
Microkernel Construction

IPC Implementation

IPC Importance

General IPC Algorithm

� Validate parameters

� Locate target thread

� if unavailable, deal with it

� Transfer message

� untyped - short IPC

� typed message - long IPC

� Schedule target thread

� switch address space as necessary

� Wait for IPC

IPC - Implementation

Short IPC

Short IPC (uniprocessor)

� system-call preamble (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

analyze msg and transfer� analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call postamble

The critical path

Short IPC (uniprocessor) “call”

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

analyze msg and transfer wait to receiverunning � analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningwait to receive

Short IPC (uniprocessor) “send” (eagerly)

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

analyze msg and transfer wait to receiverunning � analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningrunning

Short IPC (uniprocessor) “send” (lazily)

� system-call pre (disable intr)

� identify dest thread and check

� same chief / no ipc redirection?

� ready-to-receive?

analyze msg and transfer wait to receiverunning � analyze msg and transfer

� short: no action required

� switch to dest thread & address space

� system-call post

wait to receiverunning

runningrunning

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

EBX

ESI

EDI

EBP

EAX

ECX

EDX

IPC

Note
“payload”
from green
thread

ES

FS

GS

ESP

EFLAGS

EIP

CS

SS

DS

Implementation Goal

� Most frequent kernel op: short IPC

� thousands of invocations per second

� Performance is critical:

� structure IPC for speed

� structure entire kernel to support fast IPC� structure entire kernel to support fast IPC

� What affects performance?

� cache line misses

� TLB misses

� memory references

� pipe stalls and flushes

� instruction scheduling

Fast Path

� Optimize for common cases

� write in assembler

� non-critical paths written in C++
� but still fast as possible

� Avoid high-level language overhead:

� function call state preservation

� poor code “optimizations”

� We want every cycle possible!

IPC Attributes for Fast Path

� untyped message

� single runnable thread after IPC

� must be valid IPC call

� switch threads, originator blocks

� send phase:

� the target is waiting

� receive phase:

� the sender is not ready to couple, causing us to block

� no receive timeout

Avoid Memory References!!!

� Memory references are slow

� avoid in IPC:

� ex: use lazy scheduling

� avoid in common case:

ex: timeouts� ex: timeouts

� Microkernel should minimize indirect costs

� cache pollution

� TLB pollution

� memory bus

Optimized Memory

stack

Also: hard-wire TLB
entries for kernel code

and data.

thread ID

cpu ID

UTCB

thread state
TCB state,
grouped by
cache lines.

Single TLB entry.

TLB Problem

stack stack stack stack

Walking a linked
list has a TLB
footprint.

virtual TCB
area

virtual
addresses

Avoid Table Lookups

thread nothread ID version

virtual TCB area

TCB = TCB_area +
(thread_no & TCB_size_mask)

Validate Thread ID

thread nothread ID version

virtual TCB area

Are the thread IDs equal?

Branch Elimination

slow = ~receiver->thread_state +
(timeouts & 0xffff) +
sender->resources +
receiver->resources;

Common case: -1

if(slow)
enter_slow_path()

Common case: 0
� Reduces branch prediction

foot print.

� Avoids mispredicts & stalls &
flushes.

� Increases latency for
slow path

TCB Resources

1 1

Resources bitfield

� One bit per resource

� Fast path checks entire
word

� if not 0, jump to
resource handlers

Debug registers

Copy area

Message Transfer

IBM PowerPC 750,
500 MHz,
32 registers

up to 10
physical
registers

virtual register
copy loop

Many cycles
wasted on pipe
flushes for
privileged
instructions.

Slow Path vs. Fast Path

L4Ka::Pistachio IPC performance

Pentium 3

500

600

0

100

200

300

400

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

number message registers

c
y
c
le
s

Inter C-Path

Inter FastPath

Inter vs. Intra Address Space

L4Ka::Pistachio IPC performance

Pentium 3

500

600

0

100

200

300

400

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

number message registers

c
y
c
le
s

Intra FastPath

Inter FastPath

IPC - Implementation

Long IPC

Long IPC (uniprocessor)

� system-call preamble (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

� – transfer message –

� switch to dest thread & address space

� system-call postamble

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

� lock both partners

� – transfer message –

� unlock both partners
� switch to dest thread & address space

� system-call post

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

Preemptions possible!
(end of timeslice, device interrupt…)

Pagefaults possible!
(in source and dest address space)

� lock both partners

� enable intr

� – transfer message –

� disable intr

� unlock both partners
� switch to dest thread & address space

� system-call post

Long IPC (uniprocessor)

� system-call pre (disable intr)

� identify dest thread and check

� same chief

� ready-to-receive?

� analyze msg and transfer

� long/map:

waitrunning

locked waitlocked running
� lock both partners

� enable intr

� – transfer message –

� disable intr

� unlock both partners
� switch to dest thread & address space

� system-call post

runningwait to receive

locked waitlocked running

IPC - mem copy

� Why is it needed? Why
not share?

� Security

� Need own copy

� Granularity

� Object small than a
page or not aligned

copy in - copy out

� copy into kernel buffer

copy in - copy out

� copy into kernel buffer

� switch spaces

copy in - copy out

� copy into kernel buffer

� switch spaces

� copy out of kernel buffer

� costs for n words

� 2×2n r/w operations

� 3×n/8 cache lines

� 1×n/8 overhead cache misses (small n)

� 4×n/8 cache misses (large n)

temporary mapping

temporary mapping

� select dest area (4+4 M)

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

� copy data

temporary mapping

� select dest area (4+4 M)

� map into source AS (kernel)

� copy data

� switch to dest space� switch to dest space

temporary mapping

temporary mapping

� problems

� multiple threads per AS

� mappings might change while
message is copied

� How long to keep PTE?

� What about TLB?

current AS

� What about TLB?

temporary mapping

� when leaving curr thread during ipc?

� invalidate PTE

� flush TLB

current AS

temporary mapping

� when leaving curr thread during ipc:

� invalidate PTE

� flush TLB

current AS

temporary mapping

� when returning to thread during ipc:

current AS

temporary mapping

� when returning to thread during ipc:

Reestablishing temp mapping
requires to store

partner id and dest area address
in the sender’s tcb.

Note: receiver’s page mappings
might have changed !

current AS

temporary mapping

Leave thread:

if mytcb.waddr ≠≠≠≠ nil then

myPDE.TMarea := nil ;

if dest AS = my AS then

flush TLB

fi fi .

Start temp mapping:

mytcb.partner := partner ;

mytcb.waddr := dest 8M area base ;

myPDE.TMarea := destPDE.destarea .

why?

current AS

Close temp mapping:

mytcb.waddr := nil .

myPDE.TMarea := nil ??optimization only:
avoids second TLB flush if subsequent

thread switch would flush TLB
anyhow

temporary mapping

� Alternative method: Leave thread:

if mytcb.waddr ≠≠≠≠ nil then

myPDE.TMarea := nil ;

flush TLB ;

TLB flushed := true

fi .

Requires separation of
TLB flush

and

current AS

Thread switch :

…

if TLB just flushed

then TLB flushed := false

else flush TLB

fi ;

PT root := ...

and
load PT root

!

Does therefore not work
reasonably on x86.

Load PT root implicitly
includes TLB flush on x86.

temporary mapping
� Page Fault
Resolution:

current AS

temporary mapping

� Page Fault
Resolution:

current AS

temporary mapping

� Page Fault
Resolution:

current AS

temporary mapping

TM area PF:

if myPDE.TMarea = destPDE.destarea then

tunnel to (partner) ;

access dest area ;

tunnel to (my)

fi ;

myPDE.TMarea := destPDE.destarea .

� Page Fault
Resolution:

current AS

Cost estimates

R/W operations

Cache lines

Small n overhead cache misses

Copy in - copy out Temporary mapping

2 × 2n 2n

3 × n/8 2 × n/8

n/8 0Small n overhead cache misses

Large n cache misses

Overhead TLB misses

Startup instructions

n/8 0

5 × n/8 3 × n/8

0 n / words per page

0 50

486 IPC costs

300

400

Mach[µs]

� Mach: copy in/out

� L4: temp mapping

0

100

200

0 2000 4000 6000

msg len

L4 + cache flush

L4

raw copy

Dispatching

Dispatching topics:

� thread switch
� (to a specific thread)

� to next thread to be scheduled

� (to nil)

� implicitly, when ipc blocks

� priorities

� preemption
� time slices

� wakeups, interruptions

� timeouts and wake-ups

� time

� Smaller stack per thread

� Dispatcher is preemptable

� Improved interrupt
latency if dispatching is
time consuming

Switch to ():

Thread A

switch to (dispatcher)

Dispatcher Thread

Thread B

select next
ready thread,
assume B

switch to (B)

� Optimizations :

� disp thread is special
� no user mode,

� no own AS required

� Can avoid AS switch

� no id required

� Freedom from tcb layout
conventions

� almost stateless (see priorities)
� No need to preserve internal

state between invocations

� External state must be
consistent

tcb[A].sp := SP;
SP := disp thread bottom .

Switch to ():

Thread A

switch to (dispatcher)

Dispatcher Thread

Thread B

select next
ready thread,
assume B

switch to (B)

SP := tcb[A].sp ;
if B ≠ A then

switch from A to B
else return

fi .

Why ??

� costs (A → B)

≈ costs (A → disp → B)
� costs (select next)

� costs(A → disp → A) are low

Issue:
If preempted, thread A is not in
a “good” state ⇒⇒⇒⇒

whenever disp thread is left,

tcb[A].sp := SP;
SP := disp thread bottom .

Switch to ():

Thread A

switch to (dispatcher)

Dispatcher Thread

whenever disp thread is left,
stack has to be discarded !
even if with intr or timer

Thread B

select next
ready thread,
assume B

switch to (B)

SP := tcb[A].sp ;
if B ≠ A then

switch from A to B
else return

fi .

Why does this always work?

Example: Simple Dispatch

Example: Simple Dispatch

Dispatcher stack

tcb B ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

Local Variables

sp

Example: Dispatch with ‘Tick’

Example: Dispatch with ‘Tick’

Dispatcher stack

tcb B edi … eax ssespflgcseipx

tcb A ssespflgcseipx

Local State

Local State

Local Variables

sp

ssespflgcseipxLocal State

Example: Dispatch with ‘Tick’

Dispatcher stack

tcb B ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

Local Variables

sp

Example: Dispatch with Interrupt

Example: Dispatch with Interrupt

Dispatcher stack

Int Thrd edi … eax ssespflgcseipx

tcb A ssespflgcseipx

Local State

Local State

Local Variables

sp

ssespflgcseipxLocal State

Example: Dispatch with Interrupt

Dispatcher stack

Int Thrd ssespflgcseipedi … eax x

tcb A ssespflgcseipedi … eax x

Local State

Local State

sp

� dispatcher thread is also

� idle thread
Switch to ():

Thread A

switch to (dispatcher)

Dispatcher Thread
B := A ;
do

B:= next ready (B) ;
if B ≠≠≠≠ nil

Thread B

select next
ready thread,
assume B

switch to (B)

if B ≠≠≠≠ nil
then return

fi ;
idle

od .

Priorities
� ready tcb list per prio

� ‘current tcb’ per list

� 0 (lowest) … 255

� hard priorities

� round robin per prio

� dynamically changeable

disp table

Prio 100

Prio 50

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

Priorities

� Optimization

� keep highest active prio

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Priorities, Preemption

p= 110
intr/wakeup

highest active p :=
max (new p, highest active p) .

do
p := 255;
do

if current[p] ≠≠≠≠ nil
then B := current[p] ;

return
fi ;
p -= 1

until p < 0 od ;
idle

od .

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Prio 110

intr/wakeup

Priorities, Preemption

� What happens when a prio falls empty ?

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];

do
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

disp table

Prio 100

Prio 50

Prio 110

?
Remaining
time slice
> 0 ?

B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

Priorities, Preemption

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];

� What happens when a prio falls empty ?

disp table

Prio 100

Prio 50

Prio 110

Remaining
time slice

> 0

B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

Prio 110

Remaining
time slice

> 0

Prio 110

Remaining
time slice

> 0

Preemption

� Preemption, time slice exhausted

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];

disp table

Prio 100

Prio 50

Remaining
time slice

= 0

B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if curr[hi act p] .rem ts = 0
then curr[hi act p] := next ;

current[hi act p].rem ts := new ts
fi .

Preemption

� Preemption, time slice exhausted

do
if current[highest active p] ≠≠≠≠ nil

then round robin if necessary;
B := current[highest active p];

disp table

Prio 100

Prio 50

Remaining
time slice
:= new ts

B := current[highest active p];
return

elif highest active p > 0
then highest active p -= 1

else
idle

fi
od .

round robin if necessary:
if current[hi act p] .rem ts = 0
then current[hi act p].rem ts := new ts ;

current[hi act p] := next
fi .

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

disp table

Prio 100

ready

Prio 50

readyready

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

disp table

Prio 100

ready

Prio 50

waitingready

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

disp table

Prio 100

ready

Prio 50

waitingready

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

disp table

Prio 100

ready

Prio 50

waitingready

� Whenever reaching a non-ready thread,

� delete it from list

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

delete it from list

� proceed with next
disp table

Prio 100

ready

Prio 50

ready ready

Lazy Dispatching

Thread state toggles frequently (per ipc)

� ready ↔ waiting

� delete/insert ready list is expensive

� therefore: delete lazily from ready list

do
round robin if necessary;
if current[highest active p] ≠≠≠≠ nil

then B := current[highest active p]; return
elif highest active p > 0

then highest active p -= 1
else

idle

disp table

Prio 100

ready

Prio 50

ready ready

idle
fi

od .

round robin if necessary:
while curr[hi act p] ≠≠≠≠ nil do

if curr[hi act p].state ≠≠≠≠ ready
then delete from list (curr[hi act p])

elif curr[hi act p].rem ts = 0
then curr[hi act p].rem ts := new ts

else leave round robin if necessary
fi ;
curr[hi act p] := next ;

od .

Timeouts & Wakeups

� Operations:

� insert timeout

� Operations:

� insert timeout

� raise timeout

� Operations:

� insert timeout

� raise timeout

� find next timeout

� Operations:

� insert timeout

� raise timeout

� find next timeout

� delete timeout

t

� delete timeout

timeout set timeout expiredcompletion,
no timeout

• raised-timeout costs are uncritical
(occurr only after timeout exp time)

•most timeouts are never raised !

too expensive

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry 20..100 cycles

� find next timeout costs:

parse entire list n × 10..50 cycles

Idea 1: unsorted list

� parse entire list n × 10..50 cycles

� raise timeout costs:

� delete found entry 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

too expensive

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry n/2 × 10..50 + 20..100 cycles

� find next timeout costs:

find list head 10..50 cycles

Idea 2: sorted list

� find list head 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

too expensive
too complicated

Timeouts & Wakeups

� insert timeout costs:

� search + insert entry log n × 20..100 + 20..100 cycles

� find next timeout costs:

find list head 10..50 cycles

Idea 3: sorted tree

� find list head 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

Wakeup Classes

now

soon

late

insert timeout (now + ∆)

tnow

late late

soon
list

late
list

late late
list

Wakeup Classes

now

soon

late

tnow

late late

soon
list

late
list

late late
list

Wakeup Classes

now

soon

late

tnow

late late

soon
list

late
list

late late
list

� late list contains soon entries

� late correction phase required

Wakeup Classes

now

soon

late

tnow

late late

soon
list

late
list

late late
list

� late late list contains late entries

� late late correction phase required

Wakeup Classes

now

soon

late

τsoon

tnow

late late

soon
list

late
list

late late
list

� max s ? (length of soon list)

� s ≤ timeouts to be raised in ττττsoon+ new timeouts in ττττsoon

⇒⇒⇒⇒ s is small if ττττsoon is short enough

Timeouts & Wakeups

� insert timeout costs:

� select class + add entry 10 + 20..100 cycles

� find next timeout costs:

search soon class s..n × 10..50 cycles

Idea 4: unsorted wakeup classes

still
too expensive

still
too expensive

� search soon class s..n × 10..50 cycles

� raise timeout costs:

� delete head 20..100 cycles

� delete timeout costs:

� delete entry 20..100 cycles

too expensivetoo expensive

• raised-timeout costs are uncritical
(occurr only after timeout exp time)

• BUT most timeouts are never raised !

Lazy Timeouts

insert (t
1
)

tnow

soon

late

late late

soon
list

Late

list

late late
list

t1

Lazy Timeouts

insert (t
1
)

delete timeout

tnow

soon

late

late late

soon
list

Late

list

late late
list

t1∅∅∅∅

Lazy Timeouts

insert (t
1
)

delete timeout

insert (t
2
)

∅∅∅∅t2
tnow

soon

late

late late

soon
list

Late

list

late late
list

Lazy Sorting

� Keep a sorted list for fast lookup

� Don’t sort on insert

� insert is common

� but timeouts are uncommon� but timeouts are uncommon

� Sort lazily:

� sort when walking wakeup list

� thus we sort only when necessary

Incremental Sorting

� Combine the cost of sorting with cost of finding first
thread to wake

� Problem: every addition to list resets the sorted flag,
and thus we must perform entire list walk. But we
want to avoid this.

� Alternative: maintain sorted list, and unsorted list.
Merge the two lists when necessary.

� merge can be incremental bubble sort

� iow: we keep a list of new additions, so that we
can remove the additions, without requiring a
resort

Issue

� How common is insertion compared to wake
up list searching/sorting?

� Very

� IPC more frequent than ‘ticks’� IPC more frequent than ‘ticks’

� Wakeup queues always unsorted

� Approach seems dubious

Security

Is your system secure?

Security defined by policy

� Examples

� All users have access to all objects

� Physical access to servers is forbidden

� Users only have access to their own files� Users only have access to their own files

� Users have access to their own files, group
access files, and public files (UNIX)

Security policy

� Specifies who has what type of access to
which resources

Authentication

Authorization

All access is via IPC

� What microkernel mechanisms are needed for
security?

� How do we authenticate?

� How do we perform authorization?� How do we perform authorization?

� How do we implement arbitrary security
policies?

� How do we enforce arbitrary security
policies?

Authentication

� Unforgeable thread identifiers

� Thread identifiers can be mapped to

� Tasks

� Users� Users

� Groups

� Machines

� Domains

� Authentication is outside the microkernel,
any policy can be implemented.

Authorization

� Servers implement objects; clients access
objects via IPC.

� Servers receive unforgeable client identities
from the IPC mechanismfrom the IPC mechanism

� Servers can implement arbitrary access
control policy

� No special mechanisms needed in the
microkernel

Is this really true???

Example Policy:
Mandatory Access Control

� Objects assigned security levels

� Top Secret, Secret, Classified, Unclassified
� TS > S > C > UC

� Subjects (users) assigned security levels

� Top Secret, Secret, Classified, Unclassified

� A subject (S) can read an object (O) iff

� level(S) >= level(O)

� A subject (S) can write an object (O) iff

� level(S) <= level(O)

Secure System

Server

C
UC

S TS

Client (UC)

Client (C) Client (S)

Client (TS)

Problem

Server

C
UC

S TS

Client (UC)

Client (C) Client (S)

Client (TS)

Conclusion

To control information flow we must
control communication

� We need mechanisms to not only implement a policy
– we must also be able to enforce a policy!!!

� Mechanism should be flexible enough to implement
and enforce all relevant security policies.

Clans & Chiefs

Clans & Chiefs

Within all system based on direct message transfer, protection is essentially

a matter of message control. Using access control lists can be done at the

server level, but maintenance of large distributed access control lists

becomes hard when access rights change rapidly. The clan concept permits

to complement the mentioned passive entity protection by active protection

based on intercepting all communication of suspicious subjects.based on intercepting all communication of suspicious subjects.

A clan is a set of tasks headed by a chief task. Inside the clan all messages

are transferred freely and the kernel guarantees message integrity. But

whenever a message tries to cross a clan’s borderline, regardless of

whether it is outgoing or incoming, it is redirected to the clan’s chief. This

chief may inspect the message (including the sender and receiver ids as

well as the contents) and decide whether or not it should be passed to the

destination to which it was addressed. Obviously subject restriction and local

reference monitors can be implemented outside the kernel by means of

clans. Since chief are tasks at user level, the clan concept allows more

sophisticated and user definable checks as well as active control.

clan
chief

Clans & Chiefs

� A clan is a set of tasks
headed by a chief task

tasks

clan
chief

Intra-Clan IPC

tasks

� Direct IPC by microkernel

clan
chief

Inter-Clan IPC

tasks

� Microkernel redirects IPC to next chief

� Chief (user task) can forward IPC or modify or …

C1

T1 T2

C2

C

“from T2”

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

Direction-Preserving Deceiving

“from T2”

“from T2”

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Can I trust C2?
Yes!

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Can I trust C2?
Yes!

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Can I trust C1?
Yes!

Direction-Preserving Deceiving

T3

T4

T5

C3

C1

T1 T2

C2

C

“from T2”

“from T2”

Can I trust C1?
Yes!

Direction-Preserving Deceiving

T3

T4

T5

C3

Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 wants to get some private

C1

T1 T2

thread T3 wants to get some private

information from T1.C2

T3

Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 want to get some private

C1

T1 T2

thread T3 want to get some private

information from T1.

The chief C2 can send an IPC to T1 so

it appears that it came from T2.

C2

T3

“From T2”

Example

Direct-Preserving-Deceiving (DPD) is

a simple mechanism to realize

security.

Imagine the blue task is a tool you

have from the Internet. Without DPD

there is no relevant security. The blue

thread T3 want to get some private

C1

T1 T2

thread T3 want to get some private

information from T1.

The chief C2 can send an IPC to T1 so

it appears that it came from T2.

The important fact is that with DPD

when T1 gets an IPC from C2 then he

definitely knows that the message

came from inside the clan C2. Vice

versa is the same.

C2

T3

“From T2”

Node A Node B

Remote IPC

� Remote IPC

� Multi-level security

� Debugging

Heterogeneity

Clans & Chiefs

� Heterogeneity

Secure System using Clans & Chiefs

Server

C
UC

S TS

Client (TS)

Client (TS)

Chief

Client (UC) Client (C)

Client (S)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Problems with Clans & Chiefs

� Static

� A chief is assigned when task is started

� If we might want to control IPC, we must
always assign a chief

� General case requires many more IPCs

� Every task has its own chief

The most general system
configuration

� If a pair could communicate
freely we still require 3 IPCs
where one would suffice Client

Chief

Client

Client

Client

Chief

Chief

Chief

IPC Redirection

IPC Redirection

� For each source and destination we actually
deliver to X, where X is one of:

� Destination

� Intermediary

Source

Intermediary

Destination

IPC fails

� Intermediary

� Invalid

IPC Redirection

� If X is

� Destination

� We have a fast path when source and
destination can communication freely

Source Destination

IPC Redirection

� If X is

� Invalid

� We have a barrier that prevents communication
completely

Source Destination

IPC fails

IPC Redirection

� If X is

� Intermediary

� Enforce security policy

� Monitor, analyze, reject, modify each IPC

� Audit communication

� Debug

Source

Intermediary

Destination

Deception

� To be able to transparently insert an
intermediary, intermediaries must be able to
deceive the destination into believing the
intermediary is the source.

� An intermediary (I) can impersonate a source
(S) in IPC to a destination (D)

� I [S]=> D

� Iff R(S,D) = I or

� R(S,D) = x and I[x]=>D

Case 1

� I[S]=>D if R(S,D) = I

Source

Intermediary

Destination

From S

Case 2

� I[S]=>D if R(S,D) = x, and I[x]=>D

Source Destination

From S

Intermediary

X

Secure System using IPC Redirection

Server

C
UC

S TSRedirection
Controller

Client (UC)

Client (C)

Client (S)Client (TS)

Client (TS)

Client (S)

Client (S)

Client (C)

IPC Redirection can implement
Clans & Chiefs

Server

C
UC

S TS

Client (TS)

Client (TS)

ChiefRedirection
Controller

Client (UC) Client (C)

Client (S)

Client (S)

Client (S)

Client (C)

Chief

Chief

Chief

Disadvantages and Issues

� The check for if impersonation is permitted is defined
recursively

� Could be expensive to validate

� Dynamic insertion of transparent intermediaries is
easy, removal is hard.easy, removal is hard.

� There might be “state” along a path of
intermediaries, redirection controller cannot know
unless it has detailed knowledge and/or
coordination with intermediaries.

� Cannot determine IPC path of an impersonated
message as path may not exist after message arrives

� Centralized redirection controller

Summary

� In microkernel based systems information flow is via
communication
� Communication control is necessary to enforce
security policy.

� Any mechanism for communication control must be
flexible enough to implement arbitrary security flexible enough to implement arbitrary security
policies.

� We examined two “policy-free” mechanisms to
provide communication control
� Clans & Chiefs
� Redirection

� Neither is perfect

� Current research: Virtual Threads, Capabilities

