u-Kernel Construction

el THE UNIVERSITY OF
: = - NEW SOUTH WALES
R

| © Universitat Karlsruhe (TH)I

Fundamental Abstractions

|
m Thread

m Address Space
= What /s a thread?

= How to implement?

s« What conclusions can we draw from our
analysis with respect to uK construction?

=
o SV
| © Universitat Karlsruhe (TH)|

Processor

- n
.

kernel

| © Universitat Karlsruhe (TH)I

Processor
=~ unl

kernel

| © Universitat Karlsruhe (TH)I

Processor

kernel

| © Universitat Karlsruhe (TH)I

Processor

kernel

tcb B

Kernel

| © Universitat Karlsruhe (TH)I

Processor

kernel

tcb B

Kernel

| © Universitat Karlsruhe (TH)I

Construction conclusion

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack

Only one stack i1s Every thread has a
used all the time. kernel stack.

| © Universitat Karlsruhe (TH)I

Single Kernel Stack

per Processor, event model

= either continuations
- complex to program

- must be conservative in state saved (any state that might be
needed)

- Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

m Or stateless kernel
- no kernel threads, kernel not interruptible, difficult to program
- request all potentially required resources prior to execution
- blocking syscalls must always be re-startable
— Processor-provided stack management can get in the way
- system calls need to be kept simple “atomic”.
+ kernel can be exchanged on-the-fly
= e.g. the fluke kernel from Utah

= |ow cache footprint
= always the same stack is used !
= reduced memory footprint

BT THE UNIVERSITY OF
B NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Per-Thread Kernel Stack

= simple, flexible
= kernel can always use threads, no special techniques
required for keeping state while interrupted / blocked
= \no conceptual difference between kernel mode and user
ode

= but larger cache footprint
= larger memory footprint

S
SRl THE UNIVERSITY OF
BEE NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Kernel Entry/Exit

= A look at mechanics of kernel entry and exit
= Optimisations
= Context switching

| © Universitat Karlsruhe (TH)I

enter kernel (IA32)

CPU
esp
eip

eflags

eax ebx

ecx edx
ebp esi edi

user mode

= trap / fault occurs (INT n/ exception / interrupt)

| © Universitat Karlsruhe (TH)I

enter k;meﬁ‘hﬂ&zg\
CPU

eip :
eflags :

eax ebx
ecx edx
ebp esi edi

kernel mode

= trap / fault occurs (INT n [exception / interrupt)
= push user esp on to kernel stack, load kernel esp

| © Universitat Karlsruhe (TH)I

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

kernel mode

= trap / fault occurs (INT n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp
= push user eflags, reset flags (I=0, S=0)

| © Universitat Karlsruhe (TH)I

ent;&keme@BZ)

CPU

eip
eflags

4 []
L4

By,
kernel code

eax ebx
ecx edx
ebp esi edi

kernel mode

= trap / fault occurs (INT n/ exception / interrupt))
= push user esp on to kernel stack, load kernel esp hardware
>~ programmed,
= push user eflags, reset flags (I=0, S=0) single instruction
= push user eip, load kernel entry eip y

| © Universitat Karlsruhe (TH)I

en;ekkemel\(IABZ)

CPU

eip
eflags

4 []

\ 4
kernel code

eax ebx
ecx edx
ebp esi edi

kernel mode

\

= trap / fault occurs (INT n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp hardware
>~ programmed,
= push user eflags, reset flags (I=0, S=0) single instruction
= push user eip, load kernel entry eip y
= push X : error code (hw, at exception) or kernel-call type

| © Universitat Karlsruhe (TH)I

/ente\r kernel (IA32)

CPU
esp edi...eax [X eip cs flg esp ss SEEEEEEEEEEE ;

eip 3
N
kernel code

eflags

eax ebx

ecx edx
ebp esi edi

kernel mode

= trap / fault occurs (/N7 n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp
= push user eflags, reset flags (I=0, S=0)
= push user eip, load kernel entry eip

= push X : error code (hw, at exception) or kernel-call type

= push registers (optional)

hardware
>~ programmed,
single instruction

| © Universitat Karlsruhe (TH)I

System call (IA32)

int 0x32 .- push X
pusha

—

e

popa Vs
add %4, esp
ret

=
SETY THE UNIVERSITY OF
B NEW SOUTH WALES

| © Universitat Karlsruhe (TH)|

Sysenter/Sysexit

= Fast kernel entry/exit = Sysexit
= Only between ring 0 and 3 = ESP = ECX
= Avoid memory references = EIP = EDX
specifying kernel entry point = Eflags.S =3

and saving state

= Use Model Specific Register = User-level has to provide IP

(MSR) to specify kernel entry
Kernel IP, Kernel SP and SP
= RErnel 1F, Rerne = by convention — registers
« Flat 4GB segments (ECX, EDX?)
= Saves no state for exit = Flags undefined
= Sysenter = Kernel has to re-enable
=« EIP = MSR(Kernel IP) interrupts

= ESP = MSR(Kernel SP)
« Eflags.] =0, FLAGS.S=0

| © Universitat Karlsruhe (TH)I

Sysenter/Sysexit

= Emulate int instruction (ECX=USP, EDX=UIP)
sub $20, esp
mov ecx, 16(esp)
mov edx, 4(esp)
mov $5, (esp)

= Emulate iret instruction
mov 16(esp), ecx
mov 4(esp), edx
sti
sysexit

ESP

=R
el THE UNIVERSITY OF

@] NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Kernel-stack state
Uniprocessor:

= Any kstack # myself is current !
= (my kstack below [esp] is also current when in kernel mode.)

edi ... eax X eip cs flg esp ss

| © Universitat Karlsruhe (TH)I

Remember:
e We need to find
= the currently executing thread’s tcb
i@i align tcbs on a power of 2:
esp
[esp0 |

| © Universitat Karlsruhe (TH)I

Remember:

e We need to find

= the currently executing thread’s tcb

mov esp, ebp
and -sizeof tch, ebp

| © Universitat Karlsruhe (TH)I

Thread switch (IA32)

push
Thread A pusha

mov esp, ebp
and -sizeof tcb, ebp

_ dest tcb address -> edi

Thread B

mov esp, [ebp].thr_esp

int 32 mov [edi].thr_esp, esp
mov esp, eax
" and -sizeof tcb, eax
add sizeof tcb, eax |
mov eax, [esp0_ptr] int 32
popa
add $4, es
iret

| © Universitat Karlsruhe (TH)I

esp
eip
eflags

eax ebx
ecx edx
ebp esi edi

Switch threads (IA32)

| © Universitat Karlsruhe (TH)I

esp
eip
eflags

eax ebx
ecx edx
ebp esi edi

(I THE UNIVERSITY OF
NEW SOUTH WALES

Switch threads (IA32)

= int 0x32, push registers of the green thread

| © Universitat Karlsruhe (TH)I

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

(I THE UNIVERSITY OF
NEW SOUTH WALES

Switch threads (IA32)

i..eax X eip cs flgesp ss

= int 0x32, push registers of the green thread

= switch kernel stacks (store and load esp)

| © Universitat Karlsruhe (TH)I

esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

B THE UNIVERSITY OF
NEW SOUTH WALES

Switch threads (IA32)

i..eax X eip cs flgesp ss

= int 0x32, push registers of the green thread

= switch kernel stacks (store and load esp)
= setesp0 to new kernel stack

| © Universitat Karlsruhe (TH)I

CPU
esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

(I THE UNIVERSITY OF
NEW SOUTH WALES

Switch threads (IA32)

tcb

= int 0x32, push registers of the green thread

= switch kernel stacks (store and load esp)

= setesp0 to new kernel stack

= POp orange registers, return to new user thread

| © Universitat Karlsruhe (TH)I

Mips R4600

= 32 Registers
= nNo hardware stack support
= Special registers
= exception IP, status, etc.
= Single registers, unstacked!
= Soft TLB !

| © Universitat Karlsruhe (TH)I

Exc PC
Status

Exceptions on MIPS

= On an exception (syscall,
interrupt, ...)

= Loads Exc PC with
faulting intruction

= Sets status register

= Kernel mode, interrupts
disabled, in exception.

= Jumps to
Oxfffffff80000180

| © Universitat Karlsruhe (TH)I

Exc PC

Status

To switch to kernel mod

s Save relevant user state

= Set up a safe kernel
execution environment

= Switch to kernel stack

= Able to handle kernel
exceptions

= Potentially enable
interrupts

| © Universitat Karlsruhe (TH)I

Exc PC
Status

Problems

= No stack pointer???

= Defined by convention sp
(r29)
= Load/Store Architecture: no
registers to work with???

= By convention kO, ki
(r31, r30) for kernel use
only

| © Universitat Karlsruhe (TH)I

System Calls - Kernel Side

= Things left to do
= Change to kernel stack

= Preserve registers by saving to memory (the
stack)

= Leave saved registers somewhere accessible to
= Read arguments
= Store return values

= Do the “read()”

= Restore registers

= Switch back to user stack
= Return to application

BB
R 34
= | © Universitat Karlsruhe (TH)|

exception:
move kl, sp
mfcO0 kO, cO0_s
andi kO, kO, CST}
beq k0, $0, 1f /*
nop

/* Save previous stack pointer in k1l */

/* Get status register */
/* Check the we-were-in-user-mode bit */
ar, from kernel, already have stack */
* delay slot */

/* Coming from user mode
la kO, curkstack

to sp */
rkstack" */

lw sp, 0(kO0) lue */

nop load */
1:

mfcO0 kO, cO _cause /* N ause. */

j common_ exception

nop

35

| © Universitat Karlsruhe (TH)|

exception:
move kl, sp /* Save previous stack pointer in k1l */
mfcO0 kO, cO_status /* Get status register */
andi kO, kO, CST Kup /* Check the we-were-in-user-mode bit */
beq k0, $0, 1f /* If clear, from kernel, already have stack */
nop /* delay slot */

/* Coming from user mode - load kernel stack into sp */

la k0, curkstack /* get address of "curkstack" */
lw sp, 0(kO0) /* get its value */
nop /* delay slot for the load */
1:

mfcO0 kO, cO0 _cause /* Now, load the exception cause. */
j common exception /* Skip to common code */
nop /* delay slot */

e IR 36

| © Universitat Karlsruhe (TH)I

common_exception:

/*
* At this point:

* Interrupts are off. (The processor did this for us.)
* kO contains the exception cause value.

* kl contains the old stack pointer.

* sp points into the kernel stack.

* All other registers are untouched.

*/

/*

* Allocate stack space for 37 words to hold the trap frame,

* plus four more words for a minimal argument block.
*/
addi sp, sp, -164

THE UNIVERSITY OF 37
NEW SOUTH WALES
| © Universitat Karlsruhe (TH)I

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp) /* dummy for gdb */
sw s8, 156 (sp) /* save s8 */
sw sp, 152 (sp) /* dummy for gdb */
sw gp, 148 (sp) /* save gp */

sw k1, 144 (sp) /* dummy for gdb */

sw kO, 140 (sp) /* dummy for gdb */
sw k1, 152 (sp) /* real saved sp */
nop /* delay slot for store */
mfcO0 k1, cO_epc /* Copr.0 reg 13 == PC for
sw k1, 160 (sp) /* real saved PC */

38

| © Universitat Karlsruhe (TH)|

/* The order here must match mips/include/trapframe.h. */

sw ra, 160 (sp) /* dummy for gdb */ 4 N
sw s8, 156 (sp) /% save s8 */ The real work starts
sw sp, 152 (sp) /* dummy for gdb */ here

sw gp, 148 (sp) /* save gp */

sw k1, 144 (sp) /* dummy for gdb */ v
sw kO, 140 (sp) /* dummy for gdb */

sw k1, 152 (sp) /* real saved sp */

nop /* delay slot for store */

mfcO0 k1, cO_epc /* Copr.0 reg 13 == PC for exception */

sw k1, 160 (sp) /* real saved PC */

39

| © Universitat Karlsruhe (TH)I

SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW
SwW

t9,
t8,
s7,
s6,
s5,
s4,
s3,
s2,
sl,
s0,
t7,
t6,
t5,
t4,
t3,
t2,
tl1,
to,
a3,
az,
al,
ao,
vl,
vO,
AT,
ra,

136 (sp)
132 (sp)
128 (sp)
124 (sp)
120 (sp)
116 (sp)
112 (sp)
108 (sp)
104 (sp)
100 (sp)
96 (sp)
92 (sp)
88 (sp)
84 (sp)
80 (sp)
76 (sp)
72 (sp)
68 (sp)
64 (sp)
60 (sp)
56 (sp)
52 (sp)
48 (sp)
44 (sp)
40 (sp)
36 (sp)

40

| © Universitat Karlsruhe (TH)|

/*
* Save special registers.
*/

mfhi tO0

mflo tl

sw t0, 32(sp)

sw t1, 28 (sp)

/*
* Save remaining exception context information.
*/
sSW k0, 24 (sp) /* kO was loaded with cause earlier */
mfcO0 tl, cO_status /* Copr.0 reg 11 == status */
SwW tl, 20(sp)
mfcO0 t2, cO0_vaddr /* Copr.0 reg 8 == faulting vaddr */

SW t2, 16(sp)

/*

* Pretend to save $0 for gdb's benefit.
*/
sw $0, 12(sp)

41

| © Universitat Karlsruhe (TH)I

/'k

* Prepare to call mips trap(struct trapframe ¥*)

*/
addiu a0, sp, 16 /* set argument */
jal mips_trap /* call it */
nop /* delay slot */

42

| © Universitat Karlsruhe (TH)|

struct trapframe { Kernel Stack

u_int32 t tf vaddr; /* vaddr register */
u_int32 t tf status; /* status register */
u_int32_t tf cause; /* cause register */

u_int32 t tf lo;
u_int32_t tf _hi;
u_int32 t tf ra;/* Saved register 31 */
u_int32 t tf at;/* Saved register 1 (AT) */
u_int32_t tf v0;/* Saved register 2 (v0) */
u_int32 t tf vl;/* etc. */

u_int32 t tf_al;
u_int32 t tf _al;
u_int32 t tf _a2;
u_int32 t tf_a3;
u_int32 t tf tO0;

u_int32 t tf t7;
u_int32 t tf sO;

u_int32 t tf _s7;
u_int32 t tf t8;
u_int32 t tf t9;
u_int32 t tf k0;/* dummy (see exception.S commen
u_int32 t tf k1;/* dummy */

u_int32_ t tf gp;

u_int32 t tf_ sp;

u_int32 t tf_ s8;

u_int32 t tf _epc; /* coprocessor 0 epc register

*/

3| THE UNIVERSITY OF 43
NEW SOUTH WALES
| © Universitat Karlsruhe (TH)|

enter kernel:
(Mips)

and k1, t0, st_ksu_mask
IFNZ K1

mov k1, CO_status mov {2, sp

and k0,k1, exc_code_mask

sub kO syscall_code

IFNZ Fi
mov kO, kernel_base

-r jmp other_exception mov t1, CO_exception_ip
mov [sp-8], 2

mov sp, kernel_stack_bottom(k0)

mov 0, k1 add t1,t1, 4
srl k1,5 I* clear IE, EXL, ERL, KSU */ mov [sp-16], t1
sll k1,5 mov [sp-24], t0
mov CO0_status, k1 IFZ AT, zero
sub sp, 24
jmp k_ipc
FI

| © Universitat Karlsruhe (TH)I

TCB structure

MyselfGlobal /

MyselfLocal
State —

Resources
KernelStackPtr

Scheduling
ReadyList
TimesliceLength
RemainingTimeslice

TotalQuantum T
Priority
WakeuplList

PDirCache

—
el

| © Universitat Karlsruhe (TH)I

Construction Conclusions (1)

= Thread state must be saved / restored on thread
switch.

= We need a thread control block (TCB) per thread.
= TCBs must be kernel objects.

Tcbs implement threads.

= We need to find

= any thread’s tcb starting from its wid

= the currently executing thread’s TCB
(per processor)

-]
rf?’y THE UNIVERSITY OF
.‘- NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Thread ID

s thread number
to find the tcb

= thread version number
to make thread ids “unique” in time

=)
o LA
| © Universitat Karlsruhe (TH)|

Thread ID = TCB (a)

= Indirect via

thread id
S e
version

mov thread_id, %eax

mov %eax, %ebx

and mask thread_no, %eax

mov tcb_pointer_array[%eax*4], %eax

cmp OFS_TCB_MYSELF(%eax), %ebx
jnz invalid_thread_id

ER
o SV
| © Universitat Karlsruhe (TH)|

Thread ID = TCB (b)

version

version

SE0 THE UNIVERSITY OF
NEW SOUTH WALES

mov
mov
and

add

cmp
jnz

thread_id, %eax

%eax, %ebx

mask thread_no, %eax
offset tcb_array, %eax

s direct address

%ebx, OFS_TCB_MYSELF(%eax)

invalid_thread id

| © Universitat Karlsruhe (TH)I

Thread ID translation

= Via table
= ho MMU

« table access per TCB

= TLB entry for table

n /CB pointer array
requires 1M virtual
memory for 256K
potential threads

=
-‘H- THE UNIVERSITY OF
“ - NEW SOUTH WALES

= Via MMU
« MMU
= Nno table access
= TLB entry per TCB

= Virtual resource 7CB
array required, 256K
potential threads need

128M virtual space for
TCBs

| © Universitat Karlsruhe (TH)I

Trick:

S
SRl THE UNIVERSITY OF
WE NEW SOUTH WALES

dyn all

l——

TCB pointer array
requires 1M virtual
memory for 256K
potential threads

Allocate physical parts of table
on demand,
dependent on the max
number of allocated tcb
map all remaining parts to a
O-filled page
any access to
corresponding threads
will result in “invalid
thread id”
however: requires 4K pages in
this table
TLB working set grows:
4 entries to cover 4000

threads.

Nevertheless much better
than 1 TLB for 8 threads like
in direct address.

| © Universitat Karlsruhe (TH)I

AS Layout 32bits, virt tcb, entire PM

= User regions
"« other kernel tables

= physical memory
= kernel code
= tcbs

= Shared system regions <

= per-space system regions

\
I N R
]

s

| © Universitat Karlsruhe (TH)I

Limitations 32bits, virt tcb, entire PM

= number of threads = L4Ka::Pistachio/ia
= physical mem size

S
S THE UNIVERSITY OF
50 NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

FPU Context Switching

= Strict switching
Thread switch:

Store current thread’s FPU state

Load new thread’s FPU state

= Extremely expensive
= [A-32's full SSE2 state is 512 Bytes
= [A-64's floating point state is ~1.5KB

= May not even be required
= Threads do not always use FPU

==
el THE UNIVERSITY OF
%- NEW SOUTH WALES

niversitat Karlsruhe (TH)I

Lazy FPU switching Kernel FPU

= Lock FPU on thread switch .;j

= Unlock at first use — exception locked
handled by kernel
Unlock FPU
If fpu owner !'= current
Save current state to fpu owner
Load new state from current

fpu_owner

fpu owner := current

© Universitat Karlsruhe (TH)

IPC

Functionality & Interface

=)
o LA
| © Universitat Karlsruhe (TH)|

What IPC primitives do we need to

communicate?

= Sendto = Two threads can
(a specified thread) communicate

= Receive from = Can create specific protocols
(a specified thread) without fear of interference

from other threads

s Other threads block until it's
their turn

= Problem:

= How to communicate
with a thread unknown a
priori
(e.qg., a server’s clients)

=2

SR THE UNIVERSITY OF
B NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

What IPC primitives do we need to

communicate?
= Sendto = Scenario:

(a specified thread) = A client thread sends a
= Receive from message to a server

(a specified thread) expecting a response.
= Receive

= The server replies
expecting the client
thread to be ready to
receive.

= Issue: The client might be
preempted between the
send to and receive from.

(from any thread)

=
o SV
| © Universitat Karlsruhe (TH)|

What IPC primitives do we need to

communicate?
= Send to = Are other combinations
iate?
(a specified thread) appropriate:
= Receive from
(a specified thread)
= Receive : _
(from any thread) Atomic operation to ensure
= Call that server's (callee's) reply
(send to, receive from specified cannot arrive before C|I§nt
thread) (caller) is ready to receive

s Send to & Receive

(send to, receive from any thread)——

Send to. Receive f Atomic operation for
= 2€Nnd 1o, ReCeve from optimization reasons.
(send to, receive from specified

different threads) Typically used by servers to
reply and wait for the next
request (from anyone).

1B
-“‘- THE UNIVERSITY OF
il NEW SOUTH WALES

& | © Universitat Karlsruhe (TH)I

What message types are
appropriate?

= Register

= Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC

= Guaranteed to avoid user-level page faults during IPC
s Dj '

= Map pages (optional
= Messages that map pages from sender to receiver

-]
-“- THE UNIVERSITY OF
@felll NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

What message types are
appropriate?

[Version 4, Version X.2]
= Register

= Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC

= Gliaranteed to avoid iser-level naae faiilts durina TPC

s Stri NgS (optional)

= Map pages (optional
= Messages that map pages from sender to receiver

=a
SETY THE UNIVERSITY OF
Eefl NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

IPC - API

= Operations = Message Types
= Send to = Registers
= Receive from = Strings
= Receive = Map pages
« Call

= Send to & Receive
= Send to, Receive from

Bl
el THE UNIVERSITY OF
%- NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Problem

= How to we deal with threads that are:
= Uncooperative
= Malfunctioning
= Malicious

= That might result in an IPC operation never
completing?

LIEEL] THE UNIVERSITY OF
;f‘- NEW SOUTH WALES
P

| © Universitat Karlsruhe (TH)I

IPC - API

= imeouts (V2, V X.0)

= snd timeout, rcv timeout

| © Universitat Karlsruhe (TH)I

IPC - API

= Timeouts w2, vxo = Attack through
receiver’s pager:

= snd timeout, rcv timeout

= snd-pf timeout
specified by sender

=
-‘H- THE UNIVERSITY OF
it @il NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

IPC - API

= Timeouts w2, vxo = Attack through
sender’s pager:

= snd timeout, rcv timeout

= snd-pf / rcv-pf timeout
specified by receiver

| © Universitat Karlsruhe (TH)I

Timeout Issues

= What timeout values = Timeout values
are typical or = Infinite
necessary? = Client waiting for a
= How do we encode server
timeouts to minimize = 0 (zero)
space needed to specify = Server responding to
all four values. a client
= Polling

= Specific time
= 1lus—19 h (log)

=
H THE UNIVERSITY OF
gl NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

To Compact the Timeout Encoding

= Assume short timeout need

to finer granularity than long

timeouts
= Timeouts can always be

= Assume page fault timeout
granularity can be much less

combined to achieve long than send/receive granularity

fine-grain timeouts

send/receive timeout =~

(o0 ife=0
41>-¢m if e> 0

=2

SE0 THE UNIVERSITY OF
NEW SOUTH WALES

L0 if m=0,ex0

| © Universitat Karlsruhe (TH)I

= Page fault timeout has % ..

NO Mmantissa

(o0 if p=0
page fault timeout =< 41>7 if0 < p< 15
L0 if p=15

| © Universitat Karlsruhe (TH)I

Timeout Range of Values (seconds) [v2,

V X.0]
o0
268,435456 68451,04128

67,108864 17112,76032 Up to 19h with

16,777216 4278,19008 ~4.4min granularity
4,194304 1069,54752
1,048576 267,38688
0,262144 66,84672
0,065536 16,71168
0,016384 4,17792
0,004096 1,04448
0,001024 0,26112
0,000256 0,06528
0,000064 0,01632
0,000016 0,00408
0,000004 0,00102 /— 1us — 255ps with
0,000001 0,000255 1us granularity

| © Universitat Karlsruhe (TH)I

IPC - API

= imeouts (V2, V X.0)

= snd timeout, rcv timeout
= snd-pf / rcv-pf timeout

= timeout values Mrev Prov m

0
infinite
1us ... 19 h (log)

= Compact 32-bit encoding

| © Universitat Karlsruhe (TH)I

IPC - API

m [IMeouts wxz va

= snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

time

»

send message

= snd to
= min (xfer to, xfer to)
= Fcv to I

| © Universitat Karlsruhe (TH)I

To Encode for IPC

= Sendto

= Receive from
= Receive

m Call

= Send to & Receive

= Send to, Receive from

= Destination thread ID

= Source thread ID

= Send registers

= Receive registers

= Number of send strings

= Send string start for each string

= Send string size for each string

= Number of receive strings

= Receive string start for each string
= Receive string size for each string

BT THE UNIVERSITY OF
B NEW SOUTH WALES

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)I

Ideally Encoded in Registers

= Parameters in registers whenever possible
= Make frequent/simple operations simple and fast

Sender Registers Receiver Registers

EAX

ECX

EDX

EBX

EBP

ESI

EDI

S
SRl THE UNIVERSITY OF
WE NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Thread B

CaII-repIy example Thread A

T
-“i- THE UNIVERSITY OF
mssl NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Send and Receive Encoding

= O (Nil ID) is a reserved thread ID
s Define -1 as a wildcard thread ID

/ = Nil ID means no send

EAX destination operation

EDX receive specifier \

= Nil ID means no receive
operation

= Wildcard means receive
from any thread

Bl
e THE UNIVERSITY OF

gl NFW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Why use a single call instead of
many?

= The implementation of the individual send and
receive is very similar to the combined send and
receive

= We can use the same code
= We reduce cache footprint of the code
= We make applications more likely to be in cache

=1
o LA
| © Universitat Karlsruhe (TH)|

To Encode for IPC

= Sendto

= Receive from
s Receive

= Call

= Send to & Receive

= Send to, Receive from

» Destination thread ID

= Source thread ID

= Send registers

= Receive registers

= Number of send strings

= Send string start for each string

= Send string size for each string

= Number of receive strings

= Receive string start for each string
= Receive string size for each string

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)I

Message Transfer

= Assume that 64 extra registers are available
= Name them MR, ... MR,; (message registers 0 ... 63)
= All message registers are transferred during IPC

=1
o SV
| © Universitat Karlsruhe (TH)|

To Encode for IPC

= Send registers

m Receive registers

= Number of send strings

= Send string start for each string

= Send string size for each string

= Number of receive strings

= Receive string start for each string
= Receive string size for each string

BT THE UNIVERSITY OF
8 NEW SOUTH WALES

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)I

Message construction

= Messages are stored in
registers (MR, ... MR;;)

= First register (MR,) acts as

message tag Numger ofd
= Subsequent registers untyped words
contain: Number of typed
= Untyped words (u), and words
= Typed words (t) Various IPC flags \

(e.g., map item, string item)

MR, label [flags| t u

Message Tag

Freely available
(e.g., request type)

BT THE UNIVERSITY OF
2 NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Message construction

= Messages are stored in
registers (MR, ... MR;;)

= First register (MR,) acts as g,
message tag MR,
MRg

= Subsequent registers R

contain: o

= Untyped words (u), and wr,
= Typed words (t) MR,

(e.g., map item, string item) "R,
MR, label [flags] 5 [3 |

Message

| © Universitat Karlsruhe (TH)I

Message construction

= Typed items occupy one or
more words

= Three currently defined MR
items: MR,
MRg

= Map item (2 words) R

\ Grant item @ords) . L et

= String item (2+ words) ~ MRs

= Typed items can have "R,
arbitrary order Ry

MR, label [flags] 5 [3

Message

=

o SV
agesil NEW

| © Universitat Karlsruhe (TH)I

Map and Grant items

= WO words:
= Send base [sendfpage |mr,,
= Fpage |
= Lower bits of send

=
S THE UNIVERSITY OF
B NEw SOUTH WALES

| © Universitat Karlsruhe (TH)I

String items

s Max size 4MB (per string)

= Compound strings
supported

= Allows scatter-gather

= Incorporates cacheability
hints

= Reduce cache pollution
for long copy operations

=R
el THE UNIVERSITY OF
% NEW SOUTH WALES

string pointer MR,
string length . 0 [0AAC MR,
String Item

“hh” indicates
cacheability hints
for the string

| © Universitat Karlsruhe (TH)I

String items

New string specifier
may of course contain L e W
L T o
IVIRi+j+2
: : |~ MRy,
Different size compound [wwmgpomer Jww.
strings require a new , . MR;,;
string specifier : :
e areor |—— | e .,

String Item

“hh” indicates
cacheability hints
for the string

| © Universitat Karlsruhe (TH)I

To Encode for IPC

= Number of send strings

= Send string start for each string

= Send string size for each string

= Number of receive strings

= Receive string start for each string
= Receive string size for each string

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)I

Timeouts

= Send and receive timeouts are the important ones
= Xfer timeouts only needed during string transfer
= Store Xfer timeouts in predefined memory location

EAX destination

ECX timeouts

EDX receive specifier x_

= Timeouts values are only
16 bits

= Store send and receive
timeout in single register

THE UNIVERSITY OF
%5‘1 NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

To Encode for IPC

n = Receive window for mappings

n = IPC result code

n = Send timeout

. s Receive timeout

n s Send Xfer timeout

n m Receive Xfer timeout

n = Receive from thread ID

n = Specify deceiting IPC

n = Thread ID to deceit as

n = Intended receiver of deceited IPC

Number of receive strings
Receive string start for each string
Receive string size for each string

ey

| © Universitat Karlsruhe (TH)I

String Receival

= Assume that 34 extra registers are available
= Name them BR, ... BR,; (buffer registers 0 ... 33)

= Buffer registers specify
= Receive strings
= Receive window for mappings

=1
o LA
| © Universitat Karlsruhe (TH)|

Recelving messages

= Receiver buffers are
specified in registers (BR, ...
BR3;)

= First BR (BR,) contains
“Acceptor”
= May specify receive
window (if not nil-fpage)
=« May indicate presence of

receive strings/buffers
(if s-bit set)

Acceptor

| © Universitat Karlsruhe (TH)I

Receiving messages

If C-bit in string item is cleared,
it indicates that no more
/

BR4+j

receive buffers are present
A receive buffer can of course
be a compound string

If C-bit in string item is set, it
indicates presence of more
receive buffers

Acceptor

The s-bit set indicates presence
of string items acting as receive
buffers

| © Universitat Karlsruhe (TH)I

To Encode for IPC

= Sendto

s Receive from
m Receive

= Call

= Send to & Receive

s Send to, Receive from

s Destination thread ID

= Source thread ID

s Send registers

s Receive registers

= Number of send strings

s Send string start for each string

s Send string size for each string

= Number of receive strings

= Receive string start for each string
= Receive string size for each string

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)I

IPC Result

s Error conditions fogs |

MR, label

are exceptional Message Tag
= [.e., not common case
= No need to optimize for error handling
= Bit in received message tag indicate error
» Fast check
= Exact error code store in predefined memory location

t u

ST THE UNIVERSITY OF
BEE NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

IPC Result

= [PC errors flagged in MR,
= Senders thread ID stored in register

ECX timeouts
EDX receive specifier

| © Universitat Karlsruhe (TH)I

To Encode for IPC

= Sendto

s Receive from
m Receive

= Call

= Send to & Receive

s Send to, Receive from

s Destination thread ID

= Source thread ID

s Send registers

s Receive registers

= Number of send strings

s Send string start for each string

s Send string size for each string

= Number of receive strings

s Receive string start for each string
s Receive string size for each string

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)|

[PC Redirection

= Redirection/deceiting IPC
flagged by bit in the

message tag
, label t
= Fast check " = ME -

= When redirection bit set

= Thread ID to deceit as and intended receiver ID
stored in predefined memory locations

BB
R
= | © Universitat Karlsruhe (TH)|

To Encode for IPC

Send to

Receive from

Receive

Call

Send to & Receive

Send to, Receive from
Destination thread ID

Source thread ID

Send registers

Receive registers

Number of send strings

Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

| © Universitat Karlsruhe (TH)|

Virtual Registers

WS?

| © Universitat Karlsruhe (TH)I

What are Virtual Registers?

= Virtual registers are backed FTESIREE [

_ switching UTCB Y
by either on context switch I\\
= Physical registers, or MR,
= Non-pageable memory virtual RegisterS/ e
MRg; / : Re1 :
MR,, / :
= UTCBs hold the memory MRe1 T
backed registers / Mi‘;
= UTCBs are thread local TR, /
= UTCB can not be paged s
2
= No page faults MR =
= Registers always MRy —
accessible
Preserved by EBP
kernel during
context switch Physical Registers

ST THE UNIVERSITY OF
S NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Other Virtual Register Motivation

= Portability

Common IPC API on different architectures

s Performance

Historically register only IPC was fast but
imited to 2-3 registers on IA-32, memory
nased IPC was significantly slower but of
arbitrary size

Needed something in between

| © Universitat Karlsruhe (TH)I

Switching UTCBs (1A-32)

= Locating UTCB must be

fast
(avoid using system call) GS _{
= Use separate segment [

for UTCB pointer
mov 7%gs:0, %edi

= Switch pointer on = DS<
context switches

S
SRl THE UNIVERSITY OF
DB NEW SOUTH WALES

o«
R

| © Universitat Karlsruhe (TH)I

Switching UTCBs (1A-32)

= Locating UTCB must be
fast
(avoid using system call) GS {

= Use separate segment
for UTCB pointer

mov 7%gs:0, %edi

= Switch pointer on = DS<
context switches

=
-‘H- THE UNIVERSITY OF
i - NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Message Registers and UTCB

= Some MRs are mapped to physical registers
= Kernel will need UTCB pointer anyway — pass it

EAX destination —
ECX timeouts

EDX receive specifier

EBX MR,

EBP MR,

ESI MR,

EDI UTCB

T
-‘H- THE UNIVERSITY OF
mssl NEW SOUTH WALES

| © Universitat Karlsruhe (TH)I

Free Up Registers for Temporary
Values

= Kernel need registers for temporary values

= MR, and MR, are the only registers that the kernel may not
need

ECX timeouts

EDX

EBX

EBP

ESI

EDI

=3
o LA
| © Universitat Karlsruhe (TH)|

Free Up Registers for Temporary
Values

= Sysexit instruction requires:
= ECX = user IP
= EDX = user SP

EAX destination
ECX timeouts

EDX receive specifier
EBX ~

EBP ~

ESI MR,

EDI UTCB

T
-‘H- THE UNIVERSITY OF
mssl NEW SOUTH WALES

5 | © Universitat Karlsruhe (TH)I

IPC Register Encoding

= Parameters in registers whenever possible
= Make frequent/simple operations simple and fast

Sender Registers Receiver Registers
EAX destination
ECX timeouts
EDX receive specifier
EBX ~
EBP ~
ESI MR,
EDI UTCB

| © Universitat Karlsruhe (TH)I

