
Local Variables

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i Kb (T B e i K (T

11

19/09/2008

Example: Dispatch with Interrupt

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

Example: Dispatch with Interrupt

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (1

Example: Dispatch with Interrupt

= dispatcher thread is also
= idle thread

Switch to ():

Thread A
B:=A;
Dispatcher Thread do
___ switchto (dispatcher) B:= next ready (B) :
if B = nil
lect Q
r:::;ﬁ:‘;:d' f then return
assume 8 LG
idle
switch to (8) .
edi... eax X eip cs flg esp ss
Thread B
edi... eax X eip cs flg esp ss
B e] TR _
i Ko) A el
Priorities Priorities
= 0 (lowest) ... 255 = ready tcb list per prio
= hard priorities = ‘current tcb’ per list
= round IfObIn per prio « Optimization
= dynamically changeable « keep highest active prio
do ™ do ™
p := 255;
do

if currenty; 2 nil
then B := currenty, :

fi: et u‘
p-=1
until p < O od :

@ D

F XVt

if currentyigiest active 5 2 Nil
then B := currentpgnest active p)é
return

elif highest active p > 0

then highest active p -= 1
else
idle

@ BD

[NV Rt

12

19/09/2008

Priorities, Preemption

highest active p :=
max (new p, highest active p) .

%;;: 110

intr/wakeup

do
if currentpigiest active 5 # il
then B := currentygnes: active py?
return
elif highest active p > 0
then highest active p -= 1
else
idle

Priorities, Preemption

= What happens when a prio falls empty ?

do / (\
if currentpgnes active py # Nil /
then round robin ?f necessary: | \
B = currentpignest active pl /

elif highest active p > O
then highest active p -= 1
else

fi
od .

round robin if necessary:
if currgy oy .rem ts = 0
then curry oc; ;) := next ;
currenty, ... ;.rem 1s i= new ts
fi.

O e

Priorities, Preemption

= What happens when a prio falls empty ?

do
if currentpgnet acrive gy # Nl
then round robin if necessary:
B = currentpignest active p

return
elif highest active p > O
then highest active p -= 1
else
idle
fi
od .

round robin if necessary:
if currgy o () .rem ts = 0
then curry o.; ;) := next ;
currenty, ... ;.rem 1s i= new ts

fi.

O e

Preemption

= Preemption, time slice exhausted

do
if currentpgnet acrive gy # il
then round robin if necessary:
B urrentiyghest active pls

return
elif highest active p > O
then highest active p -= 1
else
idle
fi
od .

round robin if necessary:
if currgy o () .rem ts = 0
then curry o.; ;) := next ;
currenty, o.; ;.rem 1s i= new ts
fi.

O e

Preemption

= Preemption, time slice exhausted

do
if currentpgnet acrive gy # il
then round robin if necessary:
B = currentpignest active p
return

elif highest active p > 0
then highest active p -= 1
else

fi
od .

round robin if necessary:
if currenty, ..; ; .rem ts = 0
then currenty ..; ,;.rem ts i= new ts ;
currentyy o, 5 i= M

O e

Lazy Dispatching

Thread state toggles frequently (per ipc)
= ready <> waiting
= delete/insert ready list is expensive
= therefore: delete /azily from ready list

O e

13

19/09/2008

Lazy Dispatching

Thread state toggles frequently (per ipc)
= ready <> waiting
= delete/insert ready list is expensive
= therefore: delete /azily from ready list

O e

Lazy Dispatching

Thread state toggles frequently (per ipc)
= ready <> waiting
= delete/insert ready list is expensive
= therefore: delete /azily from ready list

O e

Lazy Dispatching

Thread state toggles frequently (per ipc)
= ready <> waiting
= delete/insert ready list is expensive
= therefore: delete /azily from ready list

Lazy Dispatching

Thread state toggles frequently (per ipc)
= ready <> waiting
= delete/insert ready list is expensive
= therefore: delete /azily from ready list
= Whenever reaching a non-ready thread,
= delete it from list
= proceed with next

YA e Y YA e Y
do = Operations:
round robin if necessary: . .
if currentiighest active py # Nil — = insert timeout
then B := currentpygest active p1: return ise til
elif highest active p > 0 P = raise timeout
1o Ten highest active p -= 1 = find next timeout
else
- idle = delete timeout
i
od .
round robin if necessary:
while currg; ot g # nil do
if curty, ot py.State = ready
then delete from list (curry, o)
elif currpy ot p-rem ts = 0
N CUPP(hi oct p)-Fem ts := new ts
else leave round robin if necessary timeout set completion, timeout expired t
fi: notimeout
- CUPPhi act py = next ; * raised-timeout costs are uncritical
g (occurr only after timeout exp time)

14

19/09/2008

THE UNIVERSITY OF
NEW SOUTH WALES
=

Timeouts & Wakeups

Idea 1: unsorted list
= /nsert timeout costs:
= search + insert entry
= find next timeout cos¥s:
= parse entire list
= raise timeout costs:
= delete found entry
= delete timeout costs:
= delete entry

too expensive

0:7100 cycles

nx 10..50 cycles

20..100 cycles

20..100 cycles

il Kauleruha (1) [0 e e]
Timeouts & Wakeups Timeouts & Wakeups
. too expensive
(D EPEEE too complicated
Idea 2: sorted list Idea 3: sorted tree
= /nsert timeout costs: = /nsert timeout costs:
= search + insert entry ~ 77/2 x 10..50 + 20..100 cycles = search + insert entry log 7 x 20..100 + 20..100 cycles
= find next timeout costs: = find next timeout costs:
= find list head 10..50 cycles = find list head 10..50 cycles
= raise timeout costs: = raise timeout costs:
= delete head 20..100 cycles = delete head 20..100 cycles
= delete timeout costs: = delete timeout costs:
= delete entry 20..100 cycles = delete entry 20..100 cycles
AT TR EATeSea NS TR EATeSea

Wakeup Classes

now insert timeout (now + A)

= t
£

THE UNIVERSITY
NEW SOUTH WALES
=

il arlaa

il

Wakeup Classes

now

soon
list

THE UNIVERSITY
NEW SOUTH WALES

B e i K (T

15

19/09/2008

Wakeup Classes Wakeup Classes

now now

t t
list.

= /ate /ate list contains /ate entries
= late late correction phase required

= /atelist contains soon entries
= late correction phase required

F XVt

F XV R Rt

Wakeup Classes Timeouts & Wakeups

now
Idea 4: unsorted wakeup classes

= /nsert timeout costs:

= select class + add entry 10 + 20..106cycles
= find next timeout costs:

T — - search soon s s 10.51

= raise timeout costs:
], . MAXS? (engthof soonlis t = delete head 20..100 cyclez

= s < timeouts to be raised in t55,, + NEW timeouts in tgy0, = delete timeout costs:

too expensive

))) = delete entry 20..100 cycles
= s issmall if t50q is short enough « raised-timeout costs are uncritical

(occurr only after timeout exp time)
« BUT most timeouts are never raised !

THE UNVERSITY OF
R SBUTIWAR

THE UNIVERSITY
NEW SOUTH WALES

B e i K (T

F XV R Rt

Lazy Timeouts Lazy Timeouts

insert (¢;) insert (¢,)

delete timeout

[soon 4 E»
late late
[aee > [e >
| o i

[== ==
[st | [st |

THE UNIVERSITY OF
NEW SOUTH WALES
B e i Kb (T

B e i K (T

16

19/09/2008

Lazy Timeouts

insert (1)
delete timeout

insert (¢,)

E»
late

[late late

t soon
5) list
late late:
st
THE UNIVERSITY OF

NEW SOUTH WALES
A

Lazy Sorting

= Keep a sorted list for fast lookup
= Don't sort on insert
= insert is common
= but timeouts are uncommon
= Sort lazily:
= sort when walking wakeup list
= thus we sort only when necessary

THE UNIVERSITY OF
NEW SOUTH WALES
A

Incremental Sorting

= Combine the cost of sorting with cost of finding first
thread to wake
= Problem: every addition to list resets the sorted flag,
and thus we must perform entire list walk. But we
want to avoid this.
= Alternative: maintain sorted list, and unsorted list.
Merge the two lists when necessary.
= merge can be incremental bubble sort
= iow: we keep a list of new additions, so that we
can remove the additions, without requiring a
resort

THE UNIVERSITY OF
NEW SOUTH WALES
A

Issue

= How common is insertion compared to wake
up list searching/sorting?
= Very
= IPC more frequent than ‘ticks’
= Wakeup queues always unsorted
» Approach seems dubious

THE UNIVERSITY OF
NEW SOUTH WALES
A

Security

Is your system secure?

THE UNIVERSITY OF
NEW SOUTH WALES
A

Security defined by policy

= Examples
= All users have access to all objects
= Physical access to servers is forbidden
= Users only have access to their own files

= Users have access to their own files, group
access files, and public files (UNIX)

THE UNIVERSITY OF
NEW SOUTH WALES
A

17

19/09/2008

Security policy

= Specifies who has what type of access to
which resources

All access is via IPC

= What microkernel mechanisms are needed for
security?

= How do we authenticate?

= How do we perform authorization?

= How do we implement arbitrary security
policies?

= How do we enforce arbitrary security
policies?

Authentication

= Unforgeable thread identifiers

= Thread identifiers can be mapped to
» Tasks
» Users
= Groups
» Machines
= Domains
= Authentication is outside the microkernel,
any policy can be implemented.

Authorization

= Servers implement objects; clients access
objects via IPC.
= Servers receive unforgeable client identities
from the IPC mechanism
= Servers can implement arbitrary access
control policy

= No special mechanisms needed in the
microkernel

Example Policy:
Mandatory Access Control

= Objects assigned security levels

= Top Secret, Secret, Classified, Unclassified
«TS>S>C>UC

= Subjects (users) assigned security levels

= Top Secret, Secret, Classified, Unclassified
= A subject (S) can read an object (O) iff

= level(S) >= level(0)
= A subject (S) can write an object (O) iff

= level(S) <= level(0)

Secure System

Client (C)

18

19/09/2008

pede 41‘"'\

Problem

Client (C)

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

Conclusion

To control information flow we must
control communication

= We need mechanisms to not only implement a policy
— we must also be able to enforcea policy!!!

= Mechanism should be flexible enough to implement
and enforce all relevant security policies.

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (1

Clans & Chiefs

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

Clans & Chiefs

Within all system based on direct message transfer, protection is essentially
a matter of message control. Using access control lists can be done at the
server level, but maintenance of large distributed access control lists
becomes hard when access rights change rapidly. The clan concept permits
to complement the mentioned passive entity protection by active protection
based on intercepting all communication of suspicious subjects.

A clan is a set of tasks headed by a chief task. Inside the clan all messages
are transferred freely and the kernel guarantees message integrity. But
whenever a message tries to cross a clan’s borderline, regardless of
whether it is outgoing or incoming, it is redirected to the clan’s chief. This
chief may inspect the message (including the sender and receiver ids as
well as the contents) and decide whether or not it should be passed to the
destination to which it was addressed. Obviously subject restriction and local
reference monitors can be implemented outside the kernel by means of
clans. Since chief are tasks at user level, the clan concept allows more
sophisticated and user definable checks as well as active control.

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

Clans & Chiefs

= A clanis a set of tasks
headed by a chief task

THE UNIVERSITY OF

NEW SOUTH WALES

Intra-Clan IPC

O e

19

19/09/2008

Inter-Clan IPC

clan

= Microkernel redirects IPC to next chief
w Chief (user task) can forward IPC or modify or ...

S e unversiTy OF
] TSR

Direction-Preserving Deceiving

Direction-Preserving Deceiving

Direction-Preserving Deceiving

Direction-Preserving Deceiving

Direction-Preserving Deceiving

20

19/09/2008

Direction-Preserving Deceiving

Direction-Preserving Deceiving

»

E
i

55
=3

WA

b A el * B el
Direction-Preserving Deceiving Example
Direct-Preserving-Deceiving (DPD) is
a simple mechanism to realize
security.

F XV R Rt

Imagine the blue task is a tool you
have from the Internet. Without DPD
there is no relevant security. The blue
thread T; wants to get some private

information from T;.

THE UNIVERSITY OF
NEW SOUTH WALES
B e i K (T

THE UNIVERSITY OF
NEW SOUTH WALES
=

Example

Direct-Preserving-Deceiving (DPD) is
a simple mechanism to realize
security.

Imagine the blue task is a tool you
have from the Internet. Without DPD
there is no relevant security. The blue
thread T; want to get some private
information from T,.

The chief C, can send an IPC to T, so
it appears that it came from T,.

it kpisoha 1

Example

Direct-Preserving-Deceiving (DPD) is
a simple mechanism to realize
security.

Imagine the blue task is a tool you
have from the Internet. Without DPD
there is no relevant security. The blue
thread T; want to get some private
information from T,.

The chief C, can send an IPC to T, so
it appears that it came from T,.

The important fact is that with DPD
when T, gets an IPC from C, then he
definitely knows that the message
came from inside the clan C,. Vice
versa is the same.

THE UNIVERSITY OF
NEW SOUTH WALES

B e i K (T

21

19/09/2008

Remote IPC

Node A

Clans & Chiefs

Remote IPC

= Multi-level security
Debugging
Heterogeneity

Secure System using Clans & Chiefs Problems with Clans & Chiefs
= Static
= A chief is assigned when task is started
« If we might want to control IPC, we must
always assign a chief
= General case requires many more IPCs
= Every task has its own chief

The most general system
configuration

= If a pair could communicate
freely we still require 3 IPCs
where one would suffice

m-

B e i Kb (T

IPC Redirection

22

19/09/2008

IPC Redirection

= For each source and destination we actually
deliver to X, where Xis one of:

= Intermediary
= Invalid

IPC Redirection

s If Xis
= Destination

» We have a fast path when source and
destination can communication freely

B e

B e IPC fails .) B e 2 -
IPC Redirection IPC Redirection
= If Xis = If Xis
= Invalid = Intermediary
« We have a barrier that prevents communication » Enforce security policy
completely Monitor, analyze, reject, modify each IPC
= Audit communication
-\
B e IPC fails] B e)
Deception Case 1

To be able to transparently insert an
intermediary, intermediaries must be able to
deceive the destination into believing the
intermediary is the source.

= An intermediary (I) can impersonate a source
(S) in IPC to a destination (D)

«I[S]=>D

= IffR(S,D) =1or

= R(S,D) = x and I[x]=>D

THE UNIVERSITY OF
NEW SOUTH WALES

=

THE UNIVERSITY OF
NEW SOUTH WALES

= [[S]=>D if R(S,D) = I

Intermediary

From S

=

23

19/09/2008

Case 2 Secure System using IPC Redirection

» I[S]=>D if R(S,D) = x, and I[x]=>D

Redirection -

Controller A Server

[
From S

- Destination -

THE UNIVERSITY OF THE UNIVERSITY OF
NEW SOUTH WALES NEW SOUTH WALES
B e i K (T B e i K (1

IPC Redirection can implement
Clans & Chiefs Disadvantages and Issues

= The check for if impersonation is permitted is defined
recursively
= Could be expensive to validate
= Dynamic insertion of transparent intermediaries is
easy, removal is hard.
= There might be “state” along a path of
intermediaries, redirection controller cannot know
unless it has detailed knowledge and/or
coordination with intermediaries.
= Cannot determine IPC path of an impersonated
message as path may not exist after message arrives
= Centralized redirection controller

Redirection
Controller

Client (C)
E THE UNVERSTTOF E THE UNIERSITY OF
T AU T AT RARS
B ke e) B ke e)

Summary

= In microkernel based systems information flow is via
communication

= Communication control is necessary to enforce
security policy.
= Any mechanism for communication control must be
flexible enough to implement arbitrary security
policies.
= We examined two “policy-free” mechanisms to
provide communication control
= Clans & Chiefs
= Redirection
= Neither is perfect
= Current research: Virtual Threads, Capabilities

THE UNIVERSITY OF
NEW SOUTH WALES
B e i Kb (T

24

