Microkernels and L4

Introduction

COMP9242 2006/S2 Week 1

CSE/UNSW/NICTA

MICROKERNEL: IDEA

e Small kernel providing core functionality

=» only code running in privileged mode
e Most OS services provided by user-level servers

e Applications communicate with servers via message-passing IPC

Application syscall

|

\ mode
VFS
RCfeisystem Application UNIX Device
Server Driver
Scheduler, virtual memory kernel } IpC
mode
Device drivers, Dispatcher, ... IPC, virtual memory
Hardware Hardware
CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P2

WHY MICROKERNELS?

MONOLITHIC KERNEL:

e Kernel has access to everything

=» all optimisations possible
=» all techniques/mechanisms/concepts
implementable

e Can be extended by simply
adding code

e Cost: Complexity

=» growing size
=» limited maintainability

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P1

TRUSTED COMPUTING BASE

The part of the system which must be trusted to operate correctly

igatio

.4 Y
S
Service

Microkernel
Hardware Hardware
System: traditional Linux/ Microkernel-
embedded Windows based
TCB: all code 100,000’s loc 10,000’s loc

CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P3

MICROKERNEL PROMISES

o Flexibility, Y, 2% en3| G
=» poli Oser level, e\“oc e\?
=» additi vices prov h'y addin e&

e Hardware abstraaon Q\"'

=» hardware-dependent part fsystem is small, easy to optimise

e Security, safety

=» internal protection boundaries

CSe/UNSW/NICTA

COMP9242 2006/S2 W1 P4

IPC COST IMPLICATIONS

o
=
]
°
=
ol
T
8
3
-3
s
S
3

average cycles between successive IPCs

CSE/UNSW/NICTA

COMP9242 2006/S2 W1 P6

IPC CosTs

e First-generation microkernels
=» Mach, Chorus, Amoeba

. were slow...

= 100us IPC
=» almost independent of clock speed!

e L4 does better

-» close to hardware cost
=» 20 times faster than Mach
on identical hardware

=
ﬁ 2000 4000 6000

msg len

CSE/UNSW/NICTA COMP9242 2006/S2 W1 PS5

L4 IPC

250

0.47 ps (P Il 500 MHz)

200

0.36 ps (P Il 500 MHz)

150
——————— 0.73 ps (Pentium 166 MHz)

100 0.91ps (R4600 100 MHz)

180

— 010 ps (21164 433 MHz)

0
Pentll P3Sysops P3 Lipc? Pentum R4600 Alpha

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P7

MICROKERNEL PERFORMANCE

FIRST-GENERATION MICROKERNELS WERE SLOW

e Reasons: Poor design [Liedtke SOSP 95]

=>» complex API

=» too many features

=» poor design and implementation

=» large cache footprint = memory bandwidth limited

e L4 is fast due to small cache footprint

=» 10-14 I-cache lines
=» 8 D-cache lines
=» small cache footprint = CPU limited

CSe/UNSW/NICTA

COMP9242 2006/S2 W1 P8

L4 HiISTORY

e Original version by Jochen Liedtke (GMD) ~ 93-95

-» “Version 2" API
-» 486 assembler
=» IPC 20 times faster than Mach [SOSP 93, 95]

e Other L4 V2 implementations:

-» L4/MIPS64: assembler + C (UNSW) 95-97

-» fastest kernel on single-issue CPU (100 cycles)
=» L4/Alpha: PAL + C (Dresden/UNSW), 95-97

= first released SMP version
=» Fiasco (Pentium): C++ (Dresden), 97-99

CSE/UNSW/NICTA

COMP9242 2006/S2 W1 P10

WHAT MAKES A MICROKERNEL FAST?

e Small cache footprint, but how?

=» minimality: no unnecessary features
-» orthogonality: complementary features
=-» well-designed, and well implemented from scratch!

o Kernel provides mechanisms, not services

e Design principle (minimality):

A feature is only allowed in the kernel if this is required for the
implementation of a secure system.

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P9

L4 HISTORY

e Experimental “Version X” API
=» improved hardware abstraction
=» various experimental features (performance, security, generality)
=» portability experiments

¢ Implementations

=» Pentium: assembler, Liedtke (IBM), 97-98
=» Hazelnut (Pentium+ARM), C, Liedtke et al (Karlsruhe), 98-99

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P11

L4 HISTORY

o “Version 4” (X.2) API, 02

=» portability, APl improvements

e L4Ka::Pistachio, C++ (plus assembler “fast path”)

=» x86, PPC-32, Itanium (Karlsruhe), 02-03

-» fastest ever kernel (36 cycles, NICTA/UNSW)
- MIPS64, Alpha (NICTA/UNSW) 03

=» same performance as V2 kernel (100 cycles single issue)
- ARM, PPC-64 (NICTA/UNSW), x86-64 (Karlsruhe), 03-04
= UltraSPARC (NICTA/UNSW), 04-?7?

e Portable kernel:

=» ~ 3 person months for core functionality
=» 6-12 person months for full functionality & optimisation

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P12

L4 PRESENT

e NICTA L4-embedded commercially deployed

=» adopted by Qualcomm for CDMA chipsets
=» under evaluation/development for other products at a number of multinationals
-» about to establish strong presence in wireless and CE markets

e NICTA spinning out Open Kernel Labs

=» further development of L4-embedded
=» professional services for L4 users
-» commercialisation of present NICTA microkernel research

CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P14

L4 HISTORY

e NICTA L4-embedded (Nx) API, 05—

=» transitional API (pre-selL4)
=-» de-featured (timeouts, “long” IPC, recursive mappings)
-» reduced memory footprint for embedded systems

o NICTA::Pistachio-embedded, derived from L4KA::Pistachio

-> ARM9/ARM11, x86, MIPS
=» PPC 405, Blackfin under development

e You'll be using the (unreleased) N2 API implementation

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P13

L4 FUTURE

e Security API: NICTA selL4

draft published March 06

semi-formal specification in Haskell

“executable spec”: Haskell implementation plus ISA simulator
used for exercising and porting apps

stable API August 06

C implementation end of 06

similar project at TU Dresden: L4sec (draft APl Oct 05)

4l

e Features:

=» user-level management of kernel resources (esp. memory)
=» low-overhead information-flow control mechanisms
-» suitable for formal verification

e Formal verification of L4 implementation: L4.verified project

-» mathematical proof that implementation matches spec

CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P15

e Source code:

PISTACHIO: SIZE

=» ~ 10k loc architecture independent
-» ~ 0.5-2k loc architecture specific

e Memory footprint kernel (no attempt to minimise yet):

=-» using gcc (poor code density on RISC/EPIC architectures)
Architecture | Version | Text | Total

x86
Itanium
ARM
PPC-32
PPC-64
MIPS-64

L4Ka 52k | 98k

L4Ka 173k | 417k
NICTA 55k | 117k
L4Ka 41k | 135k
L4Ka 60k | 205k
L4Ka 61k | 100k

e Fast IPC cache footprint (typical):
=» 10-14 I-cache lines

-» 8 D-cache lines

CS€/UNSW/NICTA

COMP9242 2006/S2 W1 P16

PISTACHIO PERFORMANCE: IPC

Si1ze COMPARISON

Linux (all platforms):
2.7 Million lines

L4Ka::Pistachio/ia32
10,000 lines
Mach 4 x86:
90,000 lines

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P17

port/ C++ optimised
Architecture optimisation | intra AS | inter AS | intra AS | inter AS
Pentium-3 UKa 180 367 113 305
Small Spaces | UKa 213
Pentium-4 UKa 385 983 196 416
Itanium 2 UKa/NICTA 508 508 36 36
cross CPU UKa 7419 7410 N/A N/A
MIPS64 NICTA/UNSW 276 276 109 109
cross CPU NICTA/UNSW 3238 3238 690 690
PowerPC-64 NICTA/UNSW 330 518 200¢ 200%
Alpha 21264 NICTA/UNSW 440 642 ~70f ~70f
ARM/XScale NICTA/UNSW 340 340 151 151

t “Version 2” assembler kernel

 Guestimate!

CSE/UNSW/NICTA

COMP9242 2006/S2 W1 P18

L4 ABSTRACTIONS AND MECHANISMS

THREE BASIC ABSTRACTIONS:

e Address spaces

e Threads

e Time (second-class abstraction in N2 API, to vanish completely)
TwO BASIC MECHANISMS:

e Inter-process communication (IPC)

e Mapping

CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P19

L4 ABSTRACTIONS: ADDRESS SPACES

e Address space is unit of protection
=» initially empty
=» populated by mapping in frames
e Mapping performed by privileged MapControl() syscall
=» can only be called from root task
=» also used for revoking mappings (unmap operation)
¢ Root task

=» initial address space created at boot time
=» controls system resources
=» non-delegatable privilege (shortcoming of N2 API)

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P20

L4 ABSTRACTIONS: TIME

e Used for scheduling time slices

=» thread has fixed-length time slice for preemption
=» time slices allocated from (finite or infinite) time quantum
=» notification when exceeded

o In earlier L4 versions also used for IPC timeouts

-» removed in N2

CSEe/UNSW/NICTA COMP9242 2006/S2 W1 P22

L4 ABSTRACTIONS: THREADS

e Thread is unit of execution

=» kernel-scheduled

e Thread is addressable unit for IPC

=» thread-ID is unique identifier

e Threads managed by user-level servers

=» creation, destruction, association with address space

e Thread attributes:

=» scheduling parameters (time slice, priority)
=» unique ID

=» address space

=» page-fault and exception handler

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P21

L4 MECHANISM: IPC
e Synchronous message-passing operation

e Data copied directly from sender to receiver

=» short messages passed in registers
e Can be blocking or polling (fail if partner not ready)

e Asynchronous notification variant

=» no data transfer, only sets notification bit in receiver
=» receiver can wait (block) or poll

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P23

L4 CONCEPTS: RooOT TASK
e First task started at boot time
e Can perform privileged system calls

e Controls access to resources

=» threads
=» address spaces
=» physical memory

Client Client

Root Task

Physical Memory

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P24

FEATURES NOT IN KERNEL

e System services (file system, network stack, ...)

=» implemented by user-level servers

¢ VM management

=» performed by (hierarchy) of user-level pagers

e Device drivers

=» user-level threads registered for interrupt IPC
=» map device registers

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P26

L4 EXCEPTION HANDLING

e Interrupts

=» modelled as hardware “thread” sending messages

=» received by registered (user-level) interrupt-handler thread
=» interrupt acknowledged when handler blocks on receive
=» timer interrupt handled in-kernel

e Page faults

=» kernel fakes IPC message from faulting thread to its pager
=» pager requests root task to set up a mapping
=» pager replies to faulting client, message intercepted by kernel

e Other exceptions

=» kernel fakes IPC message from exceptor thread to its exception handler
=» exception handler may reply with message specifying new IP, SP
=» can be signal handler, emulation code, stub for IPCing to server, ...

CSE/UNSW/NICTA COMP9242 2006/S2 W1 P25

