
Single-Address-Space Operating Systems

• New paradigm for OS design

• Enabled by 64-bit hardware

• Motivation: use H/W features to:

➜ improve overall performance,
➜ simplify applications.

cse/UNSW COMP9242 2002/S2 W12 P1

Address Spaces

Traditional OS use a separate address space for each process.

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

P1

virtual
memory

P2

virtual
memory

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

! ! !
! ! !
! ! !
! ! !
! ! !
! ! !

file

physical memory

cse/UNSW COMP9242 2002/S2 W12 P2

MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.

cse/UNSW COMP9242 2002/S2 W12 P3

MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.

• Advantages:

➜ Maximises available address space
➜ Isolates processes (provide protection)

cse/UNSW COMP9242 2002/S2 W12 P3

MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.

• Advantages:

➜ Maximises available address space
➜ Isolates processes (provide protection)

• Drawbacks:

➜ Meaning of virtual address depends on process context
➜ Isolation inhibits sharing

cse/UNSW COMP9242 2002/S2 W12 P3

HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...

cse/UNSW COMP9242 2002/S2 W12 P4

HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...

• Via message passing (IPC):

➜ One process sends message, another receives

cse/UNSW COMP9242 2002/S2 W12 P4

HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...

• Via message passing (IPC):

➜ One process sends message, another receives

• Via shared memory:

➜ both establish shared memory arena (mmap())
➜ shared buffers are mapped to the same physical memory locations
➜ both can access the same data directly

cse/UNSW COMP9242 2002/S2 W12 P4

HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...

• Via message passing (IPC):

➜ One process sends message, another receives

• Via shared memory:

➜ both establish shared memory arena (mmap())
➜ shared buffers are mapped to the same physical memory locations
➜ both can access the same data directly

All require OS intervention.

cse/UNSW COMP9242 2002/S2 W12 P4

SHARING BETWEEN ADDRESS SPACES

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

P1

virtual
memory

P2

virtual
memory

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

! ! !
! ! !
! ! !
! ! !
! ! !
! ! !

file

physical memory

cse/UNSW COMP9242 2002/S2 W12 P5

PROBLEMS WITH SHARING : POINTERS!

I/O

AS1
AS

2

IPC

cse/UNSW COMP9242 2002/S2 W12 P6

PROBLEMS WITH SHARING : POINTERS!

I/O

AS1
AS

2

IPC

➜ pointers are bound to an address space
➜ they are meaningless outside

cse/UNSW COMP9242 2002/S2 W12 P6

SHARING ACROSS ADDRESS SPACES

... requires copying and conversions

byte
stream

IPC
I/O

Data structure

cse/UNSW COMP9242 2002/S2 W12 P7

SHARING ACROSS ADDRESS SPACES

... requires copying and conversions

byte
stream

IPC
I/O

Data structure

➜ implies loss of typing
➜ increases code complexity (order of 30% of app code!)
➜ increases run-time overhead

cse/UNSW COMP9242 2002/S2 W12 P7

OTHER PROBLEMS WITH ADDRESS SPACES

memory data: file data:

item t a, *x; item t a;
int x;
FILE *f;

... ...
a = *x; f = fopen("f","r");

fseek (f, x, SEEK SET);
fread (*a, sizeof(item t), 1, f);

address is*x address is("f",*x)

Inconsistent naming of persistent and volatile data

cse/UNSW COMP9242 2002/S2 W12 P8

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

• Why not abolish private mappings????

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

• Why not abolish private mappings????

➜ all address spaces are merged into one
➜ each process has same virtual→physical mapping
➜ all memory objects (text, data, stack, libraries) are allocated at unique

addresses

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

• Why not abolish private mappings????

➜ all address spaces are merged into one
➜ each process has same virtual→physical mapping
➜ all memory objects (text, data, stack, libraries) are allocated at unique

addresses
➜ 264 is big enough to include “files” as memory objects

cse/UNSW COMP9242 2002/S2 W12 P9

WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

• Why not abolish private mappings????

➜ all address spaces are merged into one
➜ each process has same virtual→physical mapping
➜ all memory objects (text, data, stack, libraries) are allocated at unique

addresses
➜ 264 is big enough to include “files” as memory objects

⇒ single-address-space system

cse/UNSW COMP9242 2002/S2 W12 P9

Single-Address-Space Operating Systems

PD
2

PD
1

SAS

cse/UNSW COMP9242 2002/S2 W12 P10

SASOS CHARACTERISTICS :

• Unique addresses for all data items

➜ threads always agree about the address of data

• Sharing by reference

? simply pass pointer

• no marshalling or conversion of data formats required

➜ on-disk format same as in-memory format

cse/UNSW COMP9242 2002/S2 W12 P11

Protection in a SASOS

1
P

1
P

O
1

P
2

P
2

P
2

mapped memory

virtual memory

protection domain

cse/UNSW COMP9242 2002/S2 W12 P12

PROTECTION:

• Everything is visible

• Protection domain defines what is accessible

cse/UNSW COMP9242 2002/S2 W12 P13

PROTECTION:

• Everything is visible

• Protection domain defines what is accessible

• Access requires mapping virtual to physical addresses

• Mapping established by system

⇒ System controls access by establishing partial view of the single
address space

cse/UNSW COMP9242 2002/S2 W12 P13

PROTECTION:

• Everything is visible

• Protection domain defines what is accessible

• Access requires mapping virtual to physical addresses

• Mapping established by system

⇒ System controls access by establishing partial view of the single
address space

• Can implement usual protection models (ACLs, capabilities)

cse/UNSW COMP9242 2002/S2 W12 P13

Single Address Space Advantages

APPLICATION VIEW

• Simple naming mechanism – 64 bit address – supported by
“conventional” hardware.

• User data structures can contain embedded references to other
data.

• Eliminates excessive copying of data and software pointer
translation.

cse/UNSW COMP9242 2002/S2 W12 P14

SASOS A DVANTAGES : SYSTEM VIEW

• Simplifies data migration

• Simplifies process migration

• Orthogonality of translation and protection

• No need for file system — all disk I/O is paging

• RAM is cache for VM — unified buffer & disk cache management

• Easy to implement zero-copy operations

• In-place execution — no need for position-independent code

⇒ Simplified system implementation and increased performance

cse/UNSW COMP9242 2002/S2 W12 P15

SASOS A DVANTAGES : HARDWARE VIEW

• Virtual caches are no problem
virtual address maps uniquely to physical address

• Hardware separating translation from protection could increase
performance due to increased TLB coverage
(e.g. IA-64 protection keys)

cse/UNSW COMP9242 2002/S2 W12 P16

Single-Address-Space Operating Systems

IBM SYSTEM/38 [Ber80] and successor AS/400 [Sol96] (1978)

• high-level object-oriented architecture built on single-level store

• geared towards data-intensive commercial applications

• protection based on tagged capabilities

cse/UNSW COMP9242 2002/S2 W12 P17

Single-Address-Space Operating Systems

IBM SYSTEM/38 [Ber80] and successor AS/400 [Sol96] (1978)

• high-level object-oriented architecture built on single-level store

• geared towards data-intensive commercial applications

• protection based on tagged capabilities

Drawbacks: ? totally different environment
? requires hardware support
? performance...

cse/UNSW COMP9242 2002/S2 W12 P17

ANGEL [MSS+93] (City University, London, 1992–5)

• runs on standard hardware

• microkernel architecture with lightweight RPC

• protection server for flexible protection model

cse/UNSW COMP9242 2002/S2 W12 P18

ANGEL [MSS+93] (City University, London, 1992–5)

• runs on standard hardware

• microkernel architecture with lightweight RPC

• protection server for flexible protection model

Drawbacks: ? prototype is 32-bit only
? performance?

cse/UNSW COMP9242 2002/S2 W12 P18

OPAL [CLFL94] (U of Washington, 1992–4)

• runs on standard hardware

• protection domains as 1st class objects

• password capabilities

• implemented on top of Mach

cse/UNSW COMP9242 2002/S2 W12 P19

OPAL [CLFL94] (U of Washington, 1992–4)

• runs on standard hardware

• protection domains as 1st class objects

• password capabilities

• implemented on top of Mach

Drawbacks: ? applications must handle capabilities (e.g. on RPC)
? no fast rights amplification
? performance!

cse/UNSW COMP9242 2002/S2 W12 P19

SOMBRERO [SMF96] (Arizona State U, 1994–now)

• designed (not implemented) special protection hardware

• simulated on Alpha

• established some software engineering advantages of SASOS

cse/UNSW COMP9242 2002/S2 W12 P20

SOMBRERO [SMF96] (Arizona State U, 1994–now)

• designed (not implemented) special protection hardware

• simulated on Alpha

• established some software engineering advantages of SASOS

Drawbacks: ? special hardware!

cse/UNSW COMP9242 2002/S2 W12 P20

MUNGI [HEV+98] (UNSW, 1994–now)

• “pure” SASOS (no message-passing IPC)

• standard 64-bit hardware

• discretionary and mandatory access control

• user-level device drivers and system extensions

• POSIX emulation

• fastest SASOS to date

cse/UNSW COMP9242 2002/S2 W12 P21

SASOS Issues

• Protection model

• System extensibility

• POSIX compatibility

• Resource Management

• Linking

• Persistence

• Performance

cse/UNSW COMP9242 2002/S2 W12 P22

SASOS Issues

• Protection model

• System extensibility

• POSIX compatibility

• Resource Management

• Linking

• Persistence

• Performance

Discussed in context of Mungi

cse/UNSW COMP9242 2002/S2 W12 P22

Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control

• Mandatory access control

cse/UNSW COMP9242 2002/S2 W12 P23

Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control
➜ user-oriented mechanism
➜ users determine which of their data should be accessible to others
➜ essential for privacy
➜ two basic models: access control lists and capabilities

• Mandatory access control

cse/UNSW COMP9242 2002/S2 W12 P23

Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control
➜ user-oriented mechanism
➜ users determine which of their data should be accessible to others
➜ essential for privacy
➜ two basic models: access control lists and capabilities

• Mandatory access control
➜ system-oriented mechanism
➜ system-wide security policy limits data flow
➜ essential for use of untrusted extensions
➜ range of models: Denning, Bell-LaPadula, Chinese Wall, role-based....

cse/UNSW COMP9242 2002/S2 W12 P23

Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control
➜ user-oriented mechanism
➜ users determine which of their data should be accessible to others
➜ essential for privacy
➜ two basic models: access control lists and capabilities

• Mandatory access control
➜ system-oriented mechanism
➜ system-wide security policy limits data flow
➜ essential for use of untrusted extensions
➜ range of models: Denning, Bell-LaPadula, Chinese Wall, role-based....

Mungi has both

cse/UNSW COMP9242 2002/S2 W12 P23

Discretionary Access Control in Mungi

• Threads execute inside a
protection domain (PD)

• A protection domain is defined
as a set of capabilities

• Capabilities and protection
domains are user-level objects PD

2
PD

1

SAS

cse/UNSW COMP9242 2002/S2 W12 P24

Discretionary Access Control in Mungi

• Threads execute inside a
protection domain (PD)

• A protection domain is defined
as a set of capabilities

• Capabilities and protection
domains are user-level objects

• Thread may or may not have
control over its PD

➜ supports user-controlled
confinement

PD
2

PD
1

SAS

cse/UNSW COMP9242 2002/S2 W12 P24

MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object

• Unit of execution is the thread

• An APD consists of (caps for) an array of Clists

• Caps confer sets of rights

cse/UNSW COMP9242 2002/S2 W12 P25

MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object
➜ contiguous page range
➜ associated with a set of password capabilities

• Unit of execution is the thread

• An APD consists of (caps for) an array of Clists

• Caps confer sets of rights

cse/UNSW COMP9242 2002/S2 W12 P25

MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object
➜ contiguous page range
➜ associated with a set of password capabilities

• Unit of execution is the thread
➜ kernel-scheduled
➜ execute in an active protection domain (APD)
➜ associated with a (user-level) TCB object (UTCB)
➜ thread control is via access to UTCB

• An APD consists of (caps for) an array of Clists

• Caps confer sets of rights

cse/UNSW COMP9242 2002/S2 W12 P25

MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object
➜ contiguous page range
➜ associated with a set of password capabilities

• Unit of execution is the thread
➜ kernel-scheduled
➜ execute in an active protection domain (APD)
➜ associated with a (user-level) TCB object (UTCB)
➜ thread control is via access to UTCB

• An APD consists of (caps for) an array of Clists
➜ A Clist is an object consisting of an array of caps
➜ APD itself is in kernel space

• Caps confer sets of rights

cse/UNSW COMP9242 2002/S2 W12 P25

MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object
➜ contiguous page range
➜ associated with a set of password capabilities

• Unit of execution is the thread
➜ kernel-scheduled
➜ execute in an active protection domain (APD)
➜ associated with a (user-level) TCB object (UTCB)
➜ thread control is via access to UTCB

• An APD consists of (caps for) an array of Clists
➜ A Clist is an object consisting of an array of caps
➜ APD itself is in kernel space

• Caps confer sets of rights, combination of:
➜ read , write , execute , delete , enquire , PDX

cse/UNSW COMP9242 2002/S2 W12 P25

ACCESS VALIDATION :

�������
�������
�����
�����

���������
���������
���������
���������

Object Table

cap mode

 :
 :

cap mode

base address

limit address

Protection
Domain

cap
cap
cap
 :
 :

3 search for
matching cap

Thread

0 page fault at address

4 map according to mode
& cache validation

base limit mode

Validation Cache

1 check cache for address

2

& find object descriptor

look up address

cse/UNSW COMP9242 2002/S2 W12 P26

ACCESS VALIDATION :

�������
�������
�����
�����

���������
���������
���������
���������

Object Table

cap mode

 :
 :

cap mode

base address

limit address

Protection
Domain

cap
cap
cap
 :
 :

3 search for
matching cap

Thread

0 page fault at address

4 map according to mode
& cache validation

base limit mode

Validation Cache

1 check cache for address

2

& find object descriptor

look up address

Note: All capability presentation is implicit

cse/UNSW COMP9242 2002/S2 W12 P26

THREADS AND PROTECTION DOMAINS

• A thread can be started in an existing APD or a new one

• New APD is instantiated from a template

➜ called the protection domain object (PDO)
➜ system-defined structure
➜ consists of an array of clist capabilities,
➜ access restricted to trusted management code
➜ PDO creation requires special privileges

cse/UNSW COMP9242 2002/S2 W12 P27

THREADS AND PROTECTION DOMAINS

• A thread can be started in an existing APD or a new one

• New APD is instantiated from a template

➜ called the protection domain object (PDO)
➜ system-defined structure
➜ consists of an array of clist capabilities,
➜ access restricted to trusted management code
➜ PDO creation requires special privileges

• Thread can also change APD temporarily

➜ called protection-domain extension, PDX
➜ requires PDX cap
➜ serves as protected-procedure call mechanism

cse/UNSW COMP9242 2002/S2 W12 P27

Protected Procedure Calls
• Object can have (PDX) type:

➜ has PDX capabilities,
➜ registered set of entry points,
➜ an associated PDX clist.

• Owner’s APD changes for the
duration of the call

cse/UNSW COMP9242 2002/S2 W12 P28

Protected Procedure Calls
• Object can have (PDX) type:

➜ has PDX capabilities,
➜ registered set of entry points,
➜ an associated PDX clist.

• Owner’s APD changes for the
duration of the call

• Allows secure invocation of an
object in a PD different from
caller’s

• Discretionary access control
validates entry points and
invocation right

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call

cse/UNSW COMP9242 2002/S2 W12 P28

Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists

cse/UNSW COMP9242 2002/S2 W12 P29

Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

cse/UNSW COMP9242 2002/S2 W12 P29

Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

• A thread can be set up so that it’s APD:

? does not contain the clists defining it,

? does not contain write access to any “public” objects.

cse/UNSW COMP9242 2002/S2 W12 P29

Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

• A thread can be set up so that it’s APD:

? does not contain the clists defining it,

? does not contain write access to any “public” objects.

• Such a thread is confined.

cse/UNSW COMP9242 2002/S2 W12 P29

Discretionary Confinement in Mungi

clist

clist

TCB

protection domain

cse/UNSW COMP9242 2002/S2 W12 P30

Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

cse/UNSW COMP9242 2002/S2 W12 P31

Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)

cse/UNSW COMP9242 2002/S2 W12 P31

Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)

? a PDX object has:

➜ a type label (because it’s an object)
➜ a domain label (because it has an associated PD)

cse/UNSW COMP9242 2002/S2 W12 P31

Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)

? a PDX object has:

➜ a type label (because it’s an object)
➜ a domain label (because it has an associated PD)

• System-wide security policy is a relation on types and domains

cse/UNSW COMP9242 2002/S2 W12 P31

MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type

cse/UNSW COMP9242 2002/S2 W12 P32

MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type

? APD creation / PDX call:

➜ thread has access to invoked object
➜ caller APD has right to transfer to target APD

cse/UNSW COMP9242 2002/S2 W12 P32

MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type

? APD creation / PDX call:

➜ thread has access to invoked object
➜ caller APD has right to transfer to target APD

• Policy object consists of a number of (mostly simple) validation
functions

➜ invoked via PDX⇒ also subject to MAC!
➜ MAC validations are cached in separate validation cache

cse/UNSW COMP9242 2002/S2 W12 P32

PDX AGAIN ...

➜ discretionary access control
validates entry points and
invocation right

➜ mandatory access control
validates right to use target PD

➜ discretionary and mandatory
access control validate data
access

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call

cse/UNSW COMP9242 2002/S2 W12 P33

PDX AGAIN ...

➜ discretionary access control
validates entry points and
invocation right

➜ mandatory access control
validates right to use target PD

➜ discretionary and mandatory
access control validate data
access

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call

• Can use this as the basis for secure system extensions!

➜ Component model based on PDX for extending system

cse/UNSW COMP9242 2002/S2 W12 P33

OS Extensibility

• Linux loadable kernel modules:

➜ Run as part of the kernel⇒ no protection.
➜ Unsuitable for OS extension/customisation by users.

cse/UNSW COMP9242 2002/S2 W12 P34

OS Extensibility

• Linux loadable kernel modules:

➜ Run as part of the kernel⇒ no protection.
➜ Unsuitable for OS extension/customisation by users.

• User-level servers (Mach, Windows-NT):

➜ based on message-based communication with servers,
➜ performance problems⇒ migrate extensions into kernel.
➜ newer systems try to do better (e.g. SawMill)

cse/UNSW COMP9242 2002/S2 W12 P34

EXISTING APPROACHES TO OS EXTENSIBILITY (CONT’D)

• Safe kernel extensions by trusted code (e.g. SPIN [BSP+95]):

➜ extensions must be programmed in type-safe language (Modula-3),
➜ restrictive programming model,
➜ large trusted computing base,
➜ unconvincing performance.

cse/UNSW COMP9242 2002/S2 W12 P35

EXISTING APPROACHES TO OS EXTENSIBILITY (CONT’D)

• Safe kernel extensions by trusted code (e.g. SPIN [BSP+95]):

➜ extensions must be programmed in type-safe language (Modula-3),
➜ restrictive programming model,
➜ large trusted computing base,
➜ unconvincing performance.

• Safety by sandboxing kernel extensions (e.g. Vino [SESS96]):

➜ poor performance.

cse/UNSW COMP9242 2002/S2 W12 P35

WHAT ’S WRONG?

• Kernel extensions create huge security problems.

➜ Kernel code is inherently unrestricted.
➜ Imposition of restrictions results in cost and complexity.

• User-level extensions can be secure but:

➜ have potential performance problems, and
➜ need to be supported by an appropriate framework.

cse/UNSW COMP9242 2002/S2 W12 P36

WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).

cse/UNSW COMP9242 2002/S2 W12 P37

WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).

• Security can be guaranteed.

➜ Extensions operate within “normal” OS protection system.
➜ Will work if OS protection is strong and flexible enough.

cse/UNSW COMP9242 2002/S2 W12 P37

WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).

• Security can be guaranteed.

➜ Extensions operate within “normal” OS protection system.
➜ Will work if OS protection is strong and flexible enough.

• A framework for extensions is provided which supports:

➜ transparent invocation of extended services,
➜ low overhead extension and customisation of extensions,
➜ software technology to minimise complexity.

cse/UNSW COMP9242 2002/S2 W12 P37

Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems

cse/UNSW COMP9242 2002/S2 W12 P38

Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems

➜ PDX is used for invocation
➜ Component data is created inside the component PD
➜ Client and component are mutually protected
➜ Mandatory security policy limits data propagation

cse/UNSW COMP9242 2002/S2 W12 P38

Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems

➜ PDX is used for invocation
➜ Component data is created inside the component PD
➜ Client and component are mutually protected
➜ Mandatory security policy limits data propagation
➜ Single address space⇒ no need to marshal arguments!

cse/UNSW COMP9242 2002/S2 W12 P38

EXTENDING EXTENSIONS

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
��
�
�

	
	
	

�
�
�

�
�
�
�

� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �� � �

� �� �

! !
! !
! !
! !

" " "# # #

$ $ $% % %

& &
& &
& &

' '
' '
' '

((
((
((

))
))
))

* *
* *
* *
* *

+ +
+ +
+ +
+ +, ,

, ,
, ,
, ,

- -
- -
- -
- -

. . ./ / /

0 0 01 1 1

2 23 3
4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7

Forwarding

Aggregation

➜ Components export interfaces.
➜ Component instances can invoke interfaces of other instances (and thus extend

them): forwarding.
➜ Aggregation allows direct invocation of extended interface.

cse/UNSW COMP9242 2002/S2 W12 P39

CUSTOMISATION

���
�
���
�

� �� �� �
� �� �� �

��
�
��
�

��	
	

CustomiserBase

Request Delegation

Delegated

➜ Delegation is a dynamic form of aggregation that allows an invocation of a base
component to be transparently handled by another component.

➜ Avoids the semantic nightmares of virtual inheritance.

cse/UNSW COMP9242 2002/S2 W12 P40

OVERHEAD OF MANDATORY ACCESS CONTROL

Benchmark no MAC with MAC O/H
ms ms %

OO1 187.8 187.8 0.0
Jigsaw56×56 374 375 0.3
Andrew 672 674 0.3

cse/UNSW COMP9242 2002/S2 W12 P41

EXTENSION SYSTEM PERFORMANCE : M ICROBENCHMARKS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ic

ro
se

co
n

d
s

Create 118 5622 4240

Invoke 100 101 885 1993 768 9319

Mungi SPIN VINO COM omniORB ORBacus

cse/UNSW COMP9242 2002/S2 W12 P42

EXTENSION SYSTEM PERFORMANCE : MACROBENCHMARKS

Environment Time
Linux (RAM disk) 283 ms
Mungi (statically linked) 146 ms
Mungi (extension) 247 ms

cse/UNSW COMP9242 2002/S2 W12 P43

References

[Ber80] Viktors Berstis. Security and protection in the IBM System/38. In Proc.
7th Symp. Comp. Arch., pages 245–250. ACM/IEEE, May 1980.

[BSP+95] Brian N. Bershad, Stefan Savage, Przemysław Pardyak, Emin Gün
Sirer, Marc E. Fiuczynski, David Becker, Craig Chambers, and Susan
Eggers. Extensibility, safety and performance in the SPIN operating
system. In Proc. 15th SOSP, pages 267–284, Copper Mountain, CO,
USA, Dec 1995.

[CLFL94] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single-address-space operating
system. Trans. Comp. Syst., 12:271–307, 1994.

[EH01a] Antony Edwards and Gernot Heiser. A component architecture for
system extensibility. Technical Report UNSW-CSE-TR-0103, School
Comp. Sci. & Engin., University NSW, Sydney 2052, Australia, Mar

cse/UNSW COMP9242 2002/S2 W12 P44

2001. URL ftp:
//ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0103.ps.Z .

[EH01b] Antony Edwards and Gernot Heiser. Components + Security = OS
Extensibility. In Proc. 6th ACSAC, pages 27–34, Gold Coast, Australia,
Jan 2001. IEEE CS Press.

[HEV+98] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell,
and Jochen Liedtke. The Mungi single-address-space operating
system. Softw.: Pract. & Exp., 28(9):901–928, Jul 1998.

[MSS+93] Kevin Murray, Ashley Saulsbury, Tom Stiemerling, Tim Wilkinson, Paul
Kelly, and Peter Osmon. Design and implementation of an
object-orientated 64-bit single address space microkernel. In Proc. 2nd
W. Microkernels & other Kernel Arch., pages 31–43, Sep 1993.

[SESS96] M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. In Proc. 2nd OSDI, pages
213–228, Nov 1996.

cse/UNSW COMP9242 2002/S2 W12 P45

ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0103.ps.Z
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/0103.ps.Z

[SMF96] Alan C. Skousen, Donald S. Miller, and Ronald G. Feigen. The
Sombrero operating system: An operating system for a distributed
single very large address space — general introduction. Technical
Report TR-96-005, Computer Science and Engineering Department,
Arizona State University, Tempe, AZ 85287-5406, Apr 1996.

[Sol96] Frank G. Soltis. Inside the AS/400. Duke Press, Loveland, CO, USA,
1996.

cse/UNSW COMP9242 2002/S2 W12 P46

