
1

COMP9242 04s2

Computer Security

COMP9242 04s2

What is Security?
• Example: Is DOS (a single user system with

no access control) secure?
– What if the machine has no data?
– What if it has the companies financial data?
– What if it is in the foyer?
– What if it is in a locked room?
– What if it is on the Internet?
– What if it is behind a firewall?

COMP9242 04s2

What is Security?
• Another Example: Department store’s weekly

takings are banked, is it secure to:
– Ask a random customer to do it?
– Ask many random customers to do it?
– Ask a staff member?
– Ask several staff members?
– Hire a security firm?
– Hire several security firms?

COMP9242 04s2

Secure System

• Given a security policy
⇒ specification of allowed and disallowed
states of the system

• A goal of a secure system is to ensure
the system remains in allowed state

COMP9242 04s2

Aspects of Computer Security
• Confidentiality

– Concealment of data (or resource) from those unauthorized
to “know”.

– Includes knowledge of existence.
• Integrity

– Trustworthiness of data or a resource.
– Prevention of unauthorized modification.
– Includes both data integrity (correctness) and origin integrity

(authentication).
• Availability

– Ability to use data or resource when desired.

COMP9242 04s2

Threats
• Threats are potential violations of security.

– Example: The threat of theft
• Threats must be guarded against (even

though they may not have occurred)
– Example: Armored Car

• The act of violating security is called an
attack, which is performed by attackers.

2

COMP9242 04s2

Threats

• Snooping
– Disclosure
– Unauthorised interception of

data
– Attack on confidentiality

• Modification or Alteration
– Unauthorised change of data
– Attack on integrity

• Masquerading or spoofing
– Impersonation of one entity by

another
– Attack in authentication

integrity
– Delegation is an issue

• Repudiation of origin
– False denial of being the source
– Attack on Integrity

• Denial of receipt
– False denial of receiving

something
– Availability and Integrity

• Delay
– Temporary inhibition of service
– Attack on Availability

• Denial of Service
– Long-term inhibition of service
– Attack on availability

COMP9242 04s2

Policy and Mechanism
It is important to distinguish between policy and

mechanism
• A security policy is a statement of what is and

what is not allowed.
• A security mechanism is a method, tool,

procedure for enforcing security policy.

COMP9242 04s2

Policy
• Ideally, a security policy unambiguously

partitions the system into a set of allowed and
disallowed states.
– Preferably sound mathematical models
– English descriptions

• Can be imprecise, ambiguous, conflicting, unenforceable
• Example: Bank tellers are authorised to transfer up to

$100,000 between accounts without branch manager
approval

– Transferring $10,000 to is own account does not violate
this policy.

COMP9242 04s2

Mechanisms
• Used to enforce security policy
• May be computer access control methods, file

access control, procedures, tools, etc.
• Example:

– Policy: Only the accountant can access the
financial computer

– Mechanism: Computer in locked room, only
accountant has the key.

COMP9242 04s2

Revisiting - Secure System
• Given a security policy

⇒ unambiguous specification of allowed and
disallowed states of the system

• A goal of a secure system is to ensure the
occurrence of disallowed states are either:
– Prevented
– Detected
– Recoverable

using the mechanisms available.

COMP9242 04s2

Assumptions and Trust

Example:
– Opening a locked door requires the key.
– Assumption:

• The lock secure against lock picking
– Assumption appears correct for most people

• A skilled lock picker will not violate security
– The lock picker is trustworthy

– Assumption not true in presence of untrustworthy
lock picker
⇒ opening locked door does not require the key

– Invalid assumptions or misplaced trust results in
no security.

3

COMP9242 04s2

Assumptions and Trust
• Implicit (and also explicit) assumptions can result in

loss of security
⇒ Assumptions need to be

– clearly identified
– evaluated for validity

• Trusted entities are those entities that can violate
security
– They are not defined as the entities known to behave

correctly according to security policy
– Ideally, trusted entities also behave correctly

• Need procedures to assure trustworthiness (correctness)
• Example: Locksmiths are registered after background checks to

reduce likelihood of incorrect behaviour.

COMP9242 04s2

Potentially Invalid General
Assumptions

• The security policy unambiguously and correctly
divides the system into safe and unsafe states.

• Each mechanism is designed to correctly implement
one of more parts of the security policy

• The union of all mechanisms covers the security
policy

• The mechanisms are implemented correctly
• The mechanisms are installed and administered

correctly

COMP9242 04s2

Assurance
• Assurance is a process or system for

bolstering (substantiating or specifying) trust
in an entity.

• Example: Medication uses
• Certification to ensure the utility and safety of drug
• Manufacturing quality control ensure what is made is

what was certified
• Safety seals on packages to ensure what was

manufactured is what the customer eventually receives
– Together, the system provide a high degree of

assurance to customers that they are getting what
they expect

COMP9242 04s2

Software Assurance
• Specifications

– Unambiguous description of system behaviour
– Formal or informal

• Design
– Justification that it does not violate the specification
– Mathematical translation of specification
– Compelling argument

• Implementation
– Justification that it actually satisfies the design
– By mathematical proof, or rigorous testing
– By transitivity, must also satisfy the spec

• Operation and Maintenance
– Justification that the system is used and maintained as per original

assumptions in the specification
• Assurance does not guarantee correctness or security

– It provides a basis for determining what must be trusted
– Conveys the rigor used to construct the system
– Specification and analysis required improves chances of finding errors.

COMP9242 04s2

Summary
• Computer security is dependent of many aspects of a

computer system.
• Policy defines security, mechanisms enforces

security.
• Important factors are:

– the assumptions made about what is true or trustworthy
– Misplaced trust or invalid assumptions provide no security

• Security is relative (not absolute)
– Given enough resources, an attacker can defeat

mechanisms in place.
• Human factors play a part

COMP9242 04s2

Protection Mechanisms

• Protection state of system
– Describes current settings, values of

system relevant to protection
• Access control matrix

– Describes protection state precisely
– Matrix describing rights of subjects
– State transitions change elements of matrix

4

COMP9242 04s2

Description

objects (entities)

su
bj

ec
ts

s1
s2

…

sn

o1 … om s1 … sn • Subjects S = { s1,…,sn }
• Objects O = { o1,…,om }
• Rights R = { r1,…,rk }
• Entries A[si, oj] ⊆ R
• A[si, oj] = { rx, …, ry }

means subject si has
rights rx, …, ry over
object oj

COMP9242 04s2

Example 1

• Processes p, q
• Files f, g
• Rights r, w, x, a, o

f g p q
p rwo r rwxo w
q a ro r rwxo

COMP9242 04s2

Example 2
• Procedures inc_ctr, dec_ctr, manage
• Variable counter
• Rights +, –, call

counter inc_ctr dec_ctr manage
inc_ctr +
dec_ctr –
manage call call call

COMP9242 04s2

State Transitions

• Change the protection state of system
• |– represents transition

– Xi |– τ Xi+1: command τ moves system from
state Xi to Xi+1

– Xi |– * Xi+1: a sequence of commands
moves system from state Xi to Xi+1

• Commands often called transformation
procedures

COMP9242 04s2

Primitive Operations
• create subject s; create object o

– Creates new row, column in ACM; creates new column in
ACM

• destroy subject s; destroy object o
– Deletes row, column from ACM; deletes column from ACM

• enter r into A[s, o]
– Adds r rights for subject s over object o

• delete r from A[s, o]
– Removes r rights from subject s over object o

COMP9242 04s2

Creating File

• Process p creates file f with r and w
permission
command create•file(p, f)

create object f;
enter own into A[p, f];
enter r into A[p, f];
enter w into A[p, f];

end

5

COMP9242 04s2

Mono-Operational Commands
• Make process p the owner of file g
command make•owner(p, g)

enter own into A[p, g];
end

• Mono-operational command
– Single primitive operation in this command

COMP9242 04s2

Conditional Commands
• Let p give q r rights over f, if p owns f
command grant•read•file•1(p, f, q)

if own in A[p, f]
then

enter r into A[q, f];
end

• Mono-conditional command
– Single condition in this command

COMP9242 04s2

Multiple Conditions
• Let p give q r and w rights over f, if p

owns f and p has c rights over q
command grant•read•file•2(p, f, q)

if own in A[p, f] and c in A[p, q]
then

enter r into A[q, f];
enter w into A[q, f];

end

COMP9242 04s2

Copy Right

• Allows possessor to give rights to
another

• Often attached to a right, so only
applies to that right
– r is read right that cannot be copied
– rc is read right that can be copied

• Is copy flag copied when giving r rights?
– Depends on model, instantiation of model

COMP9242 04s2

Own Right

• Usually allows possessor to change
entries in ACM column
– So owner of object can add, delete rights

for others
– May depend on what system allows

• Can’t give rights to specific (set of) users
• Can’t pass copy flag to specific (set of) users

COMP9242 04s2

Attenuation of Privilege

• Principle says you can’t give rights you
do not possess
– Restricts addition of rights within a system
– Usually ignored for owner

• Why? Owner gives herself rights, gives them to
others, deletes her rights.

6

COMP9242 04s2

Key Points

• Access control matrix simplest
abstraction mechanism for representing
protection state

• Transitions alter protection state
• 6 primitive operations alter matrix

– Transitions can be expressed as
commands composed of these operations
and, possibly, conditions

COMP9242 04s2

What Is “Secure”?

• Adding a generic right r where there
was not one is “leaking”

• If a system S, beginning in initial state
s0, cannot leak right r, it is safe with
respect to the right r.

COMP9242 04s2

Safety Question

• Does there exist an algorithm for
determining whether a protection
system S with initial state s0 is safe with
respect to a generic right r?
– Here, “safe” = “secure” for an abstract

model

COMP9242 04s2

Mono-Operational Commands
• Answer: yes
• Sketch of proof:

Consider minimal sequence of commands
c1, …, ck to leak the right.
– Can omit delete, destroy
– Can merge all creates into one
Worst case: insert every right into every
entry; with s subjects and o objects initially,
and n rights, upper bound is k ≤ n(s+1)(o+1)

COMP9242 04s2

General Case
• Answer: no
• Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:
– Infinite tape in one direction
– States K, symbols M; distinguished blank b
– Transition function δ(k, m) = (k′, m′, L) means in

state k, symbol m on tape location replaced by
symbol m′, head moves to left one square, and
enters state k′

– Halting state is qf; TM halts when it enters this
state

COMP9242 04s2

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

7

COMP9242 04s2

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

COMP9242 04s2

Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes
command ck,C(s3,s4)if own in A[s3,s4] and k in A[s3,s3]and C in A[s3,s3]then
delete k from A[s3,s3];delete C from A[s3,s3];enter X into A[s3,s3];enter k1 into A[s4,s4];end

COMP9242 04s2

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b

COMP9242 04s2

Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes
command crightmostk,C(s4,s5)if end in A[s4,s4] and k1 in A[s4,s4]and D in A[s4,s4]then

delete end from A[s4,s4];create subject s5;enter own into A[s4,s5];enter end into A[s5,s5];delete k1 from A[s4,s4];delete D from A[s4,s4];enter Y into A[s4,s4];enter k2 into A[s5,s5];end

COMP9242 04s2

Rest of Proof
• Protection system exactly simulates a TM

– Exactly 1 end right in ACM
– 1 right in entries corresponds to state
– Thus, at most 1 applicable command

• If TM enters state qf, then right has leaked
• If safety question decidable, then represent

TM as above and determine if qf leaks
– Implies halting problem decidable

• Conclusion: safety question undecidable in
general

COMP9242 04s2

Other Results
• Delete create primitive; then safety question is complete in P-

SPACE
• Delete destroy, delete primitives; then safety question is

undecidable
– Systems are monotonic

• Safety question for monoconditional, monotonic protection
systems is decidable

• Safety question for monoconditional protection systems with
create, enter, delete (and no destroy) is decidable.

8

COMP9242 04s2

Take-Grant Protection Model

• A specific (not generic) system
– Set of rules for state transitions

• Safety decidable, and in time linear with
the size of the system

COMP9242 04s2

Key Points

• Safety problem undecidable
• Limiting scope of systems can make

problem decidable
• The set of protection commands that

model a particular security policy affects
whether safety of that model is
decidable.

COMP9242 04s2

Security Policy
• Policy partitions system states into:

– Authorized (secure)
• These are states the system can enter

– Unauthorized (nonsecure)
• If the system enters any of these states, it’s a

security violation

• Secure system
– Starts in authorized state
– Never enters unauthorized state

COMP9242 04s2

Confidentiality
• X set of entities, I information
• I has confidentiality property with respect to X

if no x ∈ X can obtain information from I
• I can be disclosed to others
• Example:

– X set of students
– I final exam answer key
– I is confidential with respect to X if students cannot

obtain final exam answer key

COMP9242 04s2

Integrity
• X set of entities, I information
• I has integrity property with respect to X if all

x ∈ X trust information in I
• Types of integrity:

– trust I, its conveyance and protection (data
integrity)

– I information about origin of something or an
identity (origin integrity, authentication)

– I resource: means resource functions as it should
(assurance)

COMP9242 04s2

Availability
• X set of entities, I resource
• I has availability property with respect to X if

all x ∈ X can access I
• Types of availability:

– traditional: x gets access or not
– quality of service: promised a level of access (for

example, a specific level of bandwidth) and not
meet it, even though some access is achieved

9

COMP9242 04s2

Policy Models

• Abstract description of a policy or class
of policies

• Focus on points of interest in policies
– Security levels in multilevel security models
– Separation of duty in Clark-Wilson model
– Conflict of interest in Chinese Wall model

COMP9242 04s2

Key Points

• Policies describe what is allowed
• Mechanisms control how policies are

enforced

COMP9242 04s2

Confidentiality Policy

• Goal: prevent the unauthorized
disclosure of information
– Deals with information flow
– Integrity incidental

• Multi-level security models are best-
known examples
– Bell-LaPadula Model basis for many, or

most, of these

COMP9242 04s2

Bell-LaPadula Model, Step 1

• Security levels arranged in linear
ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

• Levels consist of security clearance L(s)
– Objects have security classification L(o)

COMP9242 04s2

Example
objectsubjectsecurity level

Telephone Lists

Activity Logs

E-Mail Files

Personnel Files

UlaleyUnclassified

ClaireConfidential

SamuelSecret

TamaraTop Secret

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists

COMP9242 04s2

Reading Information
• Information flows up, not down

– “Reads up” disallowed, “reads down”
allowed

• Simple Security Condition (Step 1)
– Subject s can read object o iff, L(o) ≤ L(s)

and s has permission to read o
• Note: combines mandatory control (relationship

of security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

10

COMP9242 04s2

Writing Information
• Information flows up, not down

– “Writes up” allowed, “writes down”
disallowed

• *-Property (Step 1)
– Subject s can write object o iff L(s) ≤ L(o)

and s has permission to write o
• Note: combines mandatory control (relationship

of security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

COMP9242 04s2

Basic Security Theorem, Step
1

• If a system is initially in a secure state,
and every transition of the system
satisfies the simple security condition,
step 1, and the *-property, step 1, then
every state of the system is secure
– Proof: induct on the number of transitions

COMP9242 04s2

Bell-LaPadula Model, Step 2

• Expand notion of security level to
include categories

• Security level is (clearance, category
set)

• Examples
– (Top Secret, { NUC, EUR, ASI })
– (Confidential, { EUR, ASI })
– (Secret, { NUC, ASI })

COMP9242 04s2

Levels and Lattices
• (A, C) dom (A′, C′) iff A′ ≤ A and C′ ⊆ C
• Examples

– (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
– (Secret, {NUC, EUR}) dom (Confidential,{NUC,

EUR})
– (Top Secret, {NUC}) ¬dom (Confidential, {EUR})

• Let C be set of classifications, K set of
categories. Set of security levels L = C × K,
dom form lattice

COMP9242 04s2

Levels and Ordering

• Security levels partially ordered
– Any pair of security levels may (or may not)

be related by dom
• “dominates” serves the role of “greater

than” in step 1
– “greater than” is a total ordering, though

COMP9242 04s2

Reading Information
• Information flows up, not down

– “Reads up” disallowed, “reads down”
allowed

• Simple Security Condition (Step 2)
– Subject s can read object o iff L(s) dom

L(o) and s has permission to read o
• Note: combines mandatory control (relationship

of security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

11

COMP9242 04s2

Writing Information
• Information flows up, not down

– “Writes up” allowed, “writes down”
disallowed

• *-Property (Step 2)
– Subject s can write object o iff L(o) dom

L(s) and s has permission to write o
• Note: combines mandatory control (relationship

of security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

COMP9242 04s2

Basic Security Theorem, Step
2

• If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 2, and the *-
property, step 2, then every state of the
system is secure
– Proof: induct on the number of transitions
– In actual Basic Security Theorem, discretionary

access control treated as third property, and
simple security property and *-property phrased to
eliminate discretionary part of the definitions —
but simpler to express the way done here.

COMP9242 04s2

Problem

• Colonel has (Secret, {NUC, EUR})
clearance

• Major has (Secret, {EUR}) clearance
– Major can talk to colonel (“write up” or

“read down”)
– Colonel cannot talk to major (“read up” or

“write down”)
• Clearly absurd!

COMP9242 04s2

Solution
• Define maximum, current levels for subjects

– maxlevel(s) dom curlevel(s)
• Example

– Treat Major as an object (Colonel is writing to
him/her)

– Colonel has maxlevel (Secret, { NUC, EUR })
– Colonel sets curlevel to (Secret, { EUR })
– Now L(Major) dom curlevel(Colonel)

• Colonel can write to Major without violating “no writes
down”

– Does L(s) mean curlevel(s) or maxlevel(s)?
• Formally, we need a more precise notation

COMP9242 04s2

Key Points

• Confidentiality models restrict flow of
information

• Bell-LaPadula models multilevel
security
– Cornerstone of much work in computer

security

COMP9242 04s2

Chinese Wall Model

Problem:
– Tony advises American Bank about

investments
– He is asked to advise Toyland Bank about

investments
• Conflict of interest to accept, because

his advice for either bank would affect
his advice to the other bank

12

COMP9242 04s2

Organization
• Organize entities into “conflict of

interest” classes
• Control subject accesses to each class
• Control writing to all classes to ensure

information is not passed along in
violation of rules

• Allow sanitized data to be viewed by
everyone

COMP9242 04s2

Definitions
• Objects: items of information related to a

company
• Company dataset (CD): contains objects

related to a single company
– Written CD(O)

• Conflict of interest class (COI): contains
datasets of companies in competition
– Written COI(O)
– Assume: each object belongs to exactly one COI

class

COMP9242 04s2

Example

Bank of America

Citibank Bank of the West

Bank COI Class

Shell Oil

Union ’76

Standard Oil

ARCO

Gasoline Company COI Class

COMP9242 04s2

Temporal Element

• If Anthony reads any CD in a COI, he
can never read another CD in that COI
– Possible that information learned earlier

may allow him to make decisions later
– Let PR(S) be set of objects that S has

already read

COMP9242 04s2

CW-Simple Security Condition
• s can read o iff either condition holds:

1. There is an o′ such that s has accessed o′ and
CD(o′) = CD(o)
– Meaning s has read something in o’s dataset

2. For all o′ ∈ O, o′ ∈ PR(s) ⇒ COI(o′) ≠ COI(o)
– Meaning s has not read any objects in o’s conflict

of interest class

• Ignores sanitized data (see below)
• Initially, PR(s) = ∅, so initial read request

granted

COMP9242 04s2

Sanitization
• Public information may belong to a CD

– As is publicly available, no conflicts of interest
arise

– So, should not affect ability of analysts to read
– Typically, all sensitive data removed from such

information before it is released publicly (called
sanitization)

• Add third condition to CW-Simple Security
Condition:

3. o is a sanitized object

13

COMP9242 04s2

Writing
• Anthony, Susan work in same trading house
• Anthony can read Bank 1’s CD, Gas’ CD
• Susan can read Bank 2’s CD, Gas’ CD
• If Anthony could write to Gas’ CD, Susan can

read it
– Hence, indirectly, she can read information from

Bank 1’s CD, a clear conflict of interest

COMP9242 04s2

CW-*-Property
• s can write to o iff both of the following

hold:
1. The CW-simple security condition

permits s to read o; and
2. For all unsanitized objects o′, if s can

read o′, then CD(o′) = CD(o)
• Says that s can write to an object if all

the (unsanitized) objects it can read are
in the same dataset

COMP9242 04s2

Mechanisms

• Entity or procedure that enforces some
part of the security policy
– Access controls (like bits to prevent

someone from reading a homework file)
– Disallowing people from bringing CDs and

floppy disks into a computer facility to
control what is placed on systems

COMP9242 04s2

Types of Access Control
• Discretionary Access Control (DAC, IBAC)

– individual user sets access control mechanism to
allow or deny access to an object

• Mandatory Access Control (MAC)
– system mechanism controls access to object, and

individual cannot alter that access

COMP9242 04s2

Issues For Access Control
Mechanisms

• Propagation of rights:
– Can agent grant access to

another?
• Restriction of rights:

– Can agent propagate
restricted rights?

• Revocation of rights:
– Can access, once granted,

be revoked?

• Amplification of rights:
– Can unprivileged agent

perform restrict operations
• Determination of object

accessibility:
– Which agents have access?

• Determination of agent’s
protection domain:
– Which objects are

accessible?

COMP9242 04s2

Access Control Mechanisms

• Access Control Lists
• Capabilities

14

COMP9242 04s2

Access Control Lists
• Columns of access control matrix

file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
ACLs:
• file1: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
• file2: { (Andy, r) (Betty, r) (Charlie, rwo) }
• file3: { (Andy, rwo) (Charlie, w) }

COMP9242 04s2

Abbreviations
• ACLs can be long … so combine users

– UNIX: 3 classes of users: owner, group, rest
– rwx rwx rwx

rest
group
owner

– Ownership assigned based on creating process
• Some systems: if directory has setgid permission, file

group owned by group of directory (SunOS, Solaris)

COMP9242 04s2

ACL Modification

• Who can do this?
– Creator is given own right that allows this
– System R provides a grant modifier (like a

copy flag) allowing a right to be transferred,
so ownership not needed

• Transferring right to another modifies ACL

COMP9242 04s2

Privileged Users

• Do ACLs apply to privileged users
(root)?
– Solaris: abbreviated lists do not, but full-

blown ACL entries do
– Other vendors: varies

COMP9242 04s2

Access Control Lists
• Propagation of rights:

– Meta-right (e.g. own,
chmod)

• Restriction of rights:
– Meta-right

• Revocation of rights:
– Meta-right (Owner deletes

subject’s entries from ACL, or
rights from subject’s entry in
ACL)

• Amplification of rights:
– Protected invocation right

(e.g. setuid)
• Determination of object

accessibility:
– explicit in ACL

• Determination of agent’s
protection domain:
– hard (if not impossible)

COMP9242 04s2

Capability Lists
• Rows of access control matrix

file1 file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rx rwo w
C-Lists:
• Andy: { (file1, rx) (file2, r) (file3, rwo) }
• Betty: { (file1, rwxo) (file2, r) }
• Charlie: { (file1, rx) (file2, rwo) (file3, w) }

15

COMP9242 04s2

Semantics
• Like a bus ticket

– Mere possession indicates rights that subject has over object
– Object identified by capability (as part of the token)

• Name may be a reference, location, or something else

• Must prevent process from altering capabilities
– Otherwise subject could change rights encoded in capability

or object to which they refer
• Implemented as

– Tagged (protected by hardware)
– Partitioned (protected by software)
– Sparse (protected by obscurity)

COMP9242 04s2

Tagged Capabilities

• Tag bit(s) with every (group of) memory word(s):
– Tags identify capabilities
– Capabilities used like “normal” pointers.
– Hardware checks permissions on dereferencing capability
– Users can copy capabilities
– Modifications turn tags off.
– Only privileged instructions (kernel) can turn them on.

• Examples:
– B5700: tag was 3 bits and indicated how word was to be

treated (pointer, type, descriptor, etc.)
– IBM System/38, AS/400, i-series; many historical systems.

COMP9242 04s2

Tagged Capabilities
• Propagation of rights:

– Easy (copy)
• Restriction of rights:

– Requires kernel intervention
• Revocation of rights:

– Requires scanning of ALL
data (with system stopped)

• Amplification of rights:
– More later

• Determination of object
accessibility:
– Again, requires impractical

scanning
• Determination of agent’s

protection domain:
– Difficult, requires scanning

subject

COMP9242 04s2

Partitioned Capabilities
• Capabilities are segregated from applications in C-List

– Programs must refer to them by pointers (indexes)
• Otherwise, program could use a copy of the capability—which it could

modify
– Paging/segmentation protections

• Like tags, but put capabilities in a read-only segment or page
– CAP system did this

– Or, Keep C-list in the PCB (in kernel)
• System validates access via C-list when mapping a page
• Examples: Hydra, Mach, KeyKOS, Grasshopper, Eros, others

(maybe future L4)

COMP9242 04s2

Partitioned Capabilities
• Validation fast

– Cap reference points
(in)directly to object and
rights

• Propagation of rights:
– Requires kernel intervention

• Restriction of rights:
– Requires kernel intervention

• Revocation of rights:
– Requires scanning of all C-

Lists

• Amplification of rights:
– More later

• Determination of object
accessibility:
– Again, requires impractical

scanning
• Determination of agent’s

protection domain:
– Explicit in C-List

• Reference counting
(garbage collection)
possible.

COMP9242 04s2

Sparse Capabilities

• Basic idea is to add a bit-string to make valid
capabilities a very small subset of capability space
– Cryptography

• Associate with each capability a cryptographic checksum
enciphered using a key known to OS

• When process presents capability, OS validates checksum
– Passwords

• Requires copy of access rights in server
• No encryption, easy to validate

• Capabilities can be passed around like data
– No need for kernel intervention

• Good for user-level servers and distributed systems

16

COMP9242 04s2

Partitioned Capabilities
• Validation

– depends (crypto versus
password)

• Propagation of rights:
– Copy as normal data

• Restriction of rights:
– Usually requires kernel to

make new cap
• Revocation of rights:

– Done by remove entry in
object table the capability
refers to.

• Amplification of rights:
– More later

• Determination of object
accessibility:
– Impossible

• Determination of agent’s
protection domain:
– Depends

• Impossible in general
• Possible if restrictions

place on cap presentation

COMP9242 04s2

Amplifying

• Allows temporary increase of privileges
• Needed for modular programming

– Module pushes, pops data onto stack
module stack … endmodule.

– Variable x declared of type stack
var x: module;

– Only stack module can alter, read x
• So process doesn’t get capability, but needs it when x is

referenced—a problem!
– Solution: give process the required capabilities while it is in

module

COMP9242 04s2

Examples

• HYDRA: templates
– Associated with each procedure, function in module
– Adds rights to process capability while the procedure or

function is being executed
– Rights deleted on exit

• Intel iAPX 432: access descriptors for objects
– These are really capabilities
– 1 bit in this controls amplification
– When ADT constructed, permission bits of type control

object set to what procedure needs
– On call, if amplification bit in this permission is set, the above

bits or’ed with rights in access descriptor of object being
passed

COMP9242 04s2

Revocation

• Scan all C-lists, remove relevant capabilities
– Far too expensive!

• Use indirection
– Each object has entry in a global object table
– Names in capabilities name the entry, not the object

• To revoke, zap the entry in the table
• Can have multiple entries for a single object to allow control of

different sets of rights and/or groups of users for each object
– Example: Amoeba: owner requests server change random

number in server table
• All capabilities for that object now invalid

COMP9242 04s2

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

rw*lough

• Problems if you don’t control copying of capabilities

The capability to write file lough is Low, and Heidi is High
so she reads (copies) the capability; now she can write to a
Low file, violating the *-property!

Limits

COMP9242 04s2

Remedies
• Label capability itself

– Rights in capability depends on relation between its
compartment and that of object to which it refers

• In example, as as capability copied to High, and High
dominates object compartment (Low), write right removed

• Check to see if passing capability violates security
properties
– In example, it does, so copying refused

• Distinguish between “read” and “copy capability”
– Take-Grant Protection Model does this (“read”, “take”)

• Note: Data (sparse) capabilities are problematic
– No way to determine if permitted data or disallowed

capability is transferred.

17

COMP9242 04s2

ACLs vs. Capabilities
• Both theoretically equivalent; consider 2 questions

1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
– ACLs answer second easily; C-Lists, first

• Suggested that the second question, which in the
past has been of most interest, is the reason ACL-
based systems more common than capability-based
systems
– As first question becomes more important (in incident

response, for example), this may change
• Additionally, ACLs usually have owner right

– DAC is what most users expect
– MAC not possible with additional overriding mechanisms

COMP9242 04s2

Confinement
• Confinement is the problem preventing a

program leaking information considered
confidential
– Several other formulations (stronger and weaker)

• In practice difficult to achieve due to covert
channels
– Covert channel: A path of communication that was

not design for communication

COMP9242 04s2

Covert Channels

• A covert storage channel uses an
attribute of a shared resource.

• A covert timing channel uses a temporal
or ordering relationship among
accesses to a shared resource.

COMP9242 04s2

Covert Channels

Client, server and
collaborator processes

We’d like to confine
the server so as to not
pass on client’s info

Encapsulated server can
still leak to collaborator via

covert channels

Example: CPU modulation

COMP9242 04s2

Covert Channels

A covert channel using file locking
(Assuming a common read-only file)

COMP9242 04s2

Covert Channels

• Can be created using a any shared
resource whose behaviour can be
monitored
– Network Bandwidth
– CPU time
– Disk Response time
– Disk Bandwidth

18

COMP9242 04s2

Design Principles
• Overview
• Principles

– Least Privilege
– Fail-Safe Defaults
– Economy of Mechanism
– Complete Mediation
– Open Design
– Separation of Privilege
– Least Common Mechanism
– Psychological Acceptability

COMP9242 04s2

Overview

• Simplicity
– Less to go wrong
– Fewer possible inconsistencies
– Easy to understand

• Restriction
– Minimize access
– Inhibit communication

COMP9242 04s2

Least Privilege

• A subject should be given only those
privileges necessary to complete its
task
– Function, not identity, controls
– Rights added as needed, discarded after

use
– Minimal protection domain

COMP9242 04s2

Fail-Safe Defaults

• Default action is to deny access
• If action fails, system as secure as

when action began

COMP9242 04s2

Economy of Mechanism

• Keep it as simple as possible
– KISS Principle

• Simpler means less can go wrong
– And when errors occur, they are easier to

understand and fix
• Interfaces and interactions

COMP9242 04s2

Complete Mediation

• Check every access
• Usually done once, on first action

– UNIX: access checked on open, not
checked thereafter

• If permissions change after, may get
unauthorized access

19

COMP9242 04s2

Open Design

• Security should not depend on secrecy
of design or implementation
– Popularly misunderstood to mean that

source code should be public
– “Security through obscurity”
– Does not apply to information such as

passwords or cryptographic keys

COMP9242 04s2

Separation of Privilege

• Require multiple conditions to grant
privilege
– Separation of duty

COMP9242 04s2

Least Common Mechanism

• Mechanisms should not be shared
– Information can flow along shared

channels
– Covert channels

• Isolation
– Virtual machines
– Sandboxes

COMP9242 04s2

Psychological Acceptability

• Security mechanisms should not add to
difficulty of accessing resource
– Hide complexity introduced by security

mechanisms
– Ease of installation, configuration, use
– Human factors critical here

COMP9242 04s2

Key Points

• Principles of secure design underlie all
security-related mechanisms

• Require:
– Good understanding of goal of mechanism

and environment in which it is to be used
– Careful analysis and design
– Careful implementation

