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WHY MICROKERNELS?

MONOLITHIC KERNEL:

• Kernel has access to everything

Ü all optimisations possible

Ü all techniques/mechanisms/concepts

implementable

• Can be extended by simply

adding code

• Cost: Complexity

Ü growing size

Ü limited maintainability
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MICROKERNEL: IDEA

• Small kernel providing core functionality

Ü only code running in privileged mode

• Most OS services provided by user-level servers

• Applications communicate with servers via message-passing IPC
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TRUSTED COMPUTING BASE

The part of the system which must be trusted to operate correctly

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional

embedded

Linux/

Windows

Microkernel-

based

TCB: all code 100,000’s loc 10,000’s loc
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MICROKERNEL PROMISES

• Combat kernel complexity, increase robustness, maintainability

Ü dramatic reduction of amount of privileged code

Ü modularisation with hardware-enforced interfaces

Ü normal resource management applicable to system services

• Flexibility, adaptability, extensibility

Ü policies defined at user level, easy to change

Ü additional services provided by adding servers

• Hardware abstraction

Ü hardware-dependent part of system is small, easy to optimise

• Security, safety

Ü internal protection boundaries

REALITY CHECK!

slow, inflexible

100µ
sec IPC
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IPC COSTS

• First-generation microkernels

Ü Mach, Chorus, Amoeba

... were slow...

Ü 100µs IPC

Ü almost independent of clock speed!

• L4 does better

Ü close to hardware cost

Ü 20 times faster than Mach

on identical hardware
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IPC COST IMPLICATIONS
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L4 IPC

cse/UNSW/NICTA COMP9242 2006/S2 W1 P7



MICROKERNEL PERFORMANCE

FIRST-GENERATION MICROKERNELS WERE SLOW

• Reasons: Poor design [Liedtke SOSP 95]

Ü complex API

Ü too many features

Ü poor design and implementation

Ü large cache footprint ⇒ memory bandwidth limited

• L4 is fast due to small cache footprint

Ü 10–14 I-cache lines

Ü 8 D-cache lines

Ü small cache footprint ⇒ CPU limited
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WHAT MAKES A MICROKERNEL FAST?

• Small cache footprint, but how?

Ü minimality: no unnecessary features

Ü orthogonality: complementary features

Ü well-designed, and well implemented from scratch!

• Kernel provides mechanisms, not services

• Design principle (minimality):

A feature is only allowed in the kernel if this is required for the

implementation of a secure system.
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L4 HISTORY

• Original version by Jochen Liedtke (GMD) ≈ 93–95

Ü “Version 2” API

Ü i486 assembler

Ü IPC 20 times faster than Mach [SOSP 93, 95]

• Other L4 V2 implementations:

Ü L4/MIPS64: assembler + C (UNSW) 95–97

Ü fastest kernel on single-issue CPU (100 cycles)
Ü L4/Alpha: PAL + C (Dresden/UNSW), 95–97

Ü first released SMP version
Ü Fiasco (Pentium): C++ (Dresden), 97–99
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L4 HISTORY

• Experimental “Version X” API

Ü improved hardware abstraction

Ü various experimental features (performance, security, generality)

Ü portability experiments

• Implementations

Ü Pentium: assembler, Liedtke (IBM), 97-98

Ü Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98–99
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L4 HISTORY

• “Version 4” (X.2) API, 02

Ü portability, API improvements

• L4Ka::Pistachio, C++ (plus assembler “fast path”)

Ü x86, PPC-32, Itanium (Karlsruhe), 02–03

Ü fastest ever kernel (36 cycles, NICTA/UNSW)
Ü MIPS64, Alpha (NICTA/UNSW) 03

Ü same performance as V2 kernel (100 cycles single issue)
Ü ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03-04

Ü UltraSPARC (NICTA/UNSW), 04–??

• Portable kernel:

Ü ≈ 3 person months for core functionality

Ü 6–12 person months for full functionality & optimisation
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L4 HISTORY

• NICTA L4-embedded (Nx) API, 05–

Ü transitional API (pre-seL4)

Ü de-featured (timeouts, “long” IPC, recursive mappings)

Ü reduced memory footprint for embedded systems

• NICTA::Pistachio-embedded, derived from L4KA::Pistachio

Ü ARM9/ARM11, x86, MIPS

Ü PPC 405, Blackfin under development

• You’ll be using the (unreleased) N2 API implementation
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L4 PRESENT

• NICTA L4-embedded commercially deployed

Ü adopted by Qualcomm for CDMA chipsets

Ü under evaluation/development for other products at a number of multinationals

Ü about to establish strong presence in wireless and CE markets

• NICTA spinning out Open Kernel Labs

Ü further development of L4-embedded

Ü professional services for L4 users

Ü commercialisation of present NICTA microkernel research
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L4 FUTURE

• Security API: NICTA seL4

Ü draft published March 06

Ü semi-formal specification in Haskell

Ü “executable spec”: Haskell implementation plus ISA simulator

Ü used for exercising and porting apps

Ü stable API August 06

Ü C implementation end of 06

Ü similar project at TU Dresden: L4sec (draft API Oct 05)

• Features:

Ü user-level management of kernel resources (esp. memory)

Ü low-overhead information-flow control mechanisms

Ü suitable for formal verification

• Formal verification of L4 implementation: L4.verified project

Ü mathematical proof that implementation matches spec
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PISTACHIO: SIZE

• Source code:

Ü ≈ 10k loc architecture independent

Ü ≈ 0.5–2k loc architecture specific

• Memory footprint kernel (no attempt to minimise yet):

Ü using gcc (poor code density on RISC/EPIC architectures)

Architecture Version Text Total

x86 L4Ka 52k 98k

Itanium L4Ka 173k 417k

ARM NICTA 55k 117k

PPC-32 L4Ka 41k 135k

PPC-64 L4Ka 60k 205k

MIPS-64 L4Ka 61k 100k

• Fast IPC cache footprint (typical):

Ü 10–14 I-cache lines

Ü 8 D-cache lines
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SIZE COMPARISON
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PISTACHIO PERFORMANCE: IPC

port/ C++ optimised
Architecture optimisation intra AS inter AS intra AS inter AS

Pentium-3 UKa 180 367 113 305

Small Spaces UKa 213

Pentium-4 UKa 385 983 196 416

Itanium 2 UKa/NICTA 508 508 36 36

cross CPU UKa 7419 7410 N/A N/A

MIPS64 NICTA/UNSW 276 276 109 109

cross CPU NICTA/UNSW 3238 3238 690 690

PowerPC-64 NICTA/UNSW 330 518 200‡ 200‡

Alpha 21264 NICTA/UNSW 440 642 ≈70†
≈70†

ARM/XScale NICTA/UNSW 340 340 151 151

† “Version 2” assembler kernel
‡ Guestimate!
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L4 ABSTRACTIONS AND MECHANISMS

THREE BASIC ABSTRACTIONS:

• Address spaces

• Threads

• Time (second-class abstraction in N2 API, to vanish completely)

TWO BASIC MECHANISMS:

• Inter-process communication (IPC)

• Mapping
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L4 ABSTRACTIONS: ADDRESS SPACES

• Address space is unit of protection

Ü initially empty

Ü populated by mapping in frames

• Mapping performed by privileged MapControl() syscall

Ü can only be called from root task

Ü also used for revoking mappings (unmap operation)

• Root task

Ü initial address space created at boot time

Ü controls system resources

Ü non-delegatable privilege (shortcoming of N2 API)
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L4 ABSTRACTIONS: THREADS

• Thread is unit of execution

Ü kernel-scheduled

• Thread is addressable unit for IPC

Ü thread-ID is unique identifier

• Threads managed by user-level servers

Ü creation, destruction, association with address space

• Thread attributes:

Ü scheduling parameters (time slice, priority)

Ü unique ID

Ü address space

Ü page-fault and exception handler
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L4 ABSTRACTIONS: TIME

• Used for scheduling time slices

Ü thread has fixed-length time slice for preemption

Ü time slices allocated from (finite or infinite) time quantum

Ü notification when exceeded

• In earlier L4 versions also used for IPC timeouts

Ü removed in N2
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L4 MECHANISM: IPC

• Synchronous message-passing operation

• Data copied directly from sender to receiver

Ü short messages passed in registers

• Can be blocking or polling (fail if partner not ready)

• Asynchronous notification variant

Ü no data transfer, only sets notification bit in receiver

Ü receiver can wait (block) or poll
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L4 CONCEPTS: ROOT TASK

Physical Memory

Root Task

DriverDriver

Server Server

ServerServer

Client Client

• First task started at boot time

• Can perform privileged system calls

• Controls access to resources

Ü threads

Ü address spaces

Ü physical memory
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L4 EXCEPTION HANDLING

• Interrupts

Ü modelled as hardware “thread” sending messages

Ü received by registered (user-level) interrupt-handler thread

Ü interrupt acknowledged when handler blocks on receive

Ü timer interrupt handled in-kernel

• Page faults

Ü kernel fakes IPC message from faulting thread to its pager

Ü pager requests root task to set up a mapping

Ü pager replies to faulting client, message intercepted by kernel

• Other exceptions

Ü kernel fakes IPC message from exceptor thread to its exception handler

Ü exception handler may reply with message specifying new IP, SP

Ü can be signal handler, emulation code, stub for IPCing to server, ...
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FEATURES NOT IN KERNEL

• System services (file system, network stack, ...)

Ü implemented by user-level servers

• VM management

Ü performed by (hierarchy) of user-level pagers

• Device drivers

Ü user-level threads registered for interrupt IPC

Ü map device registers
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