
A Comparison of File
System Workloads

D. Roselli, J. R. Lorch, T. E. Anderson
Proc. 2000 USENIX Annual Technical

Conference

File System Performance

• Integral component of overall system
performance

• Optimised for common usage patterns
– Like most components of operating

systems

Evolution of Disk Hardware

Disk parameters for the original IBM PC floppy disk and
a Western Digital WD 18300 hard disk

Things to Note

• Average seek time is approx 12 times better
• Rotation time is 24 times faster
• Represents a gradual engineering

improvement
• Operation becoming more critical as disk

latency lags behind processor speed
improvement
– Processor has gone from 4.77 MHz → 1 GHz
– Approximate 200 times speed up

What Might Be Good To Know
To Optimise Performance?

• File size distribution
• File access patterns

– Sequential, random, in-between
• File lifetime

– Block lifetime
– Overwrites

• Proportion of read to writes
– Does one dominate the other?

• Locality of access to specific files
– Temporal and Spatial

• How sensitive are the above to workload?
• How do the above characteristics evolve with technology?

How Can We Determine File
System Usage

Characteristics?
• Static Analysis

– One approach: examine file system meta-data
– File Size distribution, File Age
– Only provides a current snapshot of the system,

does not provide access patterns, etc.
• Dynamic Analysis

– Instrument the kernel to provide file system traces
• Care must to taken not to perturb the system

– Can provide much more information about actual
system behaviour

Trace Details

• Traced HP-UX and NT 4.0
• Workloads

– Instructional Environment
• 8 months (two sessions), 20 machine undergraduate lab

– Research Environment
• 1 Year, 13 postgrad and staff machines

– Web Server
• 1 month, 2300 hits per day, image server for online library

– NT
• Varying length, but 31 days used. 8 Machines, “desktop” work

load
• 150 GB compressed traces
• Sprite [Baker et. al.,1991] included for comparison

Basic Results

Read:Write ratio
varies

significantly with
workload

WEB access
significantly more

data

•stat() represents a
significant fraction of all
syscalls (INS 42%, RES
71%, WEB 10%, NT 26%)

•Attributed to ‘ls’ and stat()
before open()

Block Lifetime

• RES
– Knee due to

netscape database
updates

• WEB
– Knee due to updates

logs and database
back-end

• sprite - unknown
• INS and NT “flat”

Block Lifetime

• Most blocks die due to
overwrites
– INS 51%, RES 91%, WEB

97%, NT 86%
• Small number of files

overwritten repeatedly
– INS 3%, 15 times each
– RES 2%, 160 times
– WEB 5%, 6300 times
– NT 2%, 251 times

• Observations
– File block life-time > 30

second ‘sync’ time
– Locality of overwrite may

provide opportunity

Bandwidth Versus Write Delay

• Write delay must be
significantly greater than
30 sec
– Need NVRAM

• Has little affect on some
workloads
– affect directly related to

file life times
• Simulated 4MB, 16MB,

and infinite buffer with
similar results
– Small (4MB) NVRAM

sufficient for 1 day for
workloads examined

Read Reduction Via Caching

• Small caches absorb
significant number of
block read requests

• Diminishing returns as
cache size increases

• WEB has large
working set size

Alternative Metric

• Motivation
– Disk bandwidth is improving much faster than

seeks times
– Seek-causing cache misses more critical than

simple block misses
• File Read misses

– If a block cache miss is to the same file as
previous miss it’s ignored.

• Assumed to be consecutive block ⇒ no seek
– If it’s to a new file, then we have a file read miss

• File Write misses can be defined similarly

File Reads versus Cache Size

• Small cache size
reduce file reads
significantly

• Note: WEB has
fewer file misses
than block misses
– Block misses within

larger file

Reads or Writes Dominate?

• Dominating reads suggests
BSD like file system structure

• Dominating write suggests log-
structured file system

• Writes depend on write-delay;
Reads depend on cache size

• Workload and environment play
significant role ⇒ in general we
must consider both reads and
writes

How Common Are Memory
Mapped Files?

• Shared libraries are
common

• Counted number of
processes that read(),
write(), mmap().

• Memory mapped files
are commonplace and
need to be considered in
system design.

Memory Mapped File Usage

• Large number of mmap()
calls, but small number of
files mapped
– Small number of file access

repeatedly
• High degree of concurrent

access ensures low cache
miss rate
– File evicted if not currently in

use
• Shared libraries

Dynamic File Size

• Size recorded on every close
– Repeated accesses contribute

to distribution
• Small files still contribute to

workload
– 88% INS, 60% RES, 63% WEB,

24% NT < 16KB
• Compared to sprite, modern

workloads have increased in
size
– Max sizes: Sprite 38M, 244MB

WEB, 419MB (INS and NT)

Unique File Size

• Each file counted only once in
trace
– Represents range of file size on

disk actively accessed
• Note WEB access many small

files
– Small bitmaps

• While file size distribution has not
increase significantly, more
access to large files (see previous
graph)
– More accesses via indirect blocks
– Change inode structure?

File Access Patterns

• Definitions
– A run is all access to a file between open()

and close()
– A run can be:

• Entire: read/written from start to finish
• Sequential: read/written sequentially, but not

beginning to end
• Random: the rest

File Access Patterns

Most read-write
runs are random

Most runs are read-
only with the

majority entire

Small number of
write-only runs with
the majority entire

Very small number
of read-write runs

File Access Patterns
• Small files (< 20Kb)

usually read
entirely

• Larger files usually
accessed randomly

• Implication for
prefetching
strategies

Read Write Patterns
• For repeatedly

accessed file, we
calculate percentage of
read-only runs

• Bi-modal distribution
– Tendency to read-

mostly or write-only
– More frequently

accessed files more
strongly read-mostly
or write-mostly

Conclusions

• Different systems show significantly different
I/O loads

• Average block lifetime varied significantly
across workloads

• UNIX: most blocks die within an hour
• NT: blocks surviving longer than a second survive

greatar than a day
– Most block die from overwrites, overwrites show

substantial locality
• Small write-buffer is sufficient

– Ideal write-delay varies between workloads and
can be greater than 30 seconds

Conclusions

• Caching reduces read traffic
– Small caches can decrease traffic
– Diminishing return for increasing cache size
– Results don’t support “writes dominate for large caches”

• Memory mapping is common
– Using “not currently in use” as eviction policy results in low

cache miss rate
• Larger files accessed compared to previous studies

– Larger files tend to be accessed randomly
• Pre-fetching unhelpful

