
Microkernels and L4

Introduction

COMP9242 2006/S2 Week 1

cse/UNSW/NICTA

WHY MICROKERNELS?

MONOLITHIC KERNEL:

• Kernel has access to everything

Ü all optimisations possible

Ü all techniques/mechanisms/concepts

implementable

• Can be extended by simply

adding code

• Cost: Complexity

Ü growing size

Ü limited maintainability

cse/UNSW/NICTA COMP9242 2006/S2 W1 P1

MICROKERNEL: IDEA

• Small kernel providing core functionality

Ü only code running in privileged mode

• Most OS services provided by user-level servers

• Applications communicate with servers via message-passing IPC

UNIX

Server Driver

Device File

Server

user

mode

mode

kernel

syscall

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, Dispatcher, ... IPC, virtual memory

Application

Application

IPC

Hardware Hardware

cse/UNSW/NICTA COMP9242 2006/S2 W1 P2

TRUSTED COMPUTING BASE

The part of the system which must be trusted to operate correctly

Hardware

Service

Application
Application

Hardware

OS

Service

Application

Hardware

Microkernel

Service

System: traditional

embedded

Linux/

Windows

Microkernel-

based

TCB: all code 100,000’s loc 10,000’s loc

cse/UNSW/NICTA COMP9242 2006/S2 W1 P3



MICROKERNEL PROMISES

• Combat kernel complexity, increase robustness, maintainability

Ü dramatic reduction of amount of privileged code

Ü modularisation with hardware-enforced interfaces

Ü normal resource management applicable to system services

• Flexibility, adaptability, extensibility

Ü policies defined at user level, easy to change

Ü additional services provided by adding servers

• Hardware abstraction

Ü hardware-dependent part of system is small, easy to optimise

• Security, safety

Ü internal protection boundaries

REALITY CHECK!

slow, inflexible

100µ
sec IPC

cse/UNSW/NICTA COMP9242 2006/S2 W1 P4

IPC COSTS

• First-generation microkernels

Ü Mach, Chorus, Amoeba

... were slow...

Ü 100µs IPC

Ü almost independent of clock speed!

• L4 does better

Ü close to hardware cost

Ü 20 times faster than Mach

on identical hardware

cse/UNSW/NICTA COMP9242 2006/S2 W1 P5

IPC COST IMPLICATIONS

cse/UNSW/NICTA COMP9242 2006/S2 W1 P6

L4 IPC

cse/UNSW/NICTA COMP9242 2006/S2 W1 P7



MICROKERNEL PERFORMANCE

FIRST-GENERATION MICROKERNELS WERE SLOW

• Reasons: Poor design [Liedtke SOSP 95]

Ü complex API

Ü too many features

Ü poor design and implementation

Ü large cache footprint ⇒ memory bandwidth limited

• L4 is fast due to small cache footprint

Ü 10–14 I-cache lines

Ü 8 D-cache lines

Ü small cache footprint ⇒ CPU limited

cse/UNSW/NICTA COMP9242 2006/S2 W1 P8

WHAT MAKES A MICROKERNEL FAST?

• Small cache footprint, but how?

Ü minimality: no unnecessary features

Ü orthogonality: complementary features

Ü well-designed, and well implemented from scratch!

• Kernel provides mechanisms, not services

• Design principle (minimality):

A feature is only allowed in the kernel if this is required for the

implementation of a secure system.

cse/UNSW/NICTA COMP9242 2006/S2 W1 P9

L4 HISTORY

• Original version by Jochen Liedtke (GMD) ≈ 93–95

Ü “Version 2” API

Ü i486 assembler

Ü IPC 20 times faster than Mach [SOSP 93, 95]

• Other L4 V2 implementations:

Ü L4/MIPS64: assembler + C (UNSW) 95–97

Ü fastest kernel on single-issue CPU (100 cycles)
Ü L4/Alpha: PAL + C (Dresden/UNSW), 95–97

Ü first released SMP version
Ü Fiasco (Pentium): C++ (Dresden), 97–99

cse/UNSW/NICTA COMP9242 2006/S2 W1 P10

L4 HISTORY

• Experimental “Version X” API

Ü improved hardware abstraction

Ü various experimental features (performance, security, generality)

Ü portability experiments

• Implementations

Ü Pentium: assembler, Liedtke (IBM), 97-98

Ü Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98–99

cse/UNSW/NICTA COMP9242 2006/S2 W1 P11



L4 HISTORY

• “Version 4” (X.2) API, 02

Ü portability, API improvements

• L4Ka::Pistachio, C++ (plus assembler “fast path”)

Ü x86, PPC-32, Itanium (Karlsruhe), 02–03

Ü fastest ever kernel (36 cycles, NICTA/UNSW)
Ü MIPS64, Alpha (NICTA/UNSW) 03

Ü same performance as V2 kernel (100 cycles single issue)
Ü ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03-04

Ü UltraSPARC (NICTA/UNSW), 04–??

• Portable kernel:

Ü ≈ 3 person months for core functionality

Ü 6–12 person months for full functionality & optimisation

cse/UNSW/NICTA COMP9242 2006/S2 W1 P12

L4 HISTORY

• NICTA L4-embedded (Nx) API, 05–

Ü transitional API (pre-seL4)

Ü de-featured (timeouts, “long” IPC, recursive mappings)

Ü reduced memory footprint for embedded systems

• NICTA::Pistachio-embedded, derived from L4KA::Pistachio

Ü ARM9/ARM11, x86, MIPS

Ü PPC 405, Blackfin under development

• You’ll be using the (unreleased) N2 API implementation

cse/UNSW/NICTA COMP9242 2006/S2 W1 P13

L4 PRESENT

• NICTA L4-embedded commercially deployed

Ü adopted by Qualcomm for CDMA chipsets

Ü under evaluation/development for other products at a number of multinationals

Ü about to establish strong presence in wireless and CE markets

• NICTA spinning out Open Kernel Labs

Ü further development of L4-embedded

Ü professional services for L4 users

Ü commercialisation of present NICTA microkernel research

cse/UNSW/NICTA COMP9242 2006/S2 W1 P14

L4 FUTURE

• Security API: NICTA seL4

Ü draft published March 06

Ü semi-formal specification in Haskell

Ü “executable spec”: Haskell implementation plus ISA simulator

Ü used for exercising and porting apps

Ü stable API August 06

Ü C implementation end of 06

Ü similar project at TU Dresden: L4sec (draft API Oct 05)

• Features:

Ü user-level management of kernel resources (esp. memory)

Ü low-overhead information-flow control mechanisms

Ü suitable for formal verification

• Formal verification of L4 implementation: L4.verified project

Ü mathematical proof that implementation matches spec

cse/UNSW/NICTA COMP9242 2006/S2 W1 P15



PISTACHIO: SIZE

• Source code:

Ü ≈ 10k loc architecture independent

Ü ≈ 0.5–2k loc architecture specific

• Memory footprint kernel (no attempt to minimise yet):

Ü using gcc (poor code density on RISC/EPIC architectures)

Architecture Version Text Total

x86 L4Ka 52k 98k

Itanium L4Ka 173k 417k

ARM NICTA 55k 117k

PPC-32 L4Ka 41k 135k

PPC-64 L4Ka 60k 205k

MIPS-64 L4Ka 61k 100k

• Fast IPC cache footprint (typical):

Ü 10–14 I-cache lines

Ü 8 D-cache lines

cse/UNSW/NICTA COMP9242 2006/S2 W1 P16

SIZE COMPARISON

cse/UNSW/NICTA COMP9242 2006/S2 W1 P17

PISTACHIO PERFORMANCE: IPC

port/ C++ optimised
Architecture optimisation intra AS inter AS intra AS inter AS

Pentium-3 UKa 180 367 113 305

Small Spaces UKa 213

Pentium-4 UKa 385 983 196 416

Itanium 2 UKa/NICTA 508 508 36 36

cross CPU UKa 7419 7410 N/A N/A

MIPS64 NICTA/UNSW 276 276 109 109

cross CPU NICTA/UNSW 3238 3238 690 690

PowerPC-64 NICTA/UNSW 330 518 200‡ 200‡

Alpha 21264 NICTA/UNSW 440 642 ≈70†
≈70†

ARM/XScale NICTA/UNSW 340 340 151 151

† “Version 2” assembler kernel
‡ Guestimate!

cse/UNSW/NICTA COMP9242 2006/S2 W1 P18

L4 ABSTRACTIONS AND MECHANISMS

THREE BASIC ABSTRACTIONS:

• Address spaces

• Threads

• Time (second-class abstraction in N2 API, to vanish completely)

TWO BASIC MECHANISMS:

• Inter-process communication (IPC)

• Mapping

cse/UNSW/NICTA COMP9242 2006/S2 W1 P19



L4 ABSTRACTIONS: ADDRESS SPACES

• Address space is unit of protection

Ü initially empty

Ü populated by mapping in frames

• Mapping performed by privileged MapControl() syscall

Ü can only be called from root task

Ü also used for revoking mappings (unmap operation)

• Root task

Ü initial address space created at boot time

Ü controls system resources

Ü non-delegatable privilege (shortcoming of N2 API)

cse/UNSW/NICTA COMP9242 2006/S2 W1 P20

L4 ABSTRACTIONS: THREADS

• Thread is unit of execution

Ü kernel-scheduled

• Thread is addressable unit for IPC

Ü thread-ID is unique identifier

• Threads managed by user-level servers

Ü creation, destruction, association with address space

• Thread attributes:

Ü scheduling parameters (time slice, priority)

Ü unique ID

Ü address space

Ü page-fault and exception handler

cse/UNSW/NICTA COMP9242 2006/S2 W1 P21

L4 ABSTRACTIONS: TIME

• Used for scheduling time slices

Ü thread has fixed-length time slice for preemption

Ü time slices allocated from (finite or infinite) time quantum

Ü notification when exceeded

• In earlier L4 versions also used for IPC timeouts

Ü removed in N2

cse/UNSW/NICTA COMP9242 2006/S2 W1 P22

L4 MECHANISM: IPC

• Synchronous message-passing operation

• Data copied directly from sender to receiver

Ü short messages passed in registers

• Can be blocking or polling (fail if partner not ready)

• Asynchronous notification variant

Ü no data transfer, only sets notification bit in receiver

Ü receiver can wait (block) or poll

cse/UNSW/NICTA COMP9242 2006/S2 W1 P23



L4 CONCEPTS: ROOT TASK

Physical Memory

Root Task

DriverDriver

Server Server

ServerServer

Client Client

• First task started at boot time

• Can perform privileged system calls

• Controls access to resources

Ü threads

Ü address spaces

Ü physical memory

cse/UNSW/NICTA COMP9242 2006/S2 W1 P24

L4 EXCEPTION HANDLING

• Interrupts

Ü modelled as hardware “thread” sending messages

Ü received by registered (user-level) interrupt-handler thread

Ü interrupt acknowledged when handler blocks on receive

Ü timer interrupt handled in-kernel

• Page faults

Ü kernel fakes IPC message from faulting thread to its pager

Ü pager requests root task to set up a mapping

Ü pager replies to faulting client, message intercepted by kernel

• Other exceptions

Ü kernel fakes IPC message from exceptor thread to its exception handler

Ü exception handler may reply with message specifying new IP, SP

Ü can be signal handler, emulation code, stub for IPCing to server, ...

cse/UNSW/NICTA COMP9242 2006/S2 W1 P25

FEATURES NOT IN KERNEL

• System services (file system, network stack, ...)

Ü implemented by user-level servers

• VM management

Ü performed by (hierarchy) of user-level pagers

• Device drivers

Ü user-level threads registered for interrupt IPC

Ü map device registers

cse/UNSW/NICTA COMP9242 2006/S2 W1 P26


