
19/09/2008

1

µ-Kernel Construction

Fundamental Abstractions

� Thread

� Address Space

� What is a thread?

� How to implement?

� What conclusions can we draw from our
analysis with respect to µK construction?

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS
? Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack A

tcb B

IP
SP

FLAGS

Kernel

stack B

19/09/2008

2

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack A

tcb B

IP
SP

FLAGS

Kernel

stack B

Construction conclusion

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack

Only one stack is

used all the time.

Every thread has a

kernel stack.

Single Kernel Stack
per Processor, event model

� either continuations
– complex to program
– must be conservative in state saved (any state that might be

needed)
– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

� or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management can get in the way
– system calls need to be kept simple “atomic”.
+ kernel can be exchanged on-the-fly
� e.g. the fluke kernel from Utah

� low cache footprint
� always the same stack is used !
� reduced memory footprint

Per-Thread Kernel Stack

� simple, flexible
� kernel can always use threads, no special techniques
required for keeping state while interrupted / blocked

� no conceptual difference between kernel mode and user
mode

� e.g. L4

� but larger cache footprint

� larger memory footprint

Conclusion:

We have to look

for a solution that

minimizes the

kernel stack size!

Kernel Entry/Exit

� A look at mechanics of kernel entry and exit

� Optimisations

� Context switching

enter kernel (IA32)

� trap / fault occurs (INT n / exception / interrupt)

user stack

tcb Aesp
eip

eflags kernel code

eax ebx
ecx edx
ebp esi edi

CPU

user mode

esp0

points to the running
threads kernel stack

19/09/2008

3

enter kernel (IA32)

user stack

tcb A

esp0

ssespesp
eip

eflags kernel code

eax ebx
ecx edx
ebp esi edi

kernel mode

CPU

� trap / fault occurs (INT n / exception / interrupt)

� push user esp on to kernel stack, load kernel esp

enter kernel (IA32)

user stack

tcb A

esp0

ssespflgesp
eip

eflags kernel code

eax ebx
ecx edx
ebp esi edi

� trap / fault occurs (INT n / exception / interrupt)

� push user esp on to kernel stack, load kernel esp

� push user eflags, reset flags (I=0, S=0)

kernel mode

CPU

enter kernel (IA32)

user stack

tcb A

esp0

ssespflgcseipesp
eip

eflags kernel code

eax ebx
ecx edx
ebp esi edi

� trap / fault occurs (INT n / exception / interrupt)

� push user esp on to kernel stack, load kernel esp

� push user eflags, reset flags (I=0, S=0)

� push user eip, load kernel entry eip

hardware

programmed,

single instruction

kernel mode

CPU

enter kernel (IA32)

user stack

tcb A

esp0

ssespflgcseipesp
eip

eflags

eax ebx
ecx edx
ebp esi edi

kernel code

X

� trap / fault occurs (INT n / exception / interrupt)

� push user esp on to kernel stack, load kernel esp

� push user eflags, reset flags (I=0, S=0)

� push user eip, load kernel entry eip

� push X : error code (hw, at exception) or kernel-call type

hardware

programmed,

single instruction

kernel mode

CPU

enter kernel (IA32)

user stack

tcb A

esp0

ssespflgcseipesp
eip

eflags

eax ebx
ecx edx
ebp esi edi

kernel code

edi … eax X

� trap / fault occurs (INT n / exception / interrupt)

� push user esp on to kernel stack, load kernel esp

� push user eflags, reset flags (I=0, S=0)

� push user eip, load kernel entry eip

� push X : error code (hw, at exception) or kernel-call type

� push registers (optional)

hardware

programmed,

single instruction

kernel mode

CPU System call (IA32)

int 0x32

Error code e.g. 3
means page fault

Push all, the register
content to the stack

Pop all , see below

Interrupt return

esp = esp + 4
the old esp

push X

pusha

…

…

popa

add $4, esp

iret

19/09/2008

4

Sysenter/Sysexit

� Fast kernel entry/exit
� Only between ring 0 and 3
� Avoid memory references

specifying kernel entry point
and saving state

� Use Model Specific Register
(MSR) to specify kernel entry
� Kernel IP, Kernel SP
� Flat 4GB segments
� Saves no state for exit

� Sysenter
� EIP = MSR(Kernel IP)
� ESP = MSR(Kernel SP)
� Eflags.I = 0, FLAGS.S = 0

� Sysexit
� ESP = ECX
� EIP = EDX
� Eflags.S = 3

� User-level has to provide IP
and SP

� by convention – registers
(ECX, EDX?)

� Flags undefined

� Kernel has to re-enable
interrupts

Sysenter/Sysexit

� Emulate int instruction (ECX=USP, EDX=UIP)

sub $20, esp

mov ecx, 16(esp)

mov edx, 4(esp)

mov $5, (esp)

� Emulate iret instruction

mov 16(esp), ecx

mov 4(esp), edx

sti

sysexit

tcb ssespflgcseip5

ESP

Kernel-stack state

Uniprocessor:

� Any kstack ≠ ≠ ≠ ≠ myself is current !

� (my kstack below [esp] is also current when in kernel mode.)

tcb ssespflgcseipedi … eax x

One thread is running
and all the others are
in their kernel-state
and can analyze their
stacks. All processes
except the running are
in kernel mode.

Remember:

• We need to find

� any thread’s tcb starting from its uid

� the currently executing thread’s tcb

align tcbs on a power of 2:

tcb

esp0

esp

Kernel esp

Remember:

• We need to find

� any thread’s tcb starting from its uid

� the currently executing thread’s tcb

align tcbs:

tcb

esp0

esp

mov esp, ebp

and -sizeof tcb, ebp

To find out the
starting address
from the tcb.

Thread switch (IA32)

push X

pusha

mov esp, ebp

and -sizeof tcb, ebp

dest tcb address -> edi

mov esp, [ebp].thr_esp

mov [edi].thr_esp, esp

mov esp, eax

and -sizeof tcb, eax

add sizeof tcb, eax

mov eax, [esp0_ptr]

popa

add $4, esp

iret

switch current
kernel stack pointer

Thread B

Thread A

switch esp0
so that next
enter kernel
uses new
kernel stack

int 32

int 32

19/09/2008

5

Switch threads (IA32)

user stack

tcb

esp0

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

tcb

user stack

ssespflgcseipXedi … eax
CPU

user stack

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

� int 0x32, push registers of the green thread

Switch threads (IA32)

tcb

esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

� int 0x32, push registers of the green thread

� switch kernel stacks (store and load esp)

Switch threads (IA32)

tcb

esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

� int 0x32, push registers of the green thread

� switch kernel stacks (store and load esp)

� set esp0 to new kernel stack

Switch threads (IA32)

tcb

esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

� int 0x32, push registers of the green thread

� switch kernel stacks (store and load esp)

� set esp0 to new kernel stack

� pop orange registers, return to new user thread

Switch threads (IA32)

tcb

esp0

tcb
ssespflgcseipXedi … eax

user stack

CPU

Mips R4600

� 32 Registers

� no hardware stack support

� special registers

� exception IP, status, etc.

� single registers, unstacked!

� Soft TLB !!

r31 k0

r30 k1

r29

r28

r2

r1
r0 = 0

r27

r26

r25

r24

r23

r22

r21
r20

r19

r18
r17
r16

r15

r14

r13
r12

r11

r10

r9

r8

r7
r6

r5

r3

r4

Kernel has to parse
page table.

19/09/2008

6

Exceptions on MIPS

� On an exception (syscall,
interrupt, …)

� Loads Exc PC with
faulting intruction

� Sets status register

� Kernel mode, interrupts
disabled, in exception.

� Jumps to
0xffffffff80000180

r31 k0

r30 k1

r29

r28

r2

r1
r0 = 0

r27

r26

r25

r24

r23

r22

r21
r20

r19

r18
r17
r16

r15

r14

r13
r12

r11

r10

r9

r8

r7
r6

r5

r3

r4

Exc PC

Status

To switch to kernel mode

� Save relevant user state

� Set up a safe kernel
execution environment

� Switch to kernel stack

� Able to handle kernel
exceptions

� Potentially enable
interrupts

r31 k0

r30 k1

r29

r28

r2

r1
r0 = 0

r27

r26

r25

r24

r23

r22

r21
r20

r19

r18
r17
r16

r15

r14

r13
r12

r11

r10

r9

r8

r7
r6

r5

r3

r4

Exc PC

Status

Problems

� No stack pointer???

� Defined by convention sp
(r29)

� Load/Store Architecture: no
registers to work with???

� By convention k0, k1
(r31, r30) for kernel use
only

r31 k0

r30 k1

r29

r28

r2

r1
r0 = 0

r27

r26

r25

r24

r23

r22

r21
r20

r19

r18
r17
r16

r15

r14

r13
r12

r11

r10

r9

r8

r7
r6

r5

r3

r4

Exc PC

Status

34

System Calls - Kernel Side

� Things left to do

� Change to kernel stack

� Preserve registers by saving to memory (the
stack)

� Leave saved registers somewhere accessible to

� Read arguments

� Store return values

� Do the “read()”

� Restore registers

� Switch back to user stack

� Return to application

35

exception:

move k1, sp /* Save previous stack pointer in k1 */

mfc0 k0, c0_status /* Get status register */

andi k0, k0, CST_Kup /* Check the we-were-in-user-mode bit */

beq k0, $0, 1f /* If clear, from kernel, already have stack */

nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */

lw sp, 0(k0) /* get its value */

nop /* delay slot for the load */

1:

mfc0 k0, c0_cause /* Now, load the exception cause. */

j common_exception /* Skip to common code */

nop /* delay slot */

Note k0, k1 registers
available for kernel use

36

exception:

move k1, sp /* Save previous stack pointer in k1 */

mfc0 k0, c0_status /* Get status register */

andi k0, k0, CST_Kup /* Check the we-were-in-user-mode bit */

beq k0, $0, 1f /* If clear, from kernel, already have stack */

nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */

lw sp, 0(k0) /* get its value */

nop /* delay slot for the load */

1:

mfc0 k0, c0_cause /* Now, load the exception cause. */

j common_exception /* Skip to common code */

nop /* delay slot */

19/09/2008

7

37

common_exception:

/*

* At this point:

* Interrupts are off. (The processor did this for us.)

* k0 contains the exception cause value.

* k1 contains the old stack pointer.

* sp points into the kernel stack.

* All other registers are untouched.

*/

/*

* Allocate stack space for 37 words to hold the trap frame,

* plus four more words for a minimal argument block.

*/

addi sp, sp, -164

38

/* The order here must match mips/include/trapframe.h. */

sw ra, 160(sp) /* dummy for gdb */

sw s8, 156(sp) /* save s8 */

sw sp, 152(sp) /* dummy for gdb */

sw gp, 148(sp) /* save gp */

sw k1, 144(sp) /* dummy for gdb */

sw k0, 140(sp) /* dummy for gdb */

sw k1, 152(sp) /* real saved sp */

nop /* delay slot for store */

mfc0 k1, c0_epc /* Copr.0 reg 13 == PC for exception */

sw k1, 160(sp) /* real saved PC */

These six stores are
a “hack” to avoid
confusing GDB

You can ignore the
details of why and

how

39

/* The order here must match mips/include/trapframe.h. */

sw ra, 160(sp) /* dummy for gdb */

sw s8, 156(sp) /* save s8 */

sw sp, 152(sp) /* dummy for gdb */

sw gp, 148(sp) /* save gp */

sw k1, 144(sp) /* dummy for gdb */

sw k0, 140(sp) /* dummy for gdb */

sw k1, 152(sp) /* real saved sp */

nop /* delay slot for store */

mfc0 k1, c0_epc /* Copr.0 reg 13 == PC for exception */

sw k1, 160(sp) /* real saved PC */

The real work starts
here

40

sw t9, 136(sp)

sw t8, 132(sp)

sw s7, 128(sp)

sw s6, 124(sp)

sw s5, 120(sp)

sw s4, 116(sp)

sw s3, 112(sp)

sw s2, 108(sp)

sw s1, 104(sp)

sw s0, 100(sp)

sw t7, 96(sp)

sw t6, 92(sp)

sw t5, 88(sp)

sw t4, 84(sp)

sw t3, 80(sp)

sw t2, 76(sp)

sw t1, 72(sp)

sw t0, 68(sp)

sw a3, 64(sp)

sw a2, 60(sp)

sw a1, 56(sp)

sw a0, 52(sp)

sw v1, 48(sp)

sw v0, 44(sp)

sw AT, 40(sp)

sw ra, 36(sp)

Save all the registers
on the kernel stack

41

/*

* Save special registers.

*/

mfhi t0

mflo t1

sw t0, 32(sp)

sw t1, 28(sp)

/*

* Save remaining exception context information.

*/

sw k0, 24(sp) /* k0 was loaded with cause earlier */

mfc0 t1, c0_status /* Copr.0 reg 11 == status */

sw t1, 20(sp)

mfc0 t2, c0_vaddr /* Copr.0 reg 8 == faulting vaddr */

sw t2, 16(sp)

/*

* Pretend to save $0 for gdb's benefit.

*/

sw $0, 12(sp)

We can now use the
other registers (t0, t1)

that we have
preserved on the stack

42

/*

* Prepare to call mips_trap(struct trapframe *)

*/

addiu a0, sp, 16 /* set argument */

jal mips_trap /* call it */

nop /* delay slot */

Create a pointer to the
base of the saved

registers and state in
the first argument

register

19/09/2008

8

43

struct trapframe {

u_int32_t tf_vaddr; /* vaddr register */

u_int32_t tf_status; /* status register */

u_int32_t tf_cause; /* cause register */

u_int32_t tf_lo;

u_int32_t tf_hi;

u_int32_t tf_ra;/* Saved register 31 */

u_int32_t tf_at;/* Saved register 1 (AT) */

u_int32_t tf_v0;/* Saved register 2 (v0) */

u_int32_t tf_v1;/* etc. */

u_int32_t tf_a0;

u_int32_t tf_a1;

u_int32_t tf_a2;

u_int32_t tf_a3;

u_int32_t tf_t0;

MMMM

u_int32_t tf_t7;

u_int32_t tf_s0;

MMMM

u_int32_t tf_s7;

u_int32_t tf_t8;

u_int32_t tf_t9;

u_int32_t tf_k0;/* dummy (see exception.S comments) */

u_int32_t tf_k1;/* dummy */

u_int32_t tf_gp;

u_int32_t tf_sp;

u_int32_t tf_s8;

u_int32_t tf_epc; /* coprocessor 0 epc register
*/

};

vaddr
status
cause
lo
hi
ra
at

MMMM

t8
t9
k0
k1
gp
sp
s8
epc

Kernel Stack

By creating a pointer to here of
type struct trapframe *, we can
access the user’s saved registers
as normal variables within ‘C’

enter kernel:
(Mips)

mov k1, C0_status

and k0,k1, exc_code_mask

sub k0, syscall_code

IFNZ k0

mov k0, kernel_base

jmp other_exception

FI

mov t0, k1

srl k1, 5 /* clear IE, EXL, ERL, KSU */

sll k1, 5

mov C0_status, k1

and k1, t0, st_ksu_mask

IFNZ k1

mov t2, sp

mov sp, kernel_stack_bottom(k0)

FI

mov t1, C0_exception_ip

mov [sp-8], t2

add t1, t1, 4

mov [sp-16], t1

mov [sp-24], t0

IFZ AT, zero

sub sp, 24

jmp k_ipc

FI

Load kernel stack
pointer if trap from
user mode

Push old sp (t2), ip
(t1), and status (t0)

no syscall
trap

TCB structure

MyselfGlobal
MyselfLocal
State
Resources
KernelStackPtr
Scheduling

ReadyList
TimesliceLength
RemainingTimeslice
TotalQuantum
Priority
WakeupList

Space
PDirCache
…
Stack[]

Thread Id

Local Id = UTCB

All threads
ready to execute

Round Robin
Scheduler

Address Space

Optimization
IA32: %CR3

???

???

Construction Conclusions (1)

� Thread state must be saved / restored on thread
switch.

� We need a thread control block (TCB) per thread.

� TCBs must be kernel objects.

� Tcbs implement threads.

� We need to find

� any thread’s tcb starting from its uid
� the currently executing thread’s TCB
(per processor)

Thread ID

� thread number
� to find the tcb

� thread version number
� to make thread ids “unique” in time

Thread ID � TCB (a)

� Indirect via
table

mov thread_id, %eax
mov %eax, %ebx
and mask thread_no, %eax
mov tcb_pointer_array[%eax*4], %eax

cmp OFS_TCB_MYSELF(%eax), %ebx
jnz invalid_thread_id

thread id

version
number

19/09/2008

9

Thread ID � TCB (b)

� direct address

version

mov thread_id, %eax
mov %eax, %ebx
and mask thread_no, %eax
add offset tcb_array, %eax

cmp %ebx, OFS_TCB_MYSELF(%eax)
jnz invalid_thread_id

thread id

version

number

Thread ID translation

� Via table
� no MMU

� table access per TCB

� TLB entry for table

� TCB pointer array
requires 1M virtual
memory for 256K
potential threads

� Via MMU
� MMU

� no table access

� TLB entry per TCB

� virtual resource TCB
array required, 256K
potential threads need
128M virtual space for
TCBs

Trick:

1 Mdyn all

Allocate physical parts of table
on demand,

dependent on the max
number of allocated tcb

map all remaining parts to a
0-filled page

any access to
corresponding threads
will result in “invalid
thread id”

however: requires 4K pages in
this table

TLB working set grows:
4 entries to cover 4000
threads.
Nevertheless much better
than 1 TLB for 8 threads like
in direct address.

o

� TCB pointer array
requires 1M virtual
memory for 256K
potential threads

AS Layout 32bits, virt tcb, entire PM

� user regions

� shared system regions

� per-space system regions

� other kernel tables

� physical memory

� kernel code

� tcbs

phys mem

Limitations 32bits, virt tcb, entire PM

� number of threads

� physical mem size

� L4Ka::Pistachio/ia32:

� 262,144 threads

� 256 M physical memory

3 G 256 M 256 M512 M

phys mem

FPU Context Switching

� Strict switching
Thread switch:

Store current thread’s FPU state

Load new thread’s FPU state

� Extremely expensive

� IA-32’s full SSE2 state is 512 Bytes

� IA-64’s floating point state is ~1.5KB

� May not even be required

� Threads do not always use FPU

19/09/2008

10

Lazy FPU switching

� Lock FPU on thread switch

� Unlock at first use – exception
handled by kernel
Unlock FPU

If fpu_owner != current

Save current state to fpu_owner

Load new state from current

fpu_owner := current

FPU

finit
fld

fcos
fst

finit
fld

Kernel

current fpu_owner

locked

pacman()

IPC

Functionality & Interface

What IPC primitives do we need to
communicate?

� Send to
(a specified thread)

� Receive from
(a specified thread)

� Two threads can
communicate

� Can create specific protocols
without fear of interference
from other threads

� Other threads block until it’s
their turn

� Problem:

� How to communicate
with a thread unknown a
priori
(e.g., a server’s clients)

What IPC primitives do we need to
communicate?

� Send to
(a specified thread)

� Receive from
(a specified thread)

� Receive
(from any thread)

� Scenario:

� A client thread sends a
message to a server
expecting a response.

� The server replies
expecting the client
thread to be ready to
receive.

� Issue: The client might be
preempted between the
send to and receive from.

What IPC primitives do we need to
communicate?

� Send to
(a specified thread)

� Receive from
(a specified thread)

� Receive
(from any thread)

� Call
(send to, receive from specified

thread)

� Send to & Receive
(send to, receive from any thread)

� Send to, Receive from
(send to, receive from specified

different threads)

� Are other combinations
appropriate?

Atomic operation to ensure
that server‘s (callee‘s) reply
cannot arrive before client
(caller) is ready to receive

Atomic operation for
optimization reasons.
Typically used by servers to
reply and wait for the next
request (from anyone).

What message types are
appropriate?

� Register
� Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC

� Guaranteed to avoid user-level page faults during IPC

� Direct string (optional)

� In-memory message we construct to send

� Indirect strings (optional)

� In-memory messages sent in place

� Map pages (optional)

� Messages that map pages from sender to receiver

19/09/2008

11

What message types are
appropriate?

� Register
� Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC

� Guaranteed to avoid user-level page faults during IPC

� Direct string (optional)

� In-memory message we construct to send

� Indirect strings (optional,)

� In-memory messages sent in place

� Map pages (optional)

� Messages that map pages from sender to receiver

� Strings (optional)

[Version 4, Version X.2]
IPC - API

� Operations

� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Message Types

� Registers

� Strings

� Map pages

Problem

� How to we deal with threads that are:

� Uncooperative

� Malfunctioning

� Malicious

� That might result in an IPC operation never
completing?

IPC - API

� Timeouts (V2, V X.0)

� snd timeout, rcv timeout

IPC - API

� Timeouts (V2, V X.0)

� snd timeout, rcv timeout

� snd-pf timeout

� specified by sender

� Attack through
receiver’s pager:

PF

Pager

IPC - API

� Timeouts (V2, V X.0)

� snd timeout, rcv timeout

� snd-pf / rcv-pf timeout

� specified by receiver

� Attack through
sender’s pager:

PF

Pager

19/09/2008

12

Timeout Issues

� What timeout values
are typical or
necessary?

� How do we encode
timeouts to minimize
space needed to specify
all four values.

� Timeout values

� Infinite

� Client waiting for a
server

� 0 (zero)

� Server responding to
a client

� Polling

� Specific time
� 1us – 19 h (log)

� Assume short timeout need
to finer granularity than long
timeouts

� Timeouts can always be
combined to achieve long
fine-grain timeouts

To Compact the Timeout Encoding

� Assume page fault timeout
granularity can be much less
than send/receive granularity

mrcv ercvmsnd esnd

send/receive timeout =

∞ if e = 0

415-em if e > 0

0 if m = 0, e ≠ 0

� Page fault timeout has
no mantissa

mrcv ercvmsnd esndpsnd prcv

page fault timeout =

∞ if p = 0

415-p if 0 < p < 15

0 if p = 15

Timeout Range of Values (seconds) [V 2,

V X.0]

e m =1 m =255

0

1 268,435456 68451,04128

2 67,108864 17112,76032

3 16,777216 4278,19008

4 4,194304 1069,54752

5 1,048576 267,38688

6 0,262144 66,84672

7 0,065536 16,71168

8 0,016384 4,17792

9 0,004096 1,04448

10 0,001024 0,26112

11 0,000256 0,06528

12 0,000064 0,01632

13 0,000016 0,00408

14 0,000004 0,00102

15 0,000001 0,000255

∞

1µs – 255µs with
1µs granularity

Up to 19h with
~4.4min granularity

IPC - API

� Timeouts (V2, V X.0)

� snd timeout, rcv timeout

� snd-pf / rcv-pf timeout

� timeout values

� 0

� infinite

� 1us … 19 h (log)

� Compact 32-bit encoding

mrcv ercvmsnd esndpsnd prcv

IPC - API

� Timeouts (V X.2, V 4)

� snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

� snd to

� min (xfer to, xfer to)

� rcv to

time

wait for send
send message

(xfer)
wait for reply

receive message
(xfer)

19/09/2008

13

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

Ideally Encoded in Registers

� Parameters in registers whenever possible

� Make frequent/simple operations simple and fast

EAX

ECX

EDX

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

Call-reply example

Thread B

pre

Thread A

IPC call

pre

IPC reply & wait

post

post

pre

IPC reply & wait

Send and Receive Encoding

� 0 (Nil ID) is a reserved thread ID

� Define -1 as a wildcard thread ID

ECX

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destinationEAX

EDX

� Nil ID means no send
operation

� Nil ID means no receive
operation

� Wildcard means receive
from any thread

Why use a single call instead of
many?

� The implementation of the individual send and
receive is very similar to the combined send and
receive

� We can use the same code
� We reduce cache footprint of the code

� We make applications more likely to be in cache

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

19/09/2008

14

Message Transfer

� Assume that 64 extra registers are available

� Name them MR0 … MR63 (message registers 0 … 63)

� All message registers are transferred during IPC

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

Message construction

� Messages are stored in
registers (MR0 … MR63)

� First register (MR0) acts as
message tag

� Subsequent registers
contain:

� Untyped words (u), and

� Typed words (t)

(e.g., map item, string item)
label flags t uMR0

Message Tag

Various IPC flags

Number of typed
words

Number of
untyped words

Freely available
(e.g., request type)

Message construction

label flags t uMR0

Message

MR8

MR7

MR6

MR5

MR4

5

MR2

MR3

MR1

3

� Messages are stored in
registers (MR0 … MR63)

� First register (MR0) acts as
message tag

� Subsequent registers
contain:

� Untyped words (u), and

� Typed words (t)

(e.g., map item, string item)

Message construction

� Typed items occupy one or
more words

� Three currently defined
items:

� Map item (2 words)

� Grant item (2 words)

� String item (2+ words)

� Typed items can have
arbitrary order

label flags t uMR0

Message

MR2

MR3

MR1

3

MR8

MR7

MR6

MR5

MR4

5

Map Item

String Item

Map and Grant items

� Two words:

� Send base

� Fpage

� Lower bits of send base
indicates map or grant item

send base

send fpage

0 100C

Map Item

send base

send fpage

0 101C

Grant Item

location size 0wrx

Fpage

MRi

MRi+1

MRi

MRi+1

19/09/2008

15

String items

� Max size 4MB (per string)

� Compound strings
supported

� Allows scatter-gather

� Incorporates cacheability
hints

� Reduce cache pollution
for long copy operations

string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

“hh” indicates
cacheability hints
for the string

String items

string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

1

string length

string pointer

0 0 0hhC MRi+j+1

MRi+j+2

string pointer

k - 1

MRi+j+3
string pointer

MRi+j+k

“hh” indicates
cacheability hints
for the string

j - 1

string pointer

j - 1

MRi+2
string pointer

MRi+j

k - 1

1

All substrings are of
same size

Different size compound
strings require a new

string specifier

New string specifier
may of course contain

substrings

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

Timeouts

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destinationEAX

EDX

� Timeouts values are only
16 bits

� Store send and receive
timeout in single register

timeoutsECX

� Send and receive timeouts are the important ones

� Xfer timeouts only needed during string transfer

� Store Xfer timeouts in predefined memory location

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

String Receival

� Assume that 34 extra registers are available

� Name them BR0 … BR33 (buffer registers 0 … 33)

� Buffer registers specify

� Receive strings

� Receive window for mappings

19/09/2008

16

Receiving messages

� Receiver buffers are
specified in registers (BR0 …
BR33)

� First BR (BR0) contains
“Acceptor”

� May specify receive
window (if not nil-fpage)

� May indicate presence of
receive strings/buffers
(if s-bit set)

Acceptor

receive window 000s BR0

Receiving messages

Acceptor

receive window 000s BR0

string length

string pointer

0 0 0hhC BR1

BR2

0001

The s-bit set indicates presence
of string items acting as receive

buffers

string length

string pointer

0 0 0hhC BR3

BR4

0hh1

If C-bit in string item is set, it
indicates presence of more

receive buffers

string pointer

j - 1

BR5
string pointer

BR4+j

A receive buffer can of course
be a compound string

If C-bit in string item is cleared,
it indicates that no more
receive buffers are present

0hh0

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

IPC Result

� Error conditions
are exceptional

� I.e., not common case

� No need to optimize for error handling

� Bit in received message tag indicate error

� Fast check

� Exact error code store in predefined memory location

label flags t uMR0

Message Tag

IPC Result

EBX

EBP

ESI

EDI

Sender Registers Receiver Registers

receive specifier

destinationEAX

EDX

timeoutsECX

� IPC errors flagged in MR0

� Senders thread ID stored in register

from

To Encode for IPC
� Send to

� Receive from

� Receive

� Call

� Send to & Receive

� Send to, Receive from

� Destination thread ID

� Source thread ID

� Send registers

� Receive registers

� Number of send strings

� Send string start for each string

� Send string size for each string

� Number of receive strings

� Receive string start for each string

� Receive string size for each string

� Number of map pages

� Page range for each map page

� Receive window for mappings

� IPC result code

� Send timeout

� Receive timeout

� Send Xfer timeout

� Receive Xfer timeout

� Receive from thread ID

� Specify deceiting IPC

� Thread ID to deceit as

� Intended receiver of deceited IPC

19/09/2008

17

IPC Redirection

� Redirection/deceiting IPC
flagged by bit in the
message tag

� Fast check

� When redirection bit set

� Thread ID to deceit as and intended receiver ID
stored in predefined memory locations

label flags t uMR0

Message Tag

To Encode for IPC
� Send to
� Receive from
� Receive
� Call
� Send to & Receive
� Send to, Receive from
� Destination thread ID
� Source thread ID
� Send registers
� Receive registers
� Number of send strings
� Send string start for each string
� Send string size for each string
� Number of receive strings
� Receive string start for each string
� Receive string size for each string

� Number of map pages
� Page range for each map page
� Receive window for mappings
� IPC result code
� Send timeout
� Receive timeout
� Send Xfer timeout
� Receive Xfer timeout
� Receive from thread ID
� Specify deceiting IPC
� Thread ID to deceit as
� Intended receiver of deceited IPC

Virtual Registers

� What about message and buffer registers?

� Most architectures do not have 64+34
spare registers

� What about predefined memory locations?

� Must be thread local

Preserved by
kernel during
context switch

What are Virtual Registers?

� Virtual registers are backed
by either

� Physical registers, or

� Non-pageable memory

� UTCBs hold the memory
backed registers

� UTCBs are thread local

� UTCB can not be paged

� No page faults

� Registers always
accessible

EBX

EBP

ESI

Physical Registers

UTCB
Preserved by

switching UTCB
on context switch

MR4

MR3

MR63

MR62

MR61

Virtual Registers

MR63

MR62

MR61

MR4

MR3

MR2

MR1

MR0

Other Virtual Register Motivation

� Portability

� Common IPC API on different architectures

� Performance

� Historically register only IPC was fast but
limited to 2-3 registers on IA-32, memory
based IPC was significantly slower but of
arbitrary size

� Needed something in between

Switching UTCBs (IA-32)

� Locating UTCB must be
fast

(avoid using system call)

� Use separate segment
for UTCB pointer

mov %gs:0, %edi

� Switch pointer on
context switches

ACS, DS B

GS

19/09/2008

18

Switching UTCBs (IA-32)

� Locating UTCB must be
fast

(avoid using system call)

� Use separate segment
for UTCB pointer

mov %gs:0, %edi

� Switch pointer on
context switches

ACS, DS B

GS

Message Registers and UTCB

EDI

Sender Registers Receiver Registers

receive specifier

destinationEAX

EDX

timeoutsECX

� Some MRs are mapped to physical registers

� Kernel will need UTCB pointer anyway – pass it

from

MR1

MR2

MR0

EBX

EBP

ESI

MR1

MR2

MR0

UTCBEDI UTCB

Free Up Registers for Temporary
Values

Sender Registers Receiver Registers

destination

timeouts

receive specifier

MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

� Kernel need registers for temporary values

� MR1 and MR2 are the only registers that the kernel may not
need

Free Up Registers for Temporary
Values

Sender Registers Receiver Registers

destination

timeouts

receive specifier

~

~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

� Sysexit instruction requires:

� ECX = user IP

� EDX = user SP

IPC Register Encoding

� Parameters in registers whenever possible

� Make frequent/simple operations simple and fast

destination

timeouts

receive specifier

~

~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

~

~

MR1

MR2

MR0

Sender Registers Receiver Registers

UTCBEDI UTCB

