
©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 11

Introduction

COMP9242

2008/S2 Week 1

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 22

� You are free:

• to share — to copy, distribute and transmit the work

• to remix — to adapt the work

� Under the following conditions:

• Attribution. You must attribute the work (but not in any way that suggests
that the author endorses you or your use of the work) as follows:

• “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of

• “UNSW”, “NICTA”, or “Open Kernel Labs”

� The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 33

� Introduction: What are microkernels?

� Microkernel Performance

� L4 History and Future

� Basic L4 concepts

Outline

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 44

My Microkernels?

Monolithic Kernel

� Kernel has access to
everything

• all optimizations possible

• all techniques/
mechanisms/concepts
implementable

� Can be extended by
simply adding code

� Cost: complexity

• growing size

• limited maintainability

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 55

� Small kernel providing core functionality

• Only code running in privileged mode

� Most OS services provided by user-level servers

� Applications communicate with servers via message-passing IPC

Microkernel: Idea

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 6

Trusted Computing Base (TCB) �

Definition: The part of the system which can circumvent security

Application Application Application

Service Service

Service

Hardware Hardware Hardware

Microkernel

OS

Linux/
Windows

Microkernel-
based

System: traditional
embedded

TCB: 100,000’s LOC 10,000’s LOCall code

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 7

Virtualization

� Partition system into several subsystems

• Each partition runs its own operating system

• Hypervisor controls resources

• Hypervisor is kind-of microkernel

VM

Guest
Apps

Guest
OS

VM

Guest
Apps

Guest OS

Hypervisor

Core

� Typical uses

• Server consolidation: multiple logical machines on single physical

• Embedded systems: high-level OS co-hosted with RTOS

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 88

� Combat kernel complexity, increase robustness, maintainability

• dramatic reduction in amount of privileged code

• modularity with hardware-enforced interfaces

• normal resource management applicable to OS services

� Flexibility, adaptability, extensibility

• policies defined at user level, subject to change

• additional services provided by adding servers

� Hardware abstraction

• hardware-dependent part of system is small, easy to optimise

� Security, safety

• internal protection boundaries

Microkernel Promises

REALITY C
HECK!

slow, in
fle

xible

100µsec IP
C

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 99

� Introduction: What are microkernels?

� Microkernel Performance

� L4 History and Future

� Basic L4 concepts

Outline

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1010

� First-generation microkernels

• Mach, Chorus, Amoeba, QNX

... were slow...

• 100 µs IPC

• almost independent of clock speed!

IPC Costs

� L4 did better

• Close to hardware cost

• 20 times faster than Mach

on identical hardware (i486) �

IPC cost

Microkernel [Cycles]

Mach 5750

Amoeba 6000

Spin 6783

L4 250

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1111

IPC Cost Implications

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1212

L4 Performance: Cross Address-Space IPC

Intra-core Inter-core

Architecture Cycles Cycles

155

MIPS-64 100MHz dual core 109 690

Pentium 3 305

AMD-64 230

Itanium 2 36

ARM XScale PXA255 400MHz

� IPC overhead generally within 20% of bare hardware cost

• Essentially as fast as it gets

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1313

First-generation microkernels were slow

� Reason: Poor design [Liedtke SOSP'95]

• complex API

• Too many features

• Poor design and implementation

• Large cache footprint ⇒ memory-bandwidth limited

Microkernel Performance

� L4 is fast due to small cache footprint

• 10–14 I-cache lines

• 8 D-cache lines

• Small cache footprint ⇒ CPU limited

Userland L4

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1414

� Small cache footprint — but how?

• Minimality: no unnecessary features

• Orthogonality: complementary features

• Well-designed, and well implemented from scratch!

� Kernel provides mechanisms, not services

What makes Microkernel Fast?

� Microkernel design principle (Minimality):

A feature is only allowed in the kernel if this is required for the
implementation of a secure system.

� “Small is beautiful!”

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1515

Size Comparison

Linux x86:
4.1 Million lines

Mach4 x86:
90,000 lines

OKL4 x86:
15,000 lines

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1616

� Source code (OKL4) �

• ≈ 9k LOC architecture-independent

• ≈ 0.5–6k LOC architecture/platform-specific

L4 Kernel Size

� Memory footprint kernel (not aggressively minimised):

• Using gcc (poor code density on RISC/EPIC architectures)�

� Fast IPC path footprint (typical)�

• 10-14 I-cache lines

• 8 D-cache lines

135k41kL4KaPPC-32

205k60kL4KaPPC-64

100k61kNICTAMIPS-64

78k48kOKL4ARM

417k173kL4KaItanium

98k52kL4Kax86

TotalTextVersionArchitecture

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 1717

� Introduction: What are microkernels?

� Microkernel Performance

� L4 History and Future

� Basic L4 concepts

Outline

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 18

L4 History: V2 API

� Original version by Jochen Liedtke (GMD) ≈ 93–95

• “Version 2” API

• i486 assembler

• IPC 20 times faster than Mach [SOSP 93, 95]

• Proprietary code base (GMD)�

� Other L4 V2 implementations:

• L4/MIPS64: assembler + C (UNSW) 95–97

− Fastest kernel on single-issue CPU (100 cycles on MIPS R4600)�

− Open source (GPL)�

• L4/Alpha: PAL + C (Dresden/UNSW), 95–97

− First released SMP version (UNSW)�

− Open source (GPL)�

• Fiasco (Pentium): C++ (Dresden), 97–99, ongoing development

− Open source (GPL)�

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 19

L4 History: X.1 API

� Experimental “Version X” API

• Improved hardware abstraction

• Various experimental features (performance, security, generality)�

• Portability experiments

� Implementations

• Pentium: assembler, Liedtke (IBM), 97–98

• Proprietary

• Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98–99

• Open source (GPL)�

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 20

L4 History: X.2/V4 API

� “Version 4” (X.2) API, 02

• Portability, API improvements

� L4Ka::Pistachio, C++ (plus assembler “fast path”) �

• x86, PPC-32, Itanium (Karlsruhe), 02–03

− Fastest ever kernel (36 cycles on Itanium, NICTA/UNSW)�

• MIPS64, Alpha (NICTA/UNSW), 03

− Same performance as V2 kernel (100 cycles single issue)�

• ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03–04

• Open source (BSD license)�

� Portable kernel:
• ≈ 3 person months porting for core functionality

• 6–12 person months for full functionality & optimisation

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 21

L4 History: N1 API

� NICTA L4-embedded (N1) API, 05–06

• Transitional API (aiming to support strong isolation/security)�

• De-featured (timeouts, “long” IPC, recursive mappings)�

• Reduced memory footprint for embedded systems

� NICTA::Pistachio-embedded

• Derived from L4KA::Pistachio

• ARM7/9, x86, MIPS

• unreleased (incomplete) ports to PPC 405, SPARC, Blackfin

• student projects

• Open source (BSD License)�

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 22

L4 Present: OKL4

� OKL4 API

• Further evolution of N1 API, NICTA::Pistachio-embedded code base

• IPC control (information-flow control)�

• Kernel resource management

� Commercially-developed L4 system by Open Kernel Labs (OK Labs) �

• Commercial-strength code base

• Used in mobile phone handsets (presently >100M deployed)�

• Forthcoming developments in CE devices (set-top boxes)�

• Professional services for L4 users

• Commercialisation of present NICTA microkernel research

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 23

L4 Future: High-Security API

� seL4 Project

• Conducted by NICTA in close collaboration with OK

• API suitable for highly secure systems (military, banking etc)�

• Complete control over communication and system resources

• Proofs of security properties (Common Criteria)�

• Suitable for formal verification of implementation

� Status:

• Semi-formal specification in Haskell

• “Executable spec”: Haskell implementation plus ISA simulator

• C kernel prototype, performance at par with OKL4

• Formal (machine-checked) proof of isolation properties

• Drives on-going OKL4 API evolution

• OKL4 2.1 release represents significant step towards seL4 security features

• full seL4-like model scheduled for early '09

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 24

L4 Future: Formal Verification

� L4.verified Project

• Conducted by NICTA in close collaboration with OK

• Mathematical proof of implementation correctness (“bug-free kernel”)�

• Machine-checked proofs

• Closely linked with seL4 project

• Never done before!

� Status:

• Proofs of several subsystems

• Extensive proof libraries

• Completed refinement to Haskell level (Dec '07)�

• most formally-verified general-purpose kernel ever

• Completely verified kernel by December '08

• complete proof chain from security properties to C/asm implementation

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 25

L4 Future: Component Architecture

� CAmkES Project

• Conducted by NICTA in close collaboration with OK

• Software-engineering framework for L4-based systems

• Light-weight component system

• Targeted at resource-starved embedded systems

• No overhead for features not used (eg. dynamic components)�

� Status:

• Static prototype available, undergoing performance tuning

• On-going work on dynamic components

• Working on support for model-driven development

• Working on support for non-functional requirements (real-time, power)�

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 26

� Introduction: What are microkernels?

� Microkernel Performance

� L4 History and Future

� Basic L4 concepts

Outline

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 27

L4 API Comments

� This overview mostly applies to L4 in general, across all APIs

� However, there are significant differences between different L4 APIs

• Pistachio's “V4” API

• Fiasco (supporting V2, V4 and various experimental APIs)�

• NICTA-embedded API (obsolete)�

• OKL4 API

� We will, if in doubt, refer to the OKL4 API

� Some of the differences affect fundamental concepts, especially naming

• inherent consequence of the move towards a security-oriented API

• especially capability-based protection

� The OKL4 API is itself undergoing rapid evolution

• Started with 2.0 release (Jan '08, not public)�

• Stable API expected in H1'09

• Present 2.1 release has a transitional API (to ease migration of customers)�

− new concepts (capabilities)�

− some concepts will vanish in the next release(s)�

• I'll try to point these out as we go....

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 28

L4 Abstractions, Mechanisms, Concepts

Three basic abstractions:

� Address spaces (for protection) �

� Threads (for execution) �

� Capabilities (for naming and access control) — New in OKL4 2.1

� Time (for scheduling) � — May vanish in the future

Two basic mechanisms:

� Message-passing communication (IPC) �

� Mapping memory to address spaces

Other core concepts:

� Root task — Removed in OKL4 2.2

� Exceptions

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 29

An L4-Based System

� OKL4 kernel

� Root server

� Device drivers

� Other servers

� Applications

Device Driver Server Application

Root Server

OKL4 Kernel

Hardware

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 30

L4 Abstractions: Address Spaces

� Address space is unit of protection

• Initially empty

• Populated by mapping in frames

� Mapping performed by privileged MapControl() syscall

• Can only be called from root task

• Also used for revoking mappings (unmap operation)�

� Root task

• Initial address space created at boot time

• Controls system resources

• Privileged system calls can only be performed from the root task

− privileged syscalls identified by names ending in “Control”

• Privilege is not delegatable

− this is a shortcoming of the 2.1 API

• OKL4 2.2 replaces this with capabilities as access tokens

− removes the concept of a root task

− removes the concept of a privileged system call

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 31

L4 Abstractions: Threads

� Thread is unit of execution

• Kernel-scheduled

� Thread is addressable unit for IPC

• Thread capability used for addressing and establishing send rights

• Called Thread-ID for backward compatibility

• New in OKL4 2.1, previously Thread IDs were global names

� Threads managed by user-level servers

• Creation, destruction, association with address space

� Thread attributes:

• Scheduling parameters (time slice, priority)�

• Unique ID (hidden from userland)�

− referenced via thread capability (local name)�

• Address space

• Page-fault and exception handler

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 32

L4 Abstractions: Capabilities

� Capabilities reference threads

• in future versions all resources

• actual cap word (TID) is index
into per-address-space
capability list (Clist)�

� Capability conveys privilege

• Right to send message to thread

• May also convey rights to other
operations on thread

� Capabilities are local names for
global resources

TID

TI
D

Address space

TI
D

Clist

TID

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 33

L4 Abstractions: Time

� Used for scheduling times slices

• Thread has fixed-length time slice for preemption

• Time slices allocated from (finite or infinite) time quantum

− Notification when exceeded

� In earlier L4 versions also used for IPC timeouts

• Removed in OKL4

� Future versions may remove time completely from the kernel

• If scheduling (incl timer management) is completely exported to user level

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 34

L4 Mechanism: IPC

� Synchronous message-passing operation

� Data copied directly from sender to receiver

• Short messages passed in registers

• Long messages copied by kernel (semi-)asynchronously — new in 2.1

� Can be blocking or polling (fail if partner not ready)

� Asynchronous notification variant

• No data transfer, only sets notification bit in receiver

• Receiver can wait (block) or poll

� In earlier L4 versions (removed in OKL4):

• IPC also used for mapping

• long synchronous messages

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 35

L4 Mechanism: Mapping

� Create a mapping from a physical
frame to a page in an address
space

• Privileged syscall MapControl

• unprivileged in OKL2.2 (access
control via memory caps)�

� Typically done in response to page
fault

• VM server acting as pager

• can pre-map, of course

� Also used for mapping device
registers to drivers

• VM server acting as pager

• can pre-map, of course

Physical
memory

Address
space

Map

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 36

L4 Exception Handling

� Interrupts

• Modelled as hardware “thread” sending messages

• Received by registered (user-level) interrupt-handler thread

• Interrupt acknowledged by handler via syscall (optionally waiting for next)�

• Timer interrupt handled in-kernel

� Page Faults

• Kernel fakes IPC message from faulting thread to its pager

• Pager requests root task to set up a mapping

• Pager replies to faulting client, message intercepted by kernel

� Other Exceptions

• Kernel fakes IPC message from exceptor thread to its exception handler

• Exception handler may reply with message specifying new IP, SP

• Can be signal handler, emulation code, stub for IPCing to server, ...

©2008 Gernot Heiser UNSW/NICTA/OKL. Distributed under Creative Commons Attribution License 37

Features not in Kernel

� System services (file systems, network stacks, …)�

• Implemented by user-level serves

� VM management

• Performed by user-level pagers

� Device drivers

• User-level threads registered for interrupt IPC

• Map device registers

