
L4 PROGRAMMING

COMP9242

2006/S2 Week 2



RECAP: L4 ABSTRACTIONS AND MECHANISMS

Three basic abstractions:

• Address spaces

• Threads

• Time (second-class abstraction)

Two basic mechanisms:

• Inter-process communication (IPC)

• Mapping

COMP9442 06/S2 L4 PROGRAMMING 2



RECAP: L4 ABSTRACTIONS AND MECHANISMS

Three basic abstractions:

• Address spaces

• Threads

• Time (second-class abstraction)

Two basic mechanisms:

• Inter-process communication (IPC)

• Mapping

L4 API:

• 10 system calls (N2, other APIs have slightly different numbers)

• 6–8 kernel-defined protocols

COMP9442 06/S2 L4 PROGRAMMING 2-A



L4 SYSTEM CALLS

➜ KernelInterface

• ThreadControl

• ExchangeRegisters

• IPC

• ThreadSwitch

• Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 3



KERNEL INTERFACE PAGE (KIP)

• Kernel memory object
➜ mapped into address space (AS) at creation time

➜ location defined by Spa
eControl()
➜ KernelInterfa
e() syscall returns address

L4_KernelInterfa
e (L4_Word_t *ApiVersion,L4_Word_t *ApiFlags,L4_Word_t *KernelId)

COMP9442 06/S2 L4 PROGRAMMING 4



KERNEL INTERFACE PAGE (KIP)

• Kernel memory object
➜ mapped into address space (AS) at creation time

➜ location defined by Spa
eControl()
➜ KernelInterfa
e() syscall returns address

• Contains information about kernel and hardware
➜ kernel version

➜ supported features (page sizes)

➜ physical memory layout

➜ system call addresses

L4_KernelInterfa
e (L4_Word_t *ApiVersion,L4_Word_t *ApiFlags,L4_Word_t *KernelId)

COMP9442 06/S2 L4 PROGRAMMING 4-A



KERNEL INTERFACE PAGE (KIP)

• Kernel memory object
➜ mapped into address space (AS) at creation time

➜ location defined by Spa
eControl()
➜ KernelInterfa
e() syscall returns address

• Contains information about kernel and hardware
➜ kernel version

➜ supported features (page sizes)

➜ physical memory layout

➜ system call addresses

• C language APIL4_KernelInterfa
e (L4_Word_t *ApiVersion,L4_Word_t *ApiFlags,L4_Word_t *KernelId)

COMP9442 06/S2 L4 PROGRAMMING 4-B



SYSTEM CALLS

✔ KernelInterface

➜ ThreadControl

• ExchangeRegisters

• IPC

• ThreadSwitch

• Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 5



THREADS

• Traditional thread:

– execution abstraction

– consists of:
➜ registers (GP and status registers)

➜ stack

COMP9442 06/S2 L4 PROGRAMMING 6



THREADS

• Traditional thread:

– execution abstraction

– consists of:
➜ registers (GP and status registers)

➜ stack

• L4 thread also has:
➜ virtual registers

➜ scheduling priority and time slice

➜ unique thread-ID

➜ address space

COMP9442 06/S2 L4 PROGRAMMING 6-A



THREADS

• Traditional thread:

– execution abstraction

– consists of:
➜ registers (GP and status registers)

➜ stack

• L4 thread also has:
➜ virtual registers

➜ scheduling priority and time slice

➜ unique thread-ID

➜ address space

• L4 provides for a fixed overall number of threads
➜ system, user and “hardware” threads

➜ user threads created/deleted/allocated by privileged root task

COMP9442 06/S2 L4 PROGRAMMING 6-B



VIRTUAL REGISTERS

• Kernel-defined, user-visible thread state

COMP9442 06/S2 L4 PROGRAMMING 7



VIRTUAL REGISTERS

• Kernel-defined, user-visible thread state

• Implemented as physical machine registers or memory locations
➜ depends on architecture and ABI

COMP9442 06/S2 L4 PROGRAMMING 7-A



VIRTUAL REGISTERS

• Kernel-defined, user-visible thread state

• Implemented as physical machine registers or memory locations
➜ depends on architecture and ABI

• Three types

– thread control registers (TCRs)
➜ for sharing info between kernel and user

COMP9442 06/S2 L4 PROGRAMMING 7-B



VIRTUAL REGISTERS

• Kernel-defined, user-visible thread state

• Implemented as physical machine registers or memory locations
➜ depends on architecture and ABI

• Three types

– thread control registers (TCRs)
➜ for sharing info between kernel and user

– Message Registers (MRs)
➜ contain the message passed in an IPC operation

COMP9442 06/S2 L4 PROGRAMMING 7-C



THREAD CONTROL BLOCK (TCB)

• Contains thread state

COMP9442 06/S2 L4 PROGRAMMING 8



THREAD CONTROL BLOCK (TCB)

• Contains thread state

– kernel-controlled state, must only be modified by syscalls
➜ kept in kernel TCB (KTCB)

– state that can be exposed to user w/o compromising security

COMP9442 06/S2 L4 PROGRAMMING 8-A



THREAD CONTROL BLOCK (TCB)

• Contains thread state

– kernel-controlled state, must only be modified by syscalls
➜ kept in kernel TCB (KTCB)

– state that can be exposed to user w/o compromising security
➜ kept in user-level TCB (UTCB)

➜ includes virtual registers (as far as not bound to real registers)

➜ must only be modified via the provided library functions!

No consistency guarantees otherwise

➜ many fields only modified as side effect of some operations (IPC)

COMP9442 06/S2 L4 PROGRAMMING 8-B



USER-LEVEL TCB (ARM)

PreemptedIP (32) +52

PreemptCallbackIP (32) +48

VirtualSender/ActualSender (32) +44

IntendedReceiver (32) +40

ErrorCode (32) +36

ProcessorNo (32) +32

NotifyBits (32) +28

NotifyMask (32) +24

Acceptor (32) +20

∼ (16) cop (8) pmpt (8) +16

ExceptionHandler (32) +12

Pager (32) +8

UserDefinedHandle (32) +4

MyGlobalId (32) ←− UTCB address

MR 63 (32) +316

.

.

.
.
.
.

MR 6 (32) ←− + 88

MR 5 (32) r8

MR 4 (32) r7

MR 3 (32) r6

MR 2 (32) r5

MR 1 (32) r4

MR 0 (32) r3

COMP9442 06/S2 L4 PROGRAMMING 9



THREAD IDENTIFIERS

• Global thread IDs
➜ uniquely identify a thread system-

wide

➜ defined by root task at thread cre-

ation
➜ ... according to some policy

➜ Note: version[5..0] 6= 0

Global Thread ID

thread no (18) version (14)

Global Interrupt ID

interrupt no (18) 1 (14)

COMP9442 06/S2 L4 PROGRAMMING 10



THREAD IDENTIFIERS

• Global thread IDs
➜ uniquely identify a thread system-

wide

➜ defined by root task at thread cre-

ation
➜ ... according to some policy

➜ Note: version[5..0] 6= 0

• Note: V4 local thread IDs removed

Global Thread ID

thread no (18) version (14)

Global Interrupt ID

interrupt no (18) 1 (14)

COMP9442 06/S2 L4 PROGRAMMING 10-A



THREADCONTROL()

• Create, destroy, modify threads
➜ privileged system call (can only be performed by root task)

TreadControl()

COMP9442 06/S2 L4 PROGRAMMING 11



THREADCONTROL()

• Create, destroy, modify threads
➜ privileged system call (can only be performed by root task)

• Determines thread attributes
➜ global thread ID

➜ address space

➜ thread permitted to control scheduling parameter
➜ this is known as the target thread’s scheduler

➜ note: the “scheduler” thread doesn’t actually perform

CPU scheduling!

➜ page fault hander (“pager”)

➜ location of thread’s UTCB within the UTCB area of the thread’s

address space
➜ ARM: UTCB address defined by kernel, not TreadControl()

COMP9442 06/S2 L4 PROGRAMMING 11-A



THREADCONTROL()

• Can create threads active or inactive

– thread is active iff it has a pager

– creation of inactive threads is used to
➜ create and manipulate new address spaces

➜ allocate new threads to existing address spaces

ThreadControl()Ex
hangeRegisters()L4_Word_t L4_ThreadControl (L4_ThreadId_t dest,L4_ThreadId_t spa
e,L4_ThreadId_t s
heduler,L4_ThreadId_t pager,void *ut
b)ut
b

COMP9442 06/S2 L4 PROGRAMMING 12



THREADCONTROL()

• Can create threads active or inactive

– thread is active iff it has a pager

– creation of inactive threads is used to
➜ create and manipulate new address spaces

➜ allocate new threads to existing address spaces

– inactive threads can be activated in one of two ways
➜ by a privileged thread using ThreadControl()
➜ by a local thread (same address space) usingEx
hangeRegisters()

L4_Word_t L4_ThreadControl (L4_ThreadId_t dest,L4_ThreadId_t spa
e,L4_ThreadId_t s
heduler,L4_ThreadId_t pager,void *ut
b)ut
b

COMP9442 06/S2 L4 PROGRAMMING 12-A



THREADCONTROL()

• Can create threads active or inactive

– thread is active iff it has a pager

– creation of inactive threads is used to
➜ create and manipulate new address spaces

➜ allocate new threads to existing address spaces

– inactive threads can be activated in one of two ways
➜ by a privileged thread using ThreadControl()
➜ by a local thread (same address space) usingEx
hangeRegisters()L4_Word_t L4_ThreadControl (L4_ThreadId_t dest,L4_ThreadId_t spa
e,L4_ThreadId_t s
heduler,L4_ThreadId_t pager,void *ut
b)

➜ ARM: ut
b must be zero!

COMP9442 06/S2 L4 PROGRAMMING 12-B



TASK

• L4 does not define a concept of a “task”

COMP9442 06/S2 L4 PROGRAMMING 13



TASK

• L4 does not define a concept of a “task”

• We use it informally meaning:

– an address space
➜ UTCB area

➜ kernel interface page

➜ redirector

– set of threads inside that address space
➜ global thread ID

➜ UTCB location

➜ IP, SP

➜ pager

➜ scheduler

➜ exception handler

– code, data, stack(s) mapped into address space

COMP9442 06/S2 L4 PROGRAMMING 13-A



CREATING A TASK

1. Create inactive thread in a new address space (AS)

• Note: L4 does not (presently) support first-class names for AS!

• An AS is referred to via the ID of one of its threadsL4_ThreadId_t task = according to policy;L4_ThreadId_t me = L4_Myself();L4_ThreadControl (task, /* new TID */task, /* new address space */me, /* scheduler of new thread */L4_nilthread, /* pager, nil=inactive */(void*)-1); /* no utcb yet */

... creates a new thread in an otherwise empty address space

COMP9442 06/S2 L4 PROGRAMMING 14



CREATING A TASK...

2. Define KIP and UTCB area location in new address spaceL4_Spa
eControl (task, /* new TID */0, /* control */kip_fpage, /* where KIP is mapped */ut
b_fpage, /* location of UTCB array */L4_anythread, /* no redirector */&
ontrol); /* leave alone ;-) */

ut
b_base = l4_nilpage;L4_ThreadControl (task, task, me,pager,(void*) ut
b_base);

COMP9442 06/S2 L4 PROGRAMMING 15



CREATING A TASK...

2. Define KIP and UTCB area location in new address spaceL4_Spa
eControl (task, /* new TID */0, /* control */kip_fpage, /* where KIP is mapped */ut
b_fpage, /* location of UTCB array */L4_anythread, /* no redirector */&
ontrol); /* leave alone ;-) */

3. Define UTCB address of new threadut
b_base = l4_nilpage;L4_ThreadControl (task, task, me,pager, /* new pager */(void*) ut
b_base);

Thread will now wait for an IPC containing IP and SP.

COMP9442 06/S2 L4 PROGRAMMING 15-A



CREATING A TASK...

2. Define KIP and UTCB area location in new address spaceL4_Spa
eControl (task, /* new TID */0, /* control */kip_fpage, /* where KIP is mapped */ut
b_fpage, /* location of UTCB array */L4_anythread, /* no redirector */&
ontrol); /* leave alone ;-) */

3. Define UTCB address of new threadut
b_base = l4_nilpage;L4_ThreadControl (task, task, me,pager, /* new pager */(void*) ut
b_base);

Thread will now wait for an IPC containing IP and SP.

4. Send IPC to thread containing IP, SP in MR1, RM2

➜ thread will then start fetching instructions from IP

COMP9442 06/S2 L4 PROGRAMMING 15-B



ADDING THREADS TO A TASK

• Use ThreadControl() to add new threads to ASL4_ThreadId_t tid = according to policy;ut
b_base = ...;L4_ThreadControl (tid, task, me,pager, (void*) ut
b_base);

Ex
hangeRegisters()

COMP9442 06/S2 L4 PROGRAMMING 16



ADDING THREADS TO A TASK

• Use ThreadControl() to add new threads to ASL4_ThreadId_t tid = according to policy;ut
b_base = ...;L4_ThreadControl (tid, task, me,pager, (void*) ut
b_base);
• Can create new threads inactive instead

➜ task can then manage new threads itself

➜ ... using Ex
hangeRegisters()

COMP9442 06/S2 L4 PROGRAMMING 16-A



ADDING THREADS TO A TASK

• Use ThreadControl() to add new threads to ASL4_ThreadId_t tid = according to policy;ut
b_base = ...;L4_ThreadControl (tid, task, me,pager, (void*) ut
b_base);
• Can create new threads inactive instead

➜ task can then manage new threads itself

➜ ... using Ex
hangeRegisters()
• Note: Maximum number of threads defined at

address-space creation time
➜ via the size of the UTCB area

➜ size and alignment conditions of UTCBs are defined in KIP

COMP9442 06/S2 L4 PROGRAMMING 16-B



PRACTICAL CONSIDERATIONS

• Above sequence for creating tasks and threads is cumbersome
➜ price to be paid for leaving policy out of kernel

➜ any shortcuts imply policy

COMP9442 06/S2 L4 PROGRAMMING 17



PRACTICAL CONSIDERATIONS

• Above sequence for creating tasks and threads is cumbersome
➜ price to be paid for leaving policy out of kernel

➜ any shortcuts imply policy

• A system built on top of L4 will inherently define policies
➜ can define and implement library interfaces for task and

thread creation

➜ incorporating system policy

COMP9442 06/S2 L4 PROGRAMMING 17-A



PRACTICAL CONSIDERATIONS

• Above sequence for creating tasks and threads is cumbersome
➜ price to be paid for leaving policy out of kernel

➜ any shortcuts imply policy

• A system built on top of L4 will inherently define policies
➜ can define and implement library interfaces for task and

thread creation

➜ incorporating system policy

• Actual apps would not use raw L4 system calls, but
➜ use libraries

➜ use IDL compiler (Magpie)

COMP9442 06/S2 L4 PROGRAMMING 17-B



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

➜ ExchangeRegisters

• IPC

• ThreadSwitch

• Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 18



EXCHANGEREGISTERS()

• Reads, and optionally modifies, kernel-maintained thread stateL4_ThreadId_t L4_Ex
hangeRegisters (L4_ThreadId_t dest,L4_Word_t 
ontrol,L4_Word_t sp,L4_Word_t ip,L4_Word_t flags,L4_Word_t usr_handle,L4_ThreadId_t pager,L4_Word_t *old_
ontrol,L4_Word_t *old_sp,L4_Word_t *old_ip,L4_Word_t *old_flags,L4_Word_t *old_usr_handle,L4_ThreadId_t *old_pager)

usr_handleflags

COMP9442 06/S2 L4 PROGRAMMING 19



EXCHANGEREGISTERS()

• Reads, and optionally modifies, kernel-maintained thread stateL4_ThreadId_t L4_Ex
hangeRegisters (L4_ThreadId_t dest,L4_Word_t 
ontrol,L4_Word_t sp,L4_Word_t ip,L4_Word_t flags,L4_Word_t usr_handle,L4_ThreadId_t pager,L4_Word_t *old_
ontrol,L4_Word_t *old_sp,L4_Word_t *old_ip,L4_Word_t *old_flags,L4_Word_t *old_usr_handle,L4_ThreadId_t *old_pager)

➜ setting pager activates inactive thread

usr_handleflags

COMP9442 06/S2 L4 PROGRAMMING 19-A



EXCHANGEREGISTERS()

• Reads, and optionally modifies, kernel-maintained thread stateL4_ThreadId_t L4_Ex
hangeRegisters (L4_ThreadId_t dest,L4_Word_t 
ontrol,L4_Word_t sp,L4_Word_t ip,L4_Word_t flags,L4_Word_t usr_handle,L4_ThreadId_t pager,L4_Word_t *old_
ontrol,L4_Word_t *old_sp,L4_Word_t *old_ip,L4_Word_t *old_flags,L4_Word_t *old_usr_handle,L4_ThreadId_t *old_pager)

➜ setting pager activates inactive thread

➜ usr_handle is an arbitrary user-defined value
➜ can be used to implement thread-local storage

➜ flags allows setting processor status bits

COMP9442 06/S2 L4 PROGRAMMING 19-B



EXCHANGEREGISTERS()

CPSR bits affected by flags (ARM):

Bit Name Effect

31 N negative

30 Z zero

29 C carry

28 V overflow

COMP9442 06/S2 L4 PROGRAMMING 20



THREADS AND STACKS

• Kernel does not allocate or manage stacks in any way
➜ only preserves IP, SP on context switch

COMP9442 06/S2 L4 PROGRAMMING 21



THREADS AND STACKS

• Kernel does not allocate or manage stacks in any way
➜ only preserves IP, SP on context switch

• User level (servers) must manage
➜ stack location, allocation, size

➜ entry point address

➜ thread ID allocation, deallocation

➜ UTCB slot allocation, deallocation
➜ KIP specifies UTCB space requirements and alignment

conditions

COMP9442 06/S2 L4 PROGRAMMING 21-A



THREADS AND STACKS

• Kernel does not allocate or manage stacks in any way
➜ only preserves IP, SP on context switch

• User level (servers) must manage
➜ stack location, allocation, size

➜ entry point address

➜ thread ID allocation, deallocation

➜ UTCB slot allocation, deallocation
➜ KIP specifies UTCB space requirements and alignment

conditions

• Beware of stack overflow!
➜ Very easy to grow stack into other data

➜ typical culprit are large automatic variables (arrays, stucts)

COMP9442 06/S2 L4 PROGRAMMING 21-B



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

➜ IPC

• ThreadSwitch

• Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 22



IPC OVERVIEW

• Single IPC syscall incorporates a send and a receive phase
➜ either can be omitted

COMP9442 06/S2 L4 PROGRAMMING 23



IPC OVERVIEW

• Single IPC syscall incorporates a send and a receive phase
➜ either can be omitted

• Receive operation can
➜ specify a specific thread from which to receive (“closed receive”)

➜ specify willingness to receive from any thread (“open wait”)
➜ can be any thread in the system, or any local thread (same AS)

COMP9442 06/S2 L4 PROGRAMMING 23-A



IPC OVERVIEW

• Single IPC syscall incorporates a send and a receive phase
➜ either can be omitted

• Receive operation can
➜ specify a specific thread from which to receive (“closed receive”)

➜ specify willingness to receive from any thread (“open wait”)
➜ can be any thread in the system, or any local thread (same AS)

• Results in five different logical operations

– Send(): send msg to specified thread

– Receive(): receive msg from specified thread

– Wait(): receive msg from any thread

– Call(): send msg to specified thread and wait for reply
➜ typical client operation

– Reply&Wait(): send msg to specified thread and wait for any message
➜ typical server operation

COMP9442 06/S2 L4 PROGRAMMING 23-B



IPC REGISTERS

• Message registers

– virtual registers
➜ not necessarily hardware registers

➜ part of thread state

➜ on ARM: 6 physical registers, rest in UTCB

– actual number is system-configuration parameter
➜ at least 8, no more than 64

– contents form message
➜ first is message tag, defining message size (etc)

➜ rest untyped words, not (normally) interpreted by kernel

COMP9442 06/S2 L4 PROGRAMMING 24



IPC REGISTERS

• Message registers

– virtual registers
➜ not necessarily hardware registers

➜ part of thread state

➜ on ARM: 6 physical registers, rest in UTCB

– actual number is system-configuration parameter
➜ at least 8, no more than 64

– contents form message
➜ first is message tag, defining message size (etc)

➜ rest untyped words, not (normally) interpreted by kernel

➜ kernel protocols define semantics in some cases

COMP9442 06/S2 L4 PROGRAMMING 24-A



IPC REGISTERS

• Message registers

– virtual registers
➜ not necessarily hardware registers

➜ part of thread state

➜ on ARM: 6 physical registers, rest in UTCB

– actual number is system-configuration parameter
➜ at least 8, no more than 64

– contents form message
➜ first is message tag, defining message size (etc)

➜ rest untyped words, not (normally) interpreted by kernel

➜ kernel protocols define semantics in some cases

• Simple IPC just copies data from sender’s to receiver’s MRs!
➜ this case is highly optimised in the kernel (“fast path”)

➜ Note: no page faults possible during transfer (registers don’t fault!)

COMP9442 06/S2 L4 PROGRAMMING 24-B



MESSAGE TAG MR0

label (16) s r n p ∼ (6) u (6)

• Specifies message content

u: number of words in message (excluding MR0)

p: specifies propagation

n: specifies asynchronous notification operation (later)

r: blocking receive
➜ if unset, fail immediately if no pending message

r: blocking send
➜ if unset, fail immediately if receiver not waiting

label: user-defined (e.g., opcode)

COMP9442 06/S2 L4 PROGRAMMING 25



MESSAGE TAG MR0

label (16) s r n p ∼ (6) u (6)

• Specifies message content

u: number of words in message (excluding MR0)

p: specifies propagation
➜ allows sending a message on behalf of another thread

➜ specified by virtual sender in UTCB

➜ receiver gets from kernel virtual, rather than real sender ID

➜ restricted for security (essentially allowed for local threads)

n: specifies asynchronous notification operation (later)

r: blocking receive
➜ if unset, fail immediately if no pending message

r: blocking send
➜ if unset, fail immediately if receiver not waiting

label: user-defined (e.g., opcode)

COMP9442 06/S2 L4 PROGRAMMING 25-A



EXAMPLE: SENDING 4 WORDS

label 0 0 0 4L4Msg_t msg;L4MsgTag_t tag;L4_MsgClear(&msg);L4_MsgAppendWord(&msg, word1);L4_MsgAppendWord(&msg, word2);L4_MsgAppendWord(&msg, word3);L4_MsgAppendWord(&msg, word4);L4_MsgLoad(&msg);tag = L4_Send(tid);

L4_MsgAppendWordtid

COMP9442 06/S2 L4 PROGRAMMING 26



EXAMPLE: SENDING 4 WORDS

label 0 0 0 4L4Msg_t msg;L4MsgTag_t tag;L4_MsgClear(&msg);L4_MsgAppendWord(&msg, word1);L4_MsgAppendWord(&msg, word2);L4_MsgAppendWord(&msg, word3);L4_MsgAppendWord(&msg, word4);L4_MsgLoad(&msg);tag = L4_Send(tid);
Note: u, s, r set implicitly by L4_MsgAppendWord and convenience function

Delivers MR0, ..., MR4 to thread tid
Note: Should use IDL compiler rather then doing this manually!

COMP9442 06/S2 L4 PROGRAMMING 26-A



IPC RESULT MR0

label (16) E X r p ∼ (6) u (6)

• Returns to receiver details of message

u: number of untyped words received

E: error occurred, check ErrorCode in UTCB

X: message came from another CPU

r: message was redirected (later)

p: sender used propagation, check A
tualSender in UTCB

COMP9442 06/S2 L4 PROGRAMMING 27



IPC: OBSOLETED FEATURES

• String items in message
➜ used to send out-of-line data

arbitrarily sized and aligned buffers

➜ non-essential feature that should not be in the kernel

• Map/grant items in message
➜ used to send page mappings through IPC

➜ replaced by MapControl() syscall

• Timeouts on IPC
➜ limit blocking time

➜ practically not very useful

➜ replaced by send/receive block bits (s, r respectively)

COMP9442 06/S2 L4 PROGRAMMING 28



INTERRUPTS

• Modelled as IPC messages sent by virtual hardware threads
➜ received by interrupt handler thread registered for that interrupt

➜ empty (MR0=0) reply to interrupt thread acknowledges interrupt

• Interrupt handler association is via ThreadControl()
➜ set the hardware thread’s pager to the handler thread

➜ disassociate by setting the pager to the hardware thread’s own ID

COMP9442 06/S2 L4 PROGRAMMING 29



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:

COMP9442 06/S2 L4 PROGRAMMING 30



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:
➀ interrupt is triggered, hardware disables interrupt and invokes

kernel

COMP9442 06/S2 L4 PROGRAMMING 30-A



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:
➀ interrupt is triggered, hardware disables interrupt and invokes

kernel

➁ kernel masks interrupt, enables interrupts and sends message

to handler

COMP9442 06/S2 L4 PROGRAMMING 30-B



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:
➀ interrupt is triggered, hardware disables interrupt and invokes

kernel

➁ kernel masks interrupt, enables interrupts and sends message

to handler

➂ handler receives message, identifies interrupt cause, replies to

kernel

COMP9442 06/S2 L4 PROGRAMMING 30-C



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:
➀ interrupt is triggered, hardware disables interrupt and invokes

kernel

➁ kernel masks interrupt, enables interrupts and sends message

to handler

➂ handler receives message, identifies interrupt cause, replies to

kernel

➃ kernel acknowledges interrupt

COMP9442 06/S2 L4 PROGRAMMING 30-D



INTERRUPT HANDLERS

• Typical setup: interrupt handler is bottom-half device driver

• Interrupt handling:
➀ interrupt is triggered, hardware disables interrupt and invokes

kernel

➁ kernel masks interrupt, enables interrupts and sends message

to handler

➂ handler receives message, identifies interrupt cause, replies to

kernel

➃ kernel acknowledges interrupt

➄ handler queues request to top-half driver, sends notification to

top half, waits for next interrupt

COMP9442 06/S2 L4 PROGRAMMING 30-E



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

➜ ThreadSwitch

• Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 31



THREADSWITCH()

• Forfeits the caller’s remaining time slice

COMP9442 06/S2 L4 PROGRAMMING 32



THREADSWITCH()

• Forfeits the caller’s remaining time slice

– Can donate remaining time slice to specific thread
➜ that tread will execute to the end of the time slice on the

donor’s priority

COMP9442 06/S2 L4 PROGRAMMING 32-A



THREADSWITCH()

• Forfeits the caller’s remaining time slice

– Can donate remaining time slice to specific thread
➜ that tread will execute to the end of the time slice on the

donor’s priority

2✗ Note: This is what the manual says.

In the present implementation, the donation is only valid to

the next timer tick (10ms on ARM)!

COMP9442 06/S2 L4 PROGRAMMING 32-B



THREADSWITCH()

• Forfeits the caller’s remaining time slice

– Can donate remaining time slice to specific thread
➜ that tread will execute to the end of the time slice on the

donor’s priority

2✗ Note: This is what the manual says.

In the present implementation, the donation is only valid to

the next timer tick (10ms on ARM)!

– If no recipient specified (or recipient is not runnable)
➜ normal “yield” operation

➜ kernel invokes scheduler

➜ caller might receive a new time slice immediately

COMP9442 06/S2 L4 PROGRAMMING 32-C



THREADSWITCH()

• Forfeits the caller’s remaining time slice

– Can donate remaining time slice to specific thread
➜ that tread will execute to the end of the time slice on the

donor’s priority

2✗ Note: This is what the manual says.

In the present implementation, the donation is only valid to

the next timer tick (10ms on ARM)!

– If no recipient specified (or recipient is not runnable)
➜ normal “yield” operation

➜ kernel invokes scheduler

➜ caller might receive a new time slice immediately

• Directed donation can be used for
➜ explicit scheduling of threads

➜ implementing wait-free locks

➜ ...

COMP9442 06/S2 L4 PROGRAMMING 32-D



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

➜ Schedule

• MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 33



L4 SCHEDULING

• L4 uses 256 hard priorities [0–255]

• Within each priority schedules threads round-robin

COMP9442 06/S2 L4 PROGRAMMING 34



L4 SCHEDULING

• L4 uses 256 hard priorities [0–255]

• Within each priority schedules threads round-robin

• Scheduler is invoked when
➜ the current thread is preempted

➜ the current thread yields

COMP9442 06/S2 L4 PROGRAMMING 34-A



L4 SCHEDULING

• L4 uses 256 hard priorities [0–255]

• Within each priority schedules threads round-robin

• Scheduler is invoked when
➜ the current thread is preempted

➜ the current thread yields

• The scheduler is not normally invoked when a thread blocks:
➜ if destination thread is runnable, the kernel will switch to it

➜ called direct process switch

COMP9442 06/S2 L4 PROGRAMMING 34-B



L4 SCHEDULING

• L4 uses 256 hard priorities [0–255]

• Within each priority schedules threads round-robin

• Scheduler is invoked when
➜ the current thread is preempted

➜ the current thread yields

• The scheduler is not normally invoked when a thread blocks:
➜ if destination thread is runnable, the kernel will switch to it

➜ called direct process switch

➜ scheduler only invoked if destination is blocked too

➜ if both threads are runnable after IPC, the higher-prio one will run
2✗ presently implementation doesn’t always observe prios correctly!

COMP9442 06/S2 L4 PROGRAMMING 34-C



L4 SCHEDULING

• L4 uses 256 hard priorities [0–255]

• Within each priority schedules threads round-robin

• Scheduler is invoked when
➜ the current thread is preempted

➜ the current thread yields

• The scheduler is not normally invoked when a thread blocks:
➜ if destination thread is runnable, the kernel will switch to it

➜ called direct process switch

➜ scheduler only invoked if destination is blocked too

➜ if both threads are runnable after IPC, the higher-prio one will run
2✗ presently implementation doesn’t always observe prios correctly!

• This makes (expensive) scheduler invocation infrequent

COMP9442 06/S2 L4 PROGRAMMING 34-D



TOTAL QUANTUM AND PREEMPTION IPC

• Each thread has:
➜ a priority, determines whether it is scheduled

➜ a time slice length, determines, once scheduled, when it will

be preempted.

➜ a total quantum

COMP9442 06/S2 L4 PROGRAMMING 35



TOTAL QUANTUM AND PREEMPTION IPC

• Each thread has:
➜ a priority, determines whether it is scheduled

➜ a time slice length, determines, once scheduled, when it will

be preempted.

➜ a total quantum

• When scheduled, the thread gets a new time slice
➜ the time slice is subtracted from the thread’s total quantum

➜ when total quantum is exhausted, the thread’s scheduler is notified

COMP9442 06/S2 L4 PROGRAMMING 35-A



TOTAL QUANTUM AND PREEMPTION IPC

• Each thread has:
➜ a priority, determines whether it is scheduled

➜ a time slice length, determines, once scheduled, when it will

be preempted.

➜ a total quantum

• When scheduled, the thread gets a new time slice
➜ the time slice is subtracted from the thread’s total quantum

➜ when total quantum is exhausted, the thread’s scheduler is notified

• When the time slice is exhausted, the thread is preempted
➜ preemption-control flags in the UTCB can defer preemption

➜ unless there is a runnable thread of higher than the

sensitive priority

➜ for up to a specified maximum delay
➜ exceeding this causes an IPC to the exception handler

➜ can be used to implement lock-free synchronisation

COMP9442 06/S2 L4 PROGRAMMING 35-B



SCHEDULE()

• The S
hedule() syscall does not invoke a scheduler!

• Nor does it actually schedule any threads.

S
hedule() ThreadControl()

COMP9442 06/S2 L4 PROGRAMMING 36



SCHEDULE()

• The S
hedule() syscall does not invoke a scheduler!

• Nor does it actually schedule any threads.

• S
hedule() manipulates a thread’s scheduling parameters:

– The caller must be registered as the destination’s scheduler
➜ set via ThreadControl()

COMP9442 06/S2 L4 PROGRAMMING 36-A



SCHEDULE()

• The S
hedule() syscall does not invoke a scheduler!

• Nor does it actually schedule any threads.

• S
hedule() manipulates a thread’s scheduling parameters:

– The caller must be registered as the destination’s scheduler
➜ set via ThreadControl()

– can change
➜ priority

➜ time slice length

➜ total quantum

➜ sensitive priority

➜ processor number
➜ only relevant for SMP

➜ kernel will not transparently migrate threads between CPUs

COMP9442 06/S2 L4 PROGRAMMING 36-B



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

✔ Schedule

➜ MapControl

• SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 37



ADDRESS SPACES

• Address spaces are created empty

• Need to be explicitly populated with page mappings
➜ kernel does not map pages automatically (except KIP, UTCB)

COMP9442 06/S2 L4 PROGRAMMING 38



ADDRESS SPACES

• Address spaces are created empty

• Need to be explicitly populated with page mappings
➜ kernel does not map pages automatically (except KIP, UTCB)

• Normally AS populated by pager on demand
➜ thread runs, faults on unmapped pages, pager creates mapping

• Can also be done pro-actively
➜ Eg OS server can pre-map contents of executable

COMP9442 06/S2 L4 PROGRAMMING 38-A



ADDRESS SPACES

• Address spaces are created empty

• Need to be explicitly populated with page mappings
➜ kernel does not map pages automatically (except KIP, UTCB)

• Normally AS populated by pager on demand
➜ thread runs, faults on unmapped pages, pager creates mapping

• Can also be done pro-actively
➜ Eg OS server can pre-map contents of executable

• Address space is a second-class abstraction
➜ there are no unique identifiers for address spaces

➜ an AS is identified via one of its threads (syscall TID argument)

COMP9442 06/S2 L4 PROGRAMMING 38-B



MAPCONTROL()

• Creates (maps) or destroys (unmaps) page mappings

• Privileged system call (only available to root task)

L4_Word_t L4_MapControl (L4_ThreadId_t dest,L4_Word_t 
ontrol)

COMP9442 06/S2 L4 PROGRAMMING 39



MAPCONTROL()

• Creates (maps) or destroys (unmaps) page mappings

• Privileged system call (only available to root task)L4_Word_t L4_MapControl (L4_ThreadId_t dest,L4_Word_t 
ontrol)
dest: denominates target address space

control: determines operation of syscall

m r 0 (24) n (6)

r: read operation — returns (pre-syscall) mapping info
➜ eg reference bits where hardware-maintained (x86)

m: modify operation — changes mappings

n: number of map items used to describe mappings
➜ map items are contained in message registers MR0 · · ·MR2n−1

COMP9442 06/S2 L4 PROGRAMMING 39-A



SPECIFYING MAPPINGS: FPAGES

• A flexpage or fpage is used to specify mapping objects

– generalisation of a hardware page

– similar properties:
➜ size is power-of-two multiple of base hardware page size

➜ aligned to its size

– fpage of size 2
s is specified as

base/1024 s (6) ∼ (4)

– special fpages:

0 0x3f ∼ (4)

full AS

0 0 (6) 0 (4)

nil page

– On ARM, s ≥ 12

COMP9442 06/S2 L4 PROGRAMMING 40



MAP ITEM

• Specifies a mapping to be created in destination AS

fpage (28) 0rwx

phys adr/1024 (26) attr (6)

➜ fpage: specifies where mapping is to occur in destination AS

➜ phys adr : base of physical frame(s) to be mapped

➜ attr : memory attributes (eg cached/uncached)

➜ rxw: permissions

COMP9442 06/S2 L4 PROGRAMMING 41



MAP ITEM

• Specifies a mapping to be created in destination AS

fpage (28) 0rwx

phys adr/1024 (26) attr (6)

➜ fpage: specifies where mapping is to occur in destination AS

➜ phys adr : base of physical frame(s) to be mapped
➜ Note: shifted 4 bits to support 64MB of physical AS

➜ attr : memory attributes (eg cached/uncached)

➜ rxw: permissions

COMP9442 06/S2 L4 PROGRAMMING 41-A



MAP ITEM

• Specifies a mapping to be created in destination AS

fpage (28) 0rwx

phys adr/1024 (26) attr (6)

➜ fpage: specifies where mapping is to occur in destination AS

➜ phys adr : base of physical frame(s) to be mapped
➜ Note: shifted 4 bits to support 64MB of physical AS

➜ attr : memory attributes (eg cached/uncached)

➜ rxw: permissions
➜ access rights in destination address space

➜ can be used to change (up/downgrade) rights

(only if mapping is replaced by an otherwise identical one)

➜ removing all rights removes the mapping (unmap operation)

COMP9442 06/S2 L4 PROGRAMMING 41-B



PAGE FAULT HANDLING

• Address-spaces are populated in response to page faults

• Page faults are converted into IPC messages

MapControl()

COMP9442 06/S2 L4 PROGRAMMING 42



PAGE FAULT HANDLING

• Address-spaces are populated in response to page faults

• Page faults are converted into IPC messages:
➀ app triggers page fault

MapControl()

PagerApplication

COMP9442 06/S2 L4 PROGRAMMING 42-A



PAGE FAULT HANDLING

• Address-spaces are populated in response to page faults

• Page faults are converted into IPC messages:
➀ app triggers page fault

➁ kernel exception handler generates IPC from faulter to pager

MapControl()

PagerApplication
PF msg

COMP9442 06/S2 L4 PROGRAMMING 42-B



PAGE FAULT HANDLING

• Address-spaces are populated in response to page faults

• Page faults are converted into IPC messages:
➀ app triggers page fault

➁ kernel exception handler generates IPC from faulter to pager

➂ pager establishes mapping
➜ calls MapControl() (if privileged) otherwise asks root task to do it

➃ pager replies to page-fault IPC

➄ kernel intercepts message, discards

➅ kernel restarts faulting thread

PagerApplication
PF msg

null msg

COMP9442 06/S2 L4 PROGRAMMING 42-C



PAGE FAULT MESSAGE

• Format of kernel-generated page fault message

Fault IP MR2

Fault address MR1

-2 0rwx 0 (4) 0 (6) 2 MR0

COMP9442 06/S2 L4 PROGRAMMING 43



PAGE FAULT MESSAGE

• Format of kernel-generated page fault message

Fault IP MR2

Fault address MR1

-2 0rwx 0 (4) 0 (6) 2 MR0

• Eg. page fault at address 0x2002: Kernel sends

Fault IP MR2

0x2002 MR1

-2 0rwx 0 (4) 0 2 MR0

COMP9442 06/S2 L4 PROGRAMMING 43-A



PAGE FAULT MESSAGE

• Format of kernel-generated page fault message

Fault IP MR2

Fault address MR1

-2 0rwx 0 (4) 0 (6) 2 MR0

• Eg. page fault at address 0x2002: Kernel sends

Fault IP MR2

0x2002 MR1

-2 0rwx 0 (4) 0 2 MR0

• Obviously, application can manufacture same message
➜ pager cannot tell the difference

➜ not a problem, as application could achieve the same by

forcing a fault

COMP9442 06/S2 L4 PROGRAMMING 43-B



PAGER ACTION

• E.g., pager handles write page fault at 0x2002

– map item for map 4kB page at PA 0xc0000:

0x8 12 0

0x300 0

– note: phys adr must be aligned to fpage size

COMP9442 06/S2 L4 PROGRAMMING 44



PAGER ACTION

• E.g., pager handles write page fault at 0x2002

– map item for map 4kB page at PA 0xc0000:

0x8 12 0

0x300 0

– note: phys adr must be aligned to fpage size

• After establishing mapping, pager replies to page-fault message
➜ content of message completely ignored

➜ only servers for synchronisation: informing kernel that faulter

can be restarted

➜ if pager did not establish a suitable mapping, client will trigger

same fault again

COMP9442 06/S2 L4 PROGRAMMING 44-A



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

✔ Schedule

✔ MapControl

➜ SpaceControl

• ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 45



SPACECONTROL()

• Controls layout of new address spaces
➜ KIP location (not on ARM)

➜ UTCB area location (not on ARM)


ontrol

COMP9442 06/S2 L4 PROGRAMMING 46



SPACECONTROL()

• Controls layout of new address spaces
➜ KIP location (not on ARM)

➜ UTCB area location (not on ARM)

• Controls setting of redirector

– used to limit communication
➜ for information flow control

– if set to a valid thread, IPC from the AS can only be sent:
➜ locally (within AS)

➜ to the redirector’s address space

– any other message is instead delivered to the redirector

– Note: not heavily tested in present version


ontrol

COMP9442 06/S2 L4 PROGRAMMING 46-A



SPACECONTROL()

• Controls layout of new address spaces
➜ KIP location (not on ARM)

➜ UTCB area location (not on ARM)

• Controls setting of redirector

– used to limit communication
➜ for information flow control

– if set to a valid thread, IPC from the AS can only be sent:
➜ locally (within AS)

➜ to the redirector’s address space

– any other message is instead delivered to the redirector

– Note: not heavily tested in present version
➜ your chance to pick up bonus points


ontrol

COMP9442 06/S2 L4 PROGRAMMING 46-B



SPACECONTROL()

• Controls layout of new address spaces
➜ KIP location (not on ARM)

➜ UTCB area location (not on ARM)

• Controls setting of redirector

– used to limit communication
➜ for information flow control

– if set to a valid thread, IPC from the AS can only be sent:
➜ locally (within AS)

➜ to the redirector’s address space

– any other message is instead delivered to the redirector

– Note: not heavily tested in present version
➜ your chance to pick up bonus points

• On ARM 
ontrol used to set PID register (later)

COMP9442 06/S2 L4 PROGRAMMING 46-C



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

✔ Schedule

• MapControl

• SpaceControl

➜ ProcessorControl

• CacheControl

COMP9442 06/S2 L4 PROGRAMMING 47



PROCESSORCONTROL()

• Sets processor core voltage and frequency (where supported)
➜ used for power management

• Privileged system call

COMP9442 06/S2 L4 PROGRAMMING 48



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

✔ Schedule

✔ MapControl

✔ SpaceControl

✔ ProcessorControl

➜ CacheControl

COMP9442 06/S2 L4 PROGRAMMING 49



CACHECONTROL()

• Used to flush caches or lock cache lines as per arguments
➜ target cache (I/D, L1/L2, ...)

➜ kind of operation (flush/lock/unlock)

➜ address range to flush from cache

• Privileged system call
➜ sort-of... Some functions can be called from anywhere (Hack!)

COMP9442 06/S2 L4 PROGRAMMING 50



SYSTEM CALLS

✔ KernelInterface

✔ ThreadControl

✔ ExchangeRegisters

✔ IPC

✔ ThreadSwitch

✔ Schedule

✔ MapControl

✔ SpaceControl

✔ ProcessorControl

✔ CacheControl

That’s it!

COMP9442 06/S2 L4 PROGRAMMING 51



L4 PROTOCOLS

✔ Page fault
➜ already covered

✔ Thread start
➜ already covered

✔ Interrupt
➜ already covered

➜ Preemption

• Exception

• Asynchronous notification

COMP9442 06/S2 L4 PROGRAMMING 52



PREEMPTION PROTOCOL

• Each thread has three scheduling attributes:
➜ priority

➜ time slice length

➜ total quantum

• Kernel schedules runnable threads according to their priority
➜ round-robin between threads of equal prio

S
hedule()

COMP9442 06/S2 L4 PROGRAMMING 53



PREEMPTION PROTOCOL

• Each thread has three scheduling attributes:
➜ priority

➜ time slice length

➜ total quantum

• Kernel schedules runnable threads according to their priority
➜ round-robin between threads of equal prio

• When thread is scheduled
➜ it is given fresh time slice

➜ the time slice is deducted from its total quantum

S
hedule()

COMP9442 06/S2 L4 PROGRAMMING 53-A



PREEMPTION PROTOCOL

• Each thread has three scheduling attributes:
➜ priority

➜ time slice length

➜ total quantum

• Kernel schedules runnable threads according to their priority
➜ round-robin between threads of equal prio

• When thread is scheduled
➜ it is given fresh time slice

➜ the time slice is deducted from its total quantum

• When total quantum is exhausted, the kernel sends a message

on behalf of the preempted thread to its scheduler
➜ scheduler can provide new quantum (using S
hedule())

➜ not heavily tested

• Format of preemption message:

-3 0 0 0 0 MR0

COMP9442 06/S2 L4 PROGRAMMING 53-B



L4 PROTOCOLS

✔ Page fault

✔ Thread start

✔ Interrupt

✔ Preemption

➜ Exception

• Asynchronous notification

COMP9442 06/S2 L4 PROGRAMMING 54



EXCEPTION PROTOCOL

• Other exceptions (invalid instruction, division by zero...)

result in a kernel-generated IPC to thread’s exception handler

COMP9442 06/S2 L4 PROGRAMMING 55



EXCEPTION PROTOCOL

• Other exceptions (invalid instruction, division by zero...)

result in a kernel-generated IPC to thread’s exception handler

• Exception IPC

– kernel sends (partial) thread state

exception wordk−1 MRk+1

...
...

exception word0 MR2

exception IP MR1

label 0 0 0 k MR0

– label:
➜ -4: standard exceptions, architecture independent

➜ -5: architecture-specific exception

COMP9442 06/S2 L4 PROGRAMMING 55-A



EXCEPTION PROTOCOL

• Other exceptions (invalid instruction, division by zero...)

result in a kernel-generated IPC to thread’s exception handler

• Exception IPC

– kernel sends (partial) thread state

exception wordk−1 MRk+1

...
...

exception word0 MR2

exception IP MR1

label 0 0 0 k MR0

– label:
➜ -4: standard exceptions, architecture independent

➜ -5: architecture-specific exception

• Exception handler may reply with modified thread state

COMP9442 06/S2 L4 PROGRAMMING 55-B



EXCEPTION HANDLING

• Possible responses of exception handler:

retry: reply with unchanged state
➜ possibly after removing cause

➜ possibly changing other parts of state (registers)

continue: reply with IP+=4 (assuming 4-byte instructions)

emulation: compute desired result,

reply with appropriate register value and IP+=4

handler: reply with IP of local exception handler code

to be executed by the thread itself

ignore: will block the thread indefinitely

kill: use Ex
hangeRegisters() (if local) or ThreadControl()

to restart or kill thread

COMP9442 06/S2 L4 PROGRAMMING 56



L4 PROTOCOLS

✔ Page fault

✔ Thread start

✔ Interrupt

✔ Preemption

✔ Exception

➜ Asynchronous notification

COMP9442 06/S2 L4 PROGRAMMING 57



ASYNCHRONOUS NOTIFICATION

• Very restricted form of asynchronous IPC:
➜ delivered without blocking sender

➜ delivered immediately, directly to receiver’s AS

NotifyBits |=
NotifyBits

COMP9442 06/S2 L4 PROGRAMMING 58



ASYNCHRONOUS NOTIFICATION

• Very restricted form of asynchronous IPC:
➜ delivered without blocking sender

➜ delivered immediately, directly to receiver’s AS

➜ message consists of a bit mask OR-ed to receiver’s bitfield

receiver.NotifyBits |= sender.MR1

NotifyBits

COMP9442 06/S2 L4 PROGRAMMING 58-A



ASYNCHRONOUS NOTIFICATION

• Very restricted form of asynchronous IPC:
➜ delivered without blocking sender

➜ delivered immediately, directly to receiver’s AS

➜ message consists of a bit mask OR-ed to receiver’s bitfield

receiver.NotifyBits |= sender.MR1

➜ no effect if receiver’s bits already set

➜ receiver can prevent asynchronous notification

by setting a flag in its UTCB

NotifyBits

COMP9442 06/S2 L4 PROGRAMMING 58-B



ASYNCHRONOUS NOTIFICATION

• Very restricted form of asynchronous IPC:
➜ delivered without blocking sender

➜ delivered immediately, directly to receiver’s AS

➜ message consists of a bit mask OR-ed to receiver’s bitfield

receiver.NotifyBits |= sender.MR1

➜ no effect if receiver’s bits already set

➜ receiver can prevent asynchronous notification

by setting a flag in its UTCB

• Two ways to receive asynchronous notifications:

syncronously by a form of blocking IPC wait
➜ receiver specifies mask of notification bits to wait for

➜ on notification, kernel manufactures a message in a defined format

asynchronously by checking NotifyBits in UTCB
➜ but remember it’s asynchronous and can change at any time!

COMP9442 06/S2 L4 PROGRAMMING 58-C



L4 PROTOCOLS

✔ Page fault

✔ Thread start

✔ Interrupt

✔ Preemption

✔ Exception

✔ Asynchronous notification

COMP9442 06/S2 L4 PROGRAMMING 59


