
µ-Kernel Construction



Fundamental Abstractions

� Thread

� Address Space

� What is a thread?� What is a thread?

� How to implement?

� What conclusions can we draw from our 
analysis with respect to µK construction?



A “thread of control” has

� register set

� e.g. general registers, IP and SP

� stack

� status

internal 
properties

IP

� e.g. FLAGs, privilege, 

� OS-specific states (prio, time…)

� address space 

� unique id

� communication status
external 

properties

IP

SP

FLAGS



Construction Conclusions (1)

♦ Thread state must be saved / restored on 
thread switch.

♦ We need a thread control block (tcb) per 
thread.

♦ Tcbs must be kernel objects.♦ Tcbs must be kernel objects.

♦Tcbs implement threads.

♦ We need to find

� any thread’s tcb starting from its uid
� the currently executing thread’s tcb 

(per processor)

(at least partially, we found some 
good reasons to implement parts of 
the TCB in user memory.)
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Thread Switch A � B

In Summary:

� Thread A is running in user mode 

� Thread A has experiences an end-of-time-slice or is preempted by an 
interrupt

� We enter kernel mode� We enter kernel mode

� The microkernel has to save the status of the thread A on A’s TCB

� The next step is to load the status of thread B from B’s TCB.

� Leave kernel mode and thread B is running in user mode.
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Construction conclusion

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel StackSingle Kernel Stack Per-Thread Kernel Stack

Only one stack is 

used all the time.

Every thread has a

kernel stack.



Per-Thread Kernel Stack
Processes Model

� A thread’s kernel state is implicitly 
encoded in the kernel activation 
stack

� If the thread must block in-
kernel, we can simply switch 
from the current stack, to 

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

thread_block();

P2(arg2);

} else {
from the current stack, to 
another threads stack until 
thread is resumed

� Resuming is simply switching 
back to the original stack

� Preemption is easy

� no conceptual difference 
between kernel mode and user 
mode

P3();

}

/* return control to user */

return SUCCESS;

}



Single Kernel Stack
“Event” or “Interrupt” Model

� How do we use a single kernel stack to 
support many threads?

� Issue: How are system calls that block 
handled?

⇒ either continuations ⇒ either continuations 
– Using Continuations to Implement Thread 
Management and Communication in Operating 
Systems. [Draves et al., 1991]

⇒ or stateless kernel (interrupt model)
� Interface and Execution Models in the Fluke 
Kernel. [Ford et al., 1999]



Continuations

� State required to resume a 
blocked thread is explicitly 
saved in a TCB

� A function pointer

� Variables

� Stack can be discarded and 

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

save_context_in_TCB;

thread_block(example_continue);

/* NOT REACHED */
� Stack can be discarded and 

reused to support new 
thread

� Resuming involves 
discarding current stack, 
restoring the continuation, 
and continuing 

} else {

P3();

}

thread_syscall_return(SUCCESS);

}

example_continue() {

recover_context_from_TCB;

P2(recovered arg2);

thread_syscall_return(SUCCESS);

}



Stateless Kernel

� System calls can not block within the kernel

� If syscall must block (resource unavailable)

� Modify user-state such that syscall is restarted when 
resources become available

� Stack content is discarded� Stack content is discarded

� Preemption within kernel difficult to achieve.

⇒Must (partially) roll syscall back to (a) restart point

� Avoid page faults within kernel code

⇒ Syscall arguments in registers

� Page fault during roll-back to restart (due to a page 
fault) is fatal.



IPC examples – Per thread stack

msg_send_rcv(msg, option,

send_size, rcv_size, ...) {

rc = msg_send(msg, option,

send_size, ...);

Send and Receive system 
call implemented by a 
non-blocking send part 
and a blocking receive 
part. 

if (rc != SUCCESS)

return rc;

rc = msg_rcv(msg, option, rcv_size, ...);

return rc;

}

Block inside msg_rcv if 
no message available



IPC examples - Continuations
msg_send_rcv(msg, option,

send_size, rcv_size, ...) {
rc = msg_send(msg, option,

send_size, ...);
if (rc != SUCCESS)

return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}
msg_rcv_continue(cur_thread) {

msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}



IPC Examples – stateless kernel

msg_send_rcv(cur_thread) {

rc = msg_send(cur_thread);

if (rc != SUCCESS)

return rc;

set_pc(cur_thread, msg_rcv_entry);

rc = msg_rcv(cur_thread);

if (rc != SUCCESS)

return rc;

return SUCCESS;

}

Set user-level PC to 
restart  msg_rcv 

only



Single Kernel Stack
per Processor, event model

� either continuations 
– complex to program
– must be conservative in state saved (any state that might be 

needed)
– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

� or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management  can get in the way
– system calls need to be kept simple “atomic”.
� e.g. the fluke kernel from Utah

� low cache footprint
� always the same stack is used !
� reduced memory footprint



Per-Thread Kernel Stack

� simple, flexible
� kernel can always use threads, no special techniques 
required for keeping state while interrupted / blocked

� no conceptual difference between kernel mode and user 
mode

� e.g. L4

Conclusion:

We have to look 

for a solution that 

minimizes the � e.g. L4

� but larger cache footprint

minimizes the 

kernel stack size!


