
Security 
An Advanced Introduction

COMP9242
2008/S2 Week 6



©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 2

 You are free:

• to share — to copy, distribute and transmit the work

• to remix — to adapt the work

 Under the following conditions:

• Attribution. You must attribute the work (but not in any way that suggests 
that the author endorses you or your use of the work) as follows:

• “Courtesy of Gernot Heiser,UNSW”

 The complete license text can be found at 
http://creativecommons.org/licenses/by/3.0/legalcode

Copyright Notice

These slides are distributed under the Creative Commons 
Attribution 3.0 License
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• Example 1: DOS
– Single-user system with no access control
– Is it secure?

What is Security?

• ... if it has no data?
• ... if it contains the payroll database?
• ... if it is on a machine in the foyer
• ... if it is in a locked room?

• ... if it is behind a firewall?
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What is Security?

• Example 2: Banking store's weekly earnings:
– Is it secure to

• ... ask a random customer to do it?
• ... ask many random customers to do it?
• ... ask a staff member to do it?
• ... ask several staff members to do it?
• ... hire a security firm?
• ... hire several security firms?

– Depends? On what?
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 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Trusted Computing
 Design principles
 OS security verification
 OS design for security

Overview
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 Provides for secure execution of applications

 Must provide security policies that support the users' security requirements

 Must enforce those security policies

 Must be safe from tampering etc.

Secure Operating System
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 Security policy:
• specifies allowed and disallowed states of a system
• OS needs to ensure that no disallowed state is ever entered
• OS mechanisms prevent transitions from allowed to disallowed states

 Security policy needs to identify the assets to be secure
• For computer security, assets are typically data

 Perfect security is generally unachievable
• need to be aware of threats
• need to understand what risks can be tolerated

Security Policies
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Data Security

Three aspects:

• Confidentiality: prevent theft of data
– concealing data from unauthorised agents
– need-to-know principle

• Integrity: prevent damage to data
– trustworthiness of data: data correctness
– trustworthiness of origin of data: authentication

• Availability: prevent denial of service
– ensuring data is usable when needed
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Threats

• A weakness is a potential for a security violation

• An attack is an attempt by an attacker to violate security
– generally implies exploiting a weakness

• A threat is a potential for an attack

• There is never a shortage of attackers, hence in practice:
– threat  attack
– weakness  violation
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Threats

• Snooping
– disclosure of data
– attack on confidentiality

• Modification/alteration
– unauthorised change of data
– attack on data integrity

• Masquerading/spoofing
– one entity impersonating another
– attack on authentication integrity
– delegation?

• Repudiation of origin
– false denial of being source
– attack on integrity

• Denial of receipt
– false denial of receiving
– attack on availability and integrity

• Delay
– temporarily inhibiting service
– attack on availability

• Denial of service
– permanently inhibiting service
– attack on availability
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Security Policy

• Partitions system into allowed and disallowed states

• Ideally mathematical model

• In practice, natural-language description

– often imprecise, ambiguous, inconsistent, unenforceable

– Example: transactions over $10k require manager approval
• but transferring $10k into own account is no violation
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 Used to enforce security policy
• computer access control (login authentication)
• operating system file access control system
• controls implemented in tools

 Example:
• Policy: only accountant can access financial system
• Mechanism: on un-networked computer in locked room with only one key

 A secure system provides mechanisms that ensure that violations are
• prevented
• detected
• recovered from

Security Mechanisms
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Assumptions

• Security is always based on assumptions
– eg. lock is secure, key holders are trustworthy

• Invalid assumptions void security!

• Problem: assumptions are often implicit and poorly understood

• Security assumptions must be:
– clearly identified
– evaluated for validity
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Potentially Invalid Assumptions

• The security policy is unambiguous and consistent

• The mechanisms used to implement the policy are correctly designed

• The union of mechanisms implements the policy correctly

• The mechanisms are correctly implemented

• The mechanisms are correctly installed and administered
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 Systems always have trusted entities
• hardware, operating system, sysadmin

 Totally of trusted entities is the trusted computing base (TCB)
• the part of the system that can circumvent security

Trust

 A trusted system can be used to process security-critical assets
• gone through some process (“assurance”) to establish its trustworthiness
• should really be called trustworthy system

 Trusted computing:
• provides mechanisms and procedures for trusted systems
• in practice usually refers to TCG mechanisms for secure boot, encryption etc
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 TCB: The totality of protection mechanisms within a computer system — 
including hardware, firmware and software — the combination of which is 
responsible for enforcing a security policy

[RFC 2828]

A TCB consists of one or more components that together enforce a unified 
security policy over a product or system

The ability of the TCB to correctly enforce a security policy depends solely 
on the mechanisms within the TCB and on the correct inputs by system 
administrative personnel or parameters related to the security policy

Trusted Computing Base
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Trusted Computing

• TCB is by definition trusted. That doesn't make it trustworthy!

• Aim of trusted computing (TC): establish and maintain trustworthiness
– ... with respect to certain security requirements

– should really be called trustworthy computing!

• Idea based on notion of secure booting [Arbaugh et al. 97]:
– root of trust provided by hardware

– software components are certified as trusted

– TCB securely expanded by loading trusted components only

– hardware- and software mechanisms to prevent tampering

• Establish chain of trust from root of trust

• TC ensures that system is operating in defined configuration
– based on the assumption that certain components can be trusted

• Challenge: maintain system security during configuration changes
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 Information flow that is not controlled by a security mechanism 
• Security requires absence of covert channels

 Two types of covert channels
• Covert storage channel uses an attribute of a shared resource 

− shared resource states (eg. meta data, object accessibility)
− global names can create covert storage channels
− in principle subject to access control
− a sound access-control system should be free of covert channels

• Covert timing channel uses temporal order of accesses to shared resource
− outside access-control system
− difficult to reason about
− difficult to prevent

Covert Channels (Side Channels)
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 Created via shared resource whose behaviour can be monitored
• network bandwidth
• CPU load
• response time
• locks

 Requires access to a time source
• real-time clock
• anything else that allows unrelated processes to synchronise
• preventable by perfect virtualisation?

 Critical issue is bandwidth
• in practice, the damage is limited if the bandwidth is low

− e.g DRM doesn’t care about low-bandwidth channels
• beware of amplification

− e.g leaking of passwords

Covert Timing Channels
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 Process to show TCB is trustworthy
 Two approaches

• assurance (systematic evaluation and testing)
• formal verification (mathematical proof)

 Certification confirms process was successfully concluded

Establishing Trustworthiness
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 Process for bolstering (substantiating or specifying) trustworthiness
• Specifications

− unambiguous description of system behaviour
− Can be formal (mathematical model) or informal

• Design
− justification that it meets specification
− mathematical translation of specification or compelling argument

• Implementation
− justification that it is consistent with the design
− mathematical proof or code inspection and rigorous testing
− by implication must also satisfy specification

• Operation and maintenance
− justification that system is used as per assumption in specification

 Assurance does not guarantee correctness or security!

Assurance
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US Department of Defence “Orange Book” [DoD 86]:
 Officially the Trusted Computing Systems Evaluation Criteria (TCSEC)
 Defines security classes

• D: minimal protection
• C1-2: discretionary access control (DAC)

C

• B1-B3: mandatory access control (MAC)

m

• A1: verified design

 Designed for military use
 Systems can be certified to a certain class

• very costly, hence only available for big companies
• most systems only certified C2 (essentially Unix-style security)

m

Assurance: Orange Book

 Superseded by Common Criteria
• orange book no longer has any official standing
• however, still an excellent reference for security terminology and rationale
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Common Criteria for IT Security Evaluation [ISO/IEC 15408, 99]:
 ISO standard, developed out of Orange Book and other approaches

• US, Canada, UK, Germany, France, Netherlands
• for general use (not just military, not just operating systems)

f

 Unlike Orange Book, doesn't prescribe specific security requirements
• evaluates quality assurance used to ensure requirements are met

Assurance: Common Criteria

 Target of evaluation (TOE) evaluated against security target (ST)

(

• ST is statement of desired security properties
• based on protection profiles (PPs) — generic sets of requirements

− defined by “users” (typically governments)

d

 Seven evaluation assurance levels (EALs)

(

• higher levels imply more thorough evaluation (and higher cost)

l

• not necessarily better security

 Details later
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 Process of mathematical proof of security properties
 Based on a mathematical model of the system
 Two Parts:

• Proof that model satisfies security requirements
− generally  difficult, except for very simple models

• Proof that code implements model
− proving  theorems showing correspondence
− even harder, feasible only for few 1000 LOC
− hardly ever done (few tiny special-purpose OS kernels only to date)

Formal Verification

 Note: model checking (static analysis) is not sufficient
• shows presence or absence of certain properties of code

− uninitialised  variables, array-bounds, null-pointer de-ref
− may be sound (guaranteed to detect all violations) or unsound

• Model checking does not prove implementation correctness!
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 Computer security is complex
• depends on many aspects of computer system

 Policy defines security, mechanisms enforce security
 Important to consider:

• what are the assumptions about threats and trustworthiness?
• incorrect assumptions  no security

 Security is never absolute
• given enough resources, mechanisms can be defeated
• important to understand limitations
• inherent tradeoffs between security and usability

 Human factors are important
• people make mistakes
• people may not understand security impact of actions
• people may be less trustworthy than thought

Summary
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 Operating systems security overview
 Types of secure systems
 Security policies
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 Trusted Computing
 Design principles
 OS security verification
 OS design for security
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 Based on Orange Book terminology
• assumes military-style security problem
• data of different security classifications
• system must ensure that classification is enforced
• focussed on confidentiality

Secure Systems Classification

 Classifies systems based on the kind of data they can deal with
• single-level secure (SLS) system
• multiple single-level secure (MSL) system
• multi-level secure (MLS) system

 Basis of multiple-independent levels of security (MILS) architecture
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Single-Level Secure (SLS) System

 Suitable only for processing data of one particular security level
• generally the lowest, i.e. unclassified

unclassified. unclassified.

SLS System
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Multiple Single-Level (MSL) Secure System

 System suitable for processing data of several security levels
• only one security level at a time, up to some limit

secret. secret.

MSL Secure System

unclassified. unclassified.

MSL Secure System

 Multiple instances used, each one as a SLS system
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Multi-Level Secure (MLS) System

 Suitable for processing data of several security levels
• concurrently, up to some limit
• needs to ensure that classifications are honoured
• does this by labelling all data

secret.

MLS System

unclassified.

unclassified.

secret.

 Requires mandatory access control in OS
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MLS + MSL System

 MLS component handles multiple levels of data
 Only a single level of data goes to each of the MSL secure systems

secret.

MSL Secure System

unclassified.

MSL Secure System

MLS Terminal

unclassified.

secret.
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MLS System Using Virtualization

 MLS hypervisor runs several MSL secure OSes in individual virtual machines
 Result is MLS system

MSL Terminal MSL Terminal

MSL
Secure
Operating
System

MSL
Secure
Operating
System

MLS Hypervisor

MLS System
unclassified. secret.

 An example of a multiple independent levels of security (MILS) architecture
• Hypervisor here operates as a separation kernel
• Separates (isolates) different security domains
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 Discretionary (user-controlled) policies (DAC)

(

• e.g A can read B's objects only with A's permission
• user decides about access (at their discretion)

u

• classical example: Unix permissions

 Mandatory (system-controlled) policies (MAC)

(

• e.g certain users cannot ever access certain objects
• no user can change these
• focus on restricting information flow
• inherent requirement for MLS systems, MILS

 Role-based  policies (RBAC)

p

 
• agents can take on specific pre-defined roles 

− well-defined set of roles for each agent
− e.g normal user, sysadmin, database admin

• access rights depend on role 

Security Policies: Categories
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 Represent a whole class of security policies

Models for Security Policies

 Most system-wide policies focus on confidentiality
• e.g military-style multi-level security models
• Classical example is Bell-LaPadula model [Bell & LaPadula 76]

− example of a labelled security model
− most others developed from this
− Orange Book based on this model

• Chinese-wall policy focuses on conflict of interest
 Some newer models focus on integrity

• Bibra model derived from Bell-LaPadula
• Clark-Wilson model based on separation of duty

− maps to role-based access control
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 Each object a has a security classification L(a)

L

 Each agent o has a security clearance L(o)

L

 Classifications
• e.g top secret > secret > confidential > unclassified

 Rule 1 (no read up):
• a can read o only if L(a)  L(o)≥

• standard confidentiality

 Rule 2 ( Property — no write down)

)

• a can write o only if L(a)  L(o)≤

L

• prevents leakage (accidental of by conspiracy)

Bell-LaPadula Model

Top
Secret

Secret

Confidential

Unclassified
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 Mother of all military-style security models
 Inherently requires implementation as MAC

• all subjects must be bound to policy

 If implemented inside a single system, requires MLS system

Bell-LaPadula Model

 Major limitation: cannot deal with declassification
• needed to pass any information from high- to low-security domain

− logging
− command chain
− documents where sensitive portions have been censored
− encrypted data

 Typically dealt with by special privileged functions
• outside security policy
• outside systematic reasoning
• part of TCB
• likely source of security holes



©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 38

Chinese Wall Policy

• Employed by investment banks to manage conflict of interest
• Idea: Consultant cannot talk to clients' competitors

– single consultant can have multiple concurrent clients

• Example of a dynamic MAC policy
– allowed information flow changes over time

• Define conflict classes (groups of potentially competing clients)
– eg banks, oil companies, insurance companies, OS vendors

• Consultant dealing with client of class A cannot talk to others in A
– but can continue talking to members of other classes

– some data belongs to several conflict classes

• Public information is not restricted
– consultant can read and write public info at any time

– but must observe  property (cannot publish confidential info)
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Chinese Wall Policy

 In practice need a way to remove conflicts
• transaction completed...

O1

O2

O3

O4 O5

O6

O7 O8

C
1

C
2

C
2

C
3

O3
O6

O8
O7

O4
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 Dual to Bell-LaPadula for integrity

Bibra Model

Top
Integrity

Medium
Integrity

Low integrity

No integrity

 Obviously incompatible with Bell-LaPadula
• ... if higher security requires higher integrity
• must choose between confidentiality and integrity

 Bibra doesn't model any practical system

 Each subject a, object o has a integrity level L

L

 Rule 1 (no read down):
• a can read o only if L(a)  L(o)≤

 Rule 2 ( Property — no write up)

)

• a can write o only if L(a)  L(o)≥

L
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Clark-Wilson Model

 Security framework for ensuring integrity based on separation of duties
• doesn't provide specific state transformations, only constraints on them
• helps in formalising security policies

 Distinguishes constrained (integrity-guaranteed) and unconstrained data
• Operations on unconstrained data must be defined for all values and produce 

constrained data

 Specifies requirements on the system and its operations
• protect integrity-critical data, authentication, integrity of transformations, logging
• operations certified to operate on certain data

 Doesn't actually specify what “separation of duties” means
• “Allowed reltations must meet the requirements of 'separation of duties'“
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 Used to implement security policies
 Based on access control

• Discretionary access control (DAC)

D

• Mandatory access control (MAC)
• Role-based access control (RBAC)

R

 Access rights
• Simple rights

− Read, write, execute/invoke, send, receive
• Meta rights (DAC only)

 

− Copy
• Propagate own rights to another agent

− Own
• Change rights of an object or agent

Security Mechanisms
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Objects

Agents

terminate read

control execute write

S
1

S
2

O
3

O
4

S
1

wait, signal, 
send

S
2

wait, signal, 
terminate

read, 
execute, 

write

S
3

wait, signal, 
receive

S
4

Defines each agent's rights on any object
Note: agents are objects too

Access Control Matrix
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 Rows define agents' protection domains (PDs)

(

 Columns define objects' accessibility
 Dynamic data structure: 

• Frequent permanent changes (e.g. object creation, chmod)

• Frequent temporary changes (e.g. setuid)

)

 Very sparse with many repeated entries
 Impractical to store explicitly

Properties of the Access Control Matrix
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Represent column-wise: access control list (ALC):
 ACL associated with object
 Usually condensed via domain classes (UNIX, NT groups)

(

 Full ACLs used by Multics, Apollo Domain, Andrew FS, NTFS
 Can have negative rights to:

• reduce window of vulnerability
• simplify exclusion from groups

Protection-Matrix Implementation: ACLs

 Sometimes implicit (Unix process hierarchy)

S

 Implemented in almost all commercial systems
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Represent row-wise: capabilities [Dennis & Van Horn 66]:
 Capability list associated with agent

• each capability confers a certain right to its holder

Protection-Matrix Implementation: Capabilities

 Can have negative rights to:
• reduce window of vulnerability
• simplify management of groups of capabilities

 Caps have been popular in research for a long time
 Few successful commercial systems until recently: 

• main one is IBM System/38 / AS400 / i-Series
• increasingly appearing in commercial systems (usually add-on)
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 Main advantage of capabilities is the fine-grained access control:
• easy to provide specific agents access to individual objects

Capabilities

 Capability presets prima facie evidence of the right to access
• capability   object identifier (implies naming)

(

• capability  (set of) access rights

 How are caps implemented and protected?
• tagged — protected by hardware

− popular in the past, rarely today (exception: IBM i-Series)
• sparse (or user-mode) — protected by sparsity

− probabilistically secure, like encryption
− propagation outside system control — hard to enforce security policies

• partitioned/segregated — protected by software (kernel)
− main version of caps used in modern systems

− any  representation must contain object ID and access rights
− any representation must protect capability from forgery
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Tagged Capabilities

• Tag bit(s) with every (group of) memory word(s)
– tag identifies capabilities

– capabilities are used and copied like “normal” pointers

– hardware checks permissions when deferencing capability

– modifications turn tags off (convert to plain data)

– only privileged instructions(kernel) can turn tags on

• IBM System/38, AS/400, i-Series, many historical systems

– Issues:
  capability hardware tends to be slow (too complex)
  hard (if not impossible) to control propagation of authority
  revocation virtually impossible (requires memory scan)
  amplification possible (below)
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Sparse Capabilities

• Basic idea similar to encryption
– add bit string to make valid capabilities a very small subset of cap space
– either encrypted object info or password
– secure by infeasibility of exhaustive search of cap space



©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 51

Sparse Capabilities

• Sparse caps are user-level objects
– can be passed like other data

• similar to tagged caps, but without hardware support
• validated at mapping time (explicit or implicit)

– good match to user-level servers
• no central authority, no kernel required on most ops
• cannot reference-count objects

• Issues:
– Full mediation requires extra work

• but doable, see Mungi [Heiser et al. 98]
• essentially provided user-level cap segregation

– High amplification of leaked data 
• problem with convert channels
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 System maintains capability list (Clist) with each agent (process)
• User code uses indirect references to caps (clist index)

U

− c.f Unix file descriptors
• System validates permissions on access

− syscall or page-fault time

Cap Ref

PCB

Cap

Cap

Cap

…

User

Kernel

Segregated (Partitioned) Capabilities

 Many research systems
• Hydra, Mach, EROS, and many others

 Increasingly commercial systems
• KeyKOS (92), OKL4 (08)
• add-on to Linux, Solaris
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 Problem 1: Executing untrusted code
• you downloaded a game from the internet
• how can you be sure it doesn't steal/corrupt your data?

 Problem 2: Digital rights management (DRM)

D

• you own copyrighted material (e.g. entertainment media content)
• you want to let others use it (for a fee)

y

• how can you prevent them from making unauthorised copies?

 You need to confine the program (game, viewer) so it cannot leak
 Cannot be done with most protection schemes!

• not with Unix or most other ACL-based schemes
• not with most tagged or sparse capability schemes
• multi-level security has some inherent confinement (but can't do DRM)

m

 Some protection models can confine in principle
• e.g segregated caps system, can instruct system not to accept any
• EROS has formal proof of confinement for system model [Shapiro & Weber 00]
• similar for seL4 (machine-checked proof)

Confinement

 In practice difficult to achieve due to covert channels 
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Trusted Computing: The TCG Approach

• Trusted Computing Group (TCG)
– industry consortium with many members
– defines industry standards to enable trusted computing
– term “trusted computing” now virtually synonymous with TCG model
– ... although it only solves part of the problem

• Similarly Mobile Trusted Module (MTM) for mobile devices
– puts more functionality into software
– remaining hardware suitable for on-chip integration
– but no agreement on model yet

• Also TCG Software Stack (TSS) for higher-level functionality

• Defines Trusted Computing Module (TCM)
– hardware root of trust, aimed at PC/server platforms
– minimal functionality to support TC
– implemented either as separate chip or onboard processor chip
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TPM-Enabled Functionality

• Authenticated booting
– bring up system in well-defined configuration
– executing only certified binaries

• Remote attestation
– allow remote party to confirm system configuration

• Sealed storage
– ensure that data can only be read if system is in particular  configuration

Enabled by a set of TPM-provided mechanisms:
– Random-number generation
– Key generation
– key storage
– public-key encryption
– configuration storage
– certificate storage
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TPM Components

• Hardware implementations of security-relevant low-level functions
– random numbers, SHA-1 hash, public-key generation, RSA encryption
– slow — meant for use before enough trusted software is booted

• Endorsement key (EK)
– hard-wired private key, uniquely identifies physical device
– public EK certified and supplied by manufacturer

• Non-volatile storage
– small amount for EK, some symmetric keys, opt-in flags
– storage root key (SRK), protected by SRK pass phrase

• to encrypt keys stored outside TPM
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Integrity Measurement

• Idea: “measure” all components and securely store measurements

• SHA-1 engine + boot block (CRTM) is root of trust for measurement (RTM)

• Suffices to verify configuration:
– compute condensed measurement from log and compare to PCR
– does not guarantee that software hasn't been modified after loading!

• Secure storage of measurements:
– store log of measurements outside TPM
– inside TPM's PCR store condensed (“extended”) measurement:

PCR  SHA-1(PCR || SHA-1 (component))

• Measurement: SHA-1 hash of component
– computed at component-load time, before execution
– normally computed by software (outside TPM) as TPM SHA-1 is slow

CRTM

TPM

SW   (1) Load & measure

    (2) Extend (Hash SW) Memory
(3) Log        

(4) Execute
SW   
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Remote Attestation (aka Integrity Reporting)

• Idea: Provide certified representation of machine state to challenger
– e.g. service provider who insists on particular configuration

• Endorsement key is root of trust for reporting (RTR)

• Challenger can verify
– recompute PCR value
– verify signature using

• knowledge of endorsement key, or
• previously exchanged AIK

• Two parts reported
– measurement log kept by software
– PCR value (accumulated measurements) signed by endorsement key

• alternatively can set up specific attestation identity key (AIK)
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Secure Storage Channel: Sealing

• Idea: Make certain data accessible only to correct machine state
– pass data securely from “sender” to “receiver” configuration

– time-travel IPC 

• Storage root key is root of trust for storage (RTS)

• Sealing:
– RSA engine can optionally include PCR configuration in encryption
– when encrypting key, include 

• present (“sender”) PCR state
• desired (“receiver”) PCR state

– only decrypt key if present PCR state matches “receiver” state
– return “sender” PCR state with decrypted key for confirmation

• Uses secure encryption
– generate secret key (random number)
– use this to encrypt data with trusted (authenticated) program
– encrypt secret key using SRK, can then be stored anywhere
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Authenticated Boot

• TPM ROM contains:
– boot block
– public key of OS manufacturer

• First OS components contains
– SW implementation of crypto
– potential further software vendor keys

• Boot block loads first OS component
– using TPM cryptography hardware to authenticate

• OS components signed by manufacturers key(s)
– only load components after verifying signatures
– measure components prior to executing
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Secure Boot

• Seal (rather than just sign) OS components
– makes it impossible to boot other than predetermined OS version

• Rather painful
– complete OS must be sealed separately for individual target machine
– any software upgrade requires re-sealing

• Quite impractical for normal OS
– but could be feasible for hypervisor or microkernel

• Based on secure bootstrap work [Arbaugh et al. 97]
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Trusted Computing vs Secure OS

 TPM-based trusted-computing approach is based on
• Hardware root of trust
• Mechanisms to provide a chain of trust

 Objective is to guarantee that system boots into a well-defined configuration
• Guarantees that a particular OS binary is running
• What does this mean about security/trustworthiness?
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App App App

OS

Secure Boot

Processor TPM

Trusted

Millions of lines of 
code!

Credibility gap!

Trustworthy
(I hope!)

 TPM-based trusted-computing approach is of limited use
• As long as the OS isn't trustworthy

Trusted Computing vs Secure OS
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 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Trusted Computing
 Design principles
 OS security verification
 OS design for security

Overview
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 Least privilege (POLA)

L

 Economy of mechanisms

 Fail-safe defaults

 Complete mediation

 Open design

 Separation of privilege

 Least common mechanisms

 Psychological acceptability

Design Principles for Secure OS
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 Also called the principle of least authority (POLA)

(

 Agent should only be given the minimal rights needed for task
• minimal protection domain
• PD determined by function, not identity

− Unix  root is evil
− aim of role-based access control (RBAC)

a

• rights added as needed, removed when no longer needed
• violated by all mainstream OSes

 Example: executing web applet
• should not have all of user's privileges, only minimal access
• hard to do with ACL-based systems
• main motivation for using caps

Least Privilege
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 OS kernel executes in privileged mode of hardware
• kernel has unlimited privilege!

 POLA implies keeping kernel code to an absolute minimum
• this means a secure OS must be based on a microkernel!

 Trusted computing base can bypass security
 POLA requires that TCB is minimal

• microkernel plus minimal security manager

Least Privilege: Implications for OS
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 KISS principle of engineering
• “keep it simple, stupid!”

 Less code/features/stuff  less to get wrong
• makes it easier to fix if something does go wrong
• complexity is the natural enemy of security

 Also applies to interfaces, interactions, protocols, ...
 Specifically applies to TCB

Economy of Mechanisms



©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 70

 Default action is no-access
• if action fails, system remains secure
• if security administrator forgets to add rule, system remains secure
• “better safe than sorry”

Fail-Safe Defaults



©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 71

 Reference monitor checks every access
• violated in Unix file access:

− access rights checked at open(), then cached
− access remains enabled until close(), even if attributes change

• also implies that any rights propagation must be controlled
− not done with tagged or sparse capability systems

 In practice conflicts with performance!
• caching of buffers, file descriptors etc
• without caching unacceptable performance

 Should at least limit window of opportunity
• e.g guarantee caches are flushed after some fixed period
• guarantee no cached access after revoking access

Complete Mediation
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 Security must not depend on secrecy of design or implementation
• TCB must be open to scrutiny

Open Design

• Security by obscurity is poor security
− Not all security/certification agencies seem to understand this

 Note that this doesn't rule out passwords or secret keys
• ... but their creation requires careful cryptoanalysis
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 Require a combination of conditions for granting access
• e.g user is in group wheel and knows the root password
• Take-grant model for capability-based protection:

− sender needs grant right on capability
− receiver needs take right to accept capability

• In reality, the security benefit of a separate take right is minimal
− practical cap implementations only provide grant as a privilege

 Closely related to least privilege 

Separation of Privilege
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 Avoid sharing mechanisms
• shared mechanism  shared channel
• potential covert channel

 Inherent conflict with other design imperatives
• simplicity  shared mechanisms
• classical tradeoff...

Least Common Mechanisms
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 Security mechanisms should not add to difficulty of use
• hide complexity introduced by security mechanisms
• ensure ease of installation, configurations, use
• systems are used by humans!

 Inherently problematic:
• security inherently inhibits ease of use
• idea is to minimise impact

 Security-usability tradeoff is to a degree unavoidable

Psychological Acceptability
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 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Trusted Computing
 Design principles
 OS security verification
 OS design for security

Overview
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 Controlled Access Protection Profile (CAPP)

C

• standard OS security, derived from Orange Book C2
• certified up to level EAL3

 Single-level Operating System Protection Profile
• superset of CAPP
• certified up to EAL4+

 Labeled Security Protection Profile (LSPP)

L

• mandatory access control for COTS OSes
• similar to Orange Book B1

 Role-based Access Control Protection Profile

 Multi-level Operating System Protection Profile
• superset of CAPP, LSPP
• certified up to EAL4+

 Separation Kernel Protection Profile (SKPP)

S

• strict partitioning
• certifications aiming for EAL6–7

Common-Criteria Protection Profiles for OS
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 EAL1: functionally tested
• simple to do, can be done without help from developer

 EAL2: structurally tested
• functional and interface spec
• black- and white-box testing
• vulnerability analysis

 EAL3: methodically tested and checked
• improved test coverage
• procedures to avoid tampering during development
• highest assurance level achieved for Mac OS X

Common Criteria Assurance Levels
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 EAL4: methodically designed, tested and reviewed
• design docs used for testing, avoid tampering during delivery
• independent vulnerability analysis
• highest level feasible on existing product (not developed for CC certific.)

h

• achieved by a  number of main-stream OSes
− Windows 2000: EAL4 in 2003
− SuSe Enterprise Linux: EAL4 in 2005
− Solaris-10: EAL4+ in 2006

• controlled access protection profile (CAPP) — Note: EAL3 profile!

N

• role-based access control PP — example of non-NSA PP?
− RedHat Linux EAL4+ in 2007

• They still get broken!
− certification is based on assumptions about environment, etc...
− most use is outside those assumptions

• certification means nothing in such a case
• presumably there were no compromises were assumptions held

Common Criteria Assurance Levels
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 EAL5: semi-formally designed and tested
• formal model of TEO security policy
• semi-formal model of functional spec & high-level design
• semi-formal arguments about correspondence
• covert-channel analysis
• IBM z-Series hypervisor EAL5 in 2003 (partitioning)

I

• attempted by Mandrake for Linux with French Government support

 EAL6: semiformally verified design and tested
• semiformal low-level design
• structured representation of implementation
• modular and layered TOE design
• systematic covert-channel identification
• Green Hills Integrity microkernel presently undergoing EAL6+ certification

− separation kernel protection profile

Common Criteria Assurance Levels
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 EAL7: formally verified design and tested
• formal functional spec and high-level design
• formal and semiformal demonstration of correspondence 

− between specification and low-level design
• simple TOE
• complete independent confirmation of developer tests
• LynuxWorks claims LynxSecure separation kernel EAL7 “certifiable”

− ... but not certified
• Green Hills also aiming for EAL7 

Note:
 Even EAL7 relies on testing!
 EAL7  requires proof of correspondence between formal descriptions
 However, no requirement of formalising LLD, implementation
 Hence  no requirement for formal proof of implementation correctness

Common Criteria Assurance Levels
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 Little (if any) use in commercial space outside national security
• This was one of the intentions — by all indications, CC failed here

Common Criteria Limitations

 Very expensive
• industry rule-of-thumb: EAL6+ costs $10k per LOC
• dominated by documentation requirements
• no “credit” for doing things better

− eg formal methods instead of excessive documentation

 Lower EALs of limited practical use
• Windows is EAL4+ certified!
• marketing seems to be main driver behind EAL3–4 certification

 Over-evaluation abuses system
• eg. CAPP (EAL3 profile) certification to EAL4
• in reality a pointless exercise
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 Based on mathematical model of the system
 Complete verification requires two parts:

• proof that model satisfies requirements of security policies
− typically prove generic properties that actual policies map to
− required by CC EAL5–7

• proof that implementation has same properties as model
− proof of correspondence between model and implementation
− not required by CC even at EAL7
− done by some kernels with very limited functionality
− never done for any general-purpose OS!

 Model-checking (static analysis) is incomplete formal verification
• shows presence or absence of certain properties

− e.g uninitialised variables, array-bounds overflows
• nevertheless useful for assurance 

Formal Verification
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C

Common Criteria and Formal Verification
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 Operating systems security overview
 Types of secure systems
 Security policies
 Security mechanisms
 Trusted Computing
 Design principles
 OS security verification
 OS design for security

Overview
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 Minimize kernel code
• kernel = code that executes in privileged mode
• kernel can bypass any security
• kernel is inherently part of TCB
• kernel can only be verified as a whole (not in components)

k

− it’s hard enough to verify a minimal kernel

 How?
• generic mechanisms (economy of mechanisms)

g

• no policies, only mechanisms
• mechanisms as simple as possible
• only code that must be privileged in order to support secure systems
• free of covert channels:

− no global names, absolute time

 Formally specify API

OS Design for Security
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 Minimize mandatory TCB
• unless formally verified, TCB must be assumed imperfect
• the smaller, the fewer defects
• POLA requires, economy of mechanisms leads to minimal TCB

 Ensure TCB is well defined and understood
• make security policy explicit
• make granting of authority explicit

 Flexibility to support various uses
• make authority delegatable
• ensure mechanisms allow high-performance implementation

 Design for verifiability
• minimize implementation complexity

OS Design for Security
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 High-security version of L4 microkernel API
• all authority granted by capabilities

− full mediation, least privilege, separation of privilege, fail-safe defaults
• only four system calls: read, write, create, derive

− economy of mechanisms
• semi-formal and formal models and design specs

− open design (once published)
• kernel memory explicitly managed by user-level resource manager

− least privilege, separation of privilege
• 7,000–10,000 lines of kernel code

− least privilege
 Details later...

Example: NICTA's seL4
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