
Single-Address-Space Operating Systems

• New paradigm for OS design

• Enabled by 64-bit hardware

• Motivation: use H/W features to:

➜ improve overall performance,
➜ simplify applications.
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Address Spaces

Traditional OS use a separate address space for each process.
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MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.
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MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.

• Advantages:

➜ Maximises available address space
➜ Isolates processes (provide protection)
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MULTIPLE ADDRESS SPACES :

• Each address space has own virtual→physical mapping.

• Advantages:

➜ Maximises available address space
➜ Isolates processes (provide protection)

• Drawbacks:

➜ Meaning of virtual address depends on process context
➜ Isolation inhibits sharing
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HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...
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HOW DO PROCESSES SHARE DATA ?

• Via files:

➜ One process writes data to a file, another reads file
➜ Similarly pipes, sockets, ...

• Via message passing (IPC):

➜ One process sends message, another receives

• Via shared memory:

➜ both establish shared memory arena (mmap() )
➜ shared buffers are mapped to the same physical memory locations
➜ both can access the same data directly

All require OS intervention.
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SHARING BETWEEN ADDRESS SPACES
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PROBLEMS WITH SHARING : POINTERS!

I/O

AS1
AS

2

IPC
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PROBLEMS WITH SHARING : POINTERS!

I/O

AS1
AS

2

IPC

➜ pointers are bound to an address space
➜ they are meaningless outside
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SHARING ACROSS ADDRESS SPACES

... requires copying and conversions

byte
stream

IPC
I/O

Data structure
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SHARING ACROSS ADDRESS SPACES

... requires copying and conversions

byte
stream

IPC
I/O

Data structure

➜ implies loss of typing
➜ increases code complexity (order of 30% of app code!)
➜ increases run-time overhead
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OTHER PROBLEMS WITH ADDRESS SPACES

memory data: file data:

item t a, *x; item t a;
int x;
FILE *f;

... ...
a = *x; f = fopen("f","r");

fseek (f, x, SEEK SET);
fread (*a, sizeof(item t), 1, f);

address is*x address is("f",*x)

Inconsistent naming of persistent and volatile data
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WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers
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➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
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WHY DO WE HAVE PROBLEMS WITH SHARING ?

• The problems are with pointers

➜ pointer problems result from per-address-space mappings
➜ result from the desire to maximise the available address space
➜ results from limitations on address bits

• But we have 64-bit architectures now!

• Why not abolish private mappings????

➜ all address spaces are merged into one
➜ each process has same virtual→physical mapping
➜ all memory objects (text, data, stack, libraries) are allocated at unique

addresses
➜ 264 is big enough to include “files” as memory objects

⇒ single-address-space system
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Single-Address-Space Operating Systems

PD
2

PD
1

SAS
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SASOS CHARACTERISTICS :

• Unique addresses for all data items

➜ threads always agree about the address of data

• Sharing by reference

? simply pass pointer

• no marshalling or conversion of data formats required

➜ on-disk format same as in-memory format

cse/UNSW COMP9242 2002/S2 W12 P11



Protection in a SASOS

1
P

1
P

O
1

P
2

P
2

P
2

mapped memory

virtual memory

protection domain
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PROTECTION:

• Everything is visible

• Protection domain defines what is accessible
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PROTECTION:

• Everything is visible

• Protection domain defines what is accessible

• Access requires mapping virtual to physical addresses

• Mapping established by system

⇒ System controls access by establishing partial view of the single
address space
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PROTECTION:

• Everything is visible

• Protection domain defines what is accessible

• Access requires mapping virtual to physical addresses

• Mapping established by system

⇒ System controls access by establishing partial view of the single
address space

• Can implement usual protection models (ACLs, capabilities)
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Single Address Space Advantages

APPLICATION VIEW

• Simple naming mechanism – 64 bit address – supported by
“conventional” hardware.

• User data structures can contain embedded references to other
data.

• Eliminates excessive copying of data and software pointer
translation.
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SASOS A DVANTAGES : SYSTEM VIEW

• Simplifies data migration

• Simplifies process migration

• Orthogonality of translation and protection

• No need for file system — all disk I/O is paging

• RAM is cache for VM — unified buffer & disk cache management

• Easy to implement zero-copy operations

• In-place execution — no need for position-independent code

⇒ Simplified system implementation and increased performance
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SASOS A DVANTAGES : HARDWARE VIEW

• Virtual caches are no problem
virtual address maps uniquely to physical address

• Hardware separating translation from protection could increase
performance due to increased TLB coverage
(e.g. IA-64 protection keys)
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Single-Address-Space Operating Systems

IBM SYSTEM/38 [Ber80] and successor AS/400 [Sol96] (1978)

• high-level object-oriented architecture built on single-level store

• geared towards data-intensive commercial applications

• protection based on tagged capabilities
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Single-Address-Space Operating Systems

IBM SYSTEM/38 [Ber80] and successor AS/400 [Sol96] (1978)

• high-level object-oriented architecture built on single-level store

• geared towards data-intensive commercial applications

• protection based on tagged capabilities

Drawbacks: ? totally different environment
? requires hardware support
? performance...
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ANGEL [MSS+93] (City University, London, 1992–5)

• runs on standard hardware

• microkernel architecture with lightweight RPC

• protection server for flexible protection model
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ANGEL [MSS+93] (City University, London, 1992–5)

• runs on standard hardware

• microkernel architecture with lightweight RPC

• protection server for flexible protection model

Drawbacks: ? prototype is 32-bit only
? performance?
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OPAL [CLFL94] (U of Washington, 1992–4)

• runs on standard hardware

• protection domains as 1st class objects

• password capabilities

• implemented on top of Mach
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OPAL [CLFL94] (U of Washington, 1992–4)

• runs on standard hardware

• protection domains as 1st class objects

• password capabilities

• implemented on top of Mach

Drawbacks: ? applications must handle capabilities (e.g. on RPC)
? no fast rights amplification
? performance!
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SOMBRERO [SMF96] (Arizona State U, 1994–now)

• designed (not implemented) special protection hardware

• simulated on Alpha

• established some software engineering advantages of SASOS
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SOMBRERO [SMF96] (Arizona State U, 1994–now)

• designed (not implemented) special protection hardware

• simulated on Alpha

• established some software engineering advantages of SASOS

Drawbacks: ? special hardware!
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MUNGI [HEV+98] (UNSW, 1994–now)

• “pure” SASOS (no message-passing IPC)

• standard 64-bit hardware

• discretionary and mandatory access control

• user-level device drivers and system extensions

• POSIX emulation

• fastest SASOS to date
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SASOS Issues

• Protection model

• System extensibility

• POSIX compatibility

• Resource Management

• Linking

• Persistence

• Performance
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SASOS Issues

• Protection model

• System extensibility

• POSIX compatibility

• Resource Management

• Linking

• Persistence

• Performance

Discussed in context of Mungi
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Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control

• Mandatory access control
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➜ essential for privacy
➜ two basic models: access control lists and capabilities

• Mandatory access control
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• Mandatory access control
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➜ essential for use of untrusted extensions
➜ range of models: Denning, Bell-LaPadula, Chinese Wall, role-based....
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Mungi Security

TWO BASIC KINDS OF MECHANISMS :

• Discretionary access control
➜ user-oriented mechanism
➜ users determine which of their data should be accessible to others
➜ essential for privacy
➜ two basic models: access control lists and capabilities

• Mandatory access control
➜ system-oriented mechanism
➜ system-wide security policy limits data flow
➜ essential for use of untrusted extensions
➜ range of models: Denning, Bell-LaPadula, Chinese Wall, role-based....

Mungi has both
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Discretionary Access Control in Mungi

• Threads execute inside a
protection domain (PD)

• A protection domain is defined
as a set of capabilities

• Capabilities and protection
domains are user-level objects PD

2
PD

1

SAS
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Discretionary Access Control in Mungi

• Threads execute inside a
protection domain (PD)

• A protection domain is defined
as a set of capabilities

• Capabilities and protection
domains are user-level objects

• Thread may or may not have
control over its PD

➜ supports user-controlled
confinement

PD
2

PD
1

SAS
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MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object

• Unit of execution is the thread

• An APD consists of (caps for) an array of Clists

• Caps confer sets of rights
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MAIN MUNGI ABSTRACTIONS :

• Unit of protection is the memory object
➜ contiguous page range
➜ associated with a set of password capabilities

• Unit of execution is the thread
➜ kernel-scheduled
➜ execute in an active protection domain (APD)
➜ associated with a (user-level) TCB object (UTCB)
➜ thread control is via access to UTCB

• An APD consists of (caps for) an array of Clists
➜ A Clist is an object consisting of an array of caps
➜ APD itself is in kernel space

• Caps confer sets of rights, combination of:
➜ read , write , execute , delete , enquire , PDX
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ACCESS VALIDATION :

�������
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Object Table

cap        mode

   :
   :

cap        mode

base address

limit address

Protection
Domain

cap
cap
cap
  :
  :

3 search for
matching  cap

Thread

0 page fault at  address

4 map according to  mode
& cache validation

base limit mode

Validation Cache

1 check cache for  address

2

& find object descriptor

look up  address
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ACCESS VALIDATION :
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Object Table

cap        mode

   :
   :

cap        mode

base address

limit address

Protection
Domain

cap
cap
cap
  :
  :

3 search for
matching  cap

Thread

0 page fault at  address

4 map according to  mode
& cache validation

base limit mode

Validation Cache

1 check cache for  address

2

& find object descriptor

look up  address

Note: All capability presentation is implicit
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THREADS AND PROTECTION DOMAINS

• A thread can be started in an existing APD or a new one

• New APD is instantiated from a template

➜ called the protection domain object (PDO)
➜ system-defined structure
➜ consists of an array of clist capabilities,
➜ access restricted to trusted management code
➜ PDO creation requires special privileges
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THREADS AND PROTECTION DOMAINS

• A thread can be started in an existing APD or a new one

• New APD is instantiated from a template

➜ called the protection domain object (PDO)
➜ system-defined structure
➜ consists of an array of clist capabilities,
➜ access restricted to trusted management code
➜ PDO creation requires special privileges

• Thread can also change APD temporarily

➜ called protection-domain extension, PDX
➜ requires PDX cap
➜ serves as protected-procedure call mechanism
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Protected Procedure Calls
• Object can have (PDX) type:

➜ has PDX capabilities,
➜ registered set of entry points,
➜ an associated PDX clist.

• Owner’s APD changes for the
duration of the call
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Protected Procedure Calls
• Object can have (PDX) type:

➜ has PDX capabilities,
➜ registered set of entry points,
➜ an associated PDX clist.

• Owner’s APD changes for the
duration of the call

• Allows secure invocation of an
object in a PD different from
caller’s

• Discretionary access control
validates entry points and
invocation right

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call
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Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists
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Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

cse/UNSW COMP9242 2002/S2 W12 P29



Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

• A thread can be set up so that it’s APD:

? does not contain the clists defining it,

? does not contain write access to any “public” objects.
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Protection Domain Manipulation:

• All capability presentation is implicit (via clists).

• A thread can manipulate its protection domain:

➜ by modifying its clists,
➜ provided that the APD contains the clists .

• A thread can be set up so that it’s APD:

? does not contain the clists defining it,

? does not contain write access to any “public” objects.

• Such a thread is confined.
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Discretionary Confinement in Mungi

clist

clist

TCB

protection domain
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Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label
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Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)
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Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)

? a PDX object has:

➜ a type label (because it’s an object)
➜ a domain label (because it has an associated PD)
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Mandatory Access Control in Mungi

• Using domain and type enforcement (DTE) model [EH01a]:

? Each object has a type label

? Each APD has a domain label

? Each thread has:

➜ a type label (because it’s an object)
➜ a domain label (because it belongs to an APD)

? a PDX object has:

➜ a type label (because it’s an object)
➜ a domain label (because it has an associated PD)

• System-wide security policy is a relation on types and domains
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MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type
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MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type

? APD creation / PDX call:

➜ thread has access to invoked object
➜ caller APD has right to transfer to target APD
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MANDATORY ACCESS CONTROL OPERATION

• MAC policy relation is represented in (user-level) policy object

• Kernel consults on each access validation:

? Object access: domain has access to type

? APD creation / PDX call:

➜ thread has access to invoked object
➜ caller APD has right to transfer to target APD

• Policy object consists of a number of (mostly simple) validation
functions

➜ invoked via PDX⇒ also subject to MAC!
➜ MAC validations are cached in separate validation cache
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PDX AGAIN ...

➜ discretionary access control
validates entry points and
invocation right

➜ mandatory access control
validates right to use target PD

➜ discretionary and mandatory
access control validate data
access

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call
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PDX AGAIN ...

➜ discretionary access control
validates entry points and
invocation right

➜ mandatory access control
validates right to use target PD

➜ discretionary and mandatory
access control validate data
access

Client protection
domain

Protection domain
of PDX object

Protection domain
during PDX call

Protection domain
passed to PDX call

• Can use this as the basis for secure system extensions!

➜ Component model based on PDX for extending system
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OS Extensibility

• Linux loadable kernel modules:

➜ Run as part of the kernel⇒ no protection.
➜ Unsuitable for OS extension/customisation by users.
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OS Extensibility

• Linux loadable kernel modules:

➜ Run as part of the kernel⇒ no protection.
➜ Unsuitable for OS extension/customisation by users.

• User-level servers (Mach, Windows-NT):

➜ based on message-based communication with servers,
➜ performance problems⇒ migrate extensions into kernel.
➜ newer systems try to do better (e.g. SawMill)
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EXISTING APPROACHES TO OS EXTENSIBILITY (CONT’D)

• Safe kernel extensions by trusted code (e.g. SPIN [BSP+95]):

➜ extensions must be programmed in type-safe language (Modula-3),
➜ restrictive programming model,
➜ large trusted computing base,
➜ unconvincing performance.
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EXISTING APPROACHES TO OS EXTENSIBILITY (CONT’D)

• Safe kernel extensions by trusted code (e.g. SPIN [BSP+95]):

➜ extensions must be programmed in type-safe language (Modula-3),
➜ restrictive programming model,
➜ large trusted computing base,
➜ unconvincing performance.

• Safety by sandboxing kernel extensions (e.g. Vino [SESS96]):

➜ poor performance.
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WHAT ’S WRONG?

• Kernel extensions create huge security problems.

➜ Kernel code is inherently unrestricted.
➜ Imposition of restrictions results in cost and complexity.

• User-level extensions can be secure but:

➜ have potential performance problems, and
➜ need to be supported by an appropriate framework.
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WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).
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WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).

• Security can be guaranteed.

➜ Extensions operate within “normal” OS protection system.
➜ Will work if OS protection is strong and flexible enough.
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WHAT ’S NEEDED?

User-level extensibility can be made to work if [EH01b]:

• Performance can be ensured.

➜ Requires fast inter-process communication.
➜ Has been demonstrated (L4, Pebble, Mungi).

• Security can be guaranteed.

➜ Extensions operate within “normal” OS protection system.
➜ Will work if OS protection is strong and flexible enough.

• A framework for extensions is provided which supports:

➜ transparent invocation of extended services,
➜ low overhead extension and customisation of extensions,
➜ software technology to minimise complexity.
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Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems
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Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems

➜ PDX is used for invocation
➜ Component data is created inside the component PD
➜ Client and component are mutually protected
➜ Mandatory security policy limits data propagation
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Mungi Component Model

foo() {

}

...

Client

objx.foo()

Component implementation

Component interface layer

Mungi

➜ Component implementation is in different PD from caller
➜ Can use for invoking protected subsystems

➜ PDX is used for invocation
➜ Component data is created inside the component PD
➜ Client and component are mutually protected
➜ Mandatory security policy limits data propagation
➜ Single address space⇒ no need to marshal arguments!
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EXTENDING EXTENSIONS
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Forwarding

Aggregation

➜ Components export interfaces.
➜ Component instances can invoke interfaces of other instances (and thus extend

them): forwarding.
➜ Aggregation allows direct invocation of extended interface.
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CUSTOMISATION
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CustomiserBase

Request Delegation

Delegated

➜ Delegation is a dynamic form of aggregation that allows an invocation of a base
component to be transparently handled by another component.

➜ Avoids the semantic nightmares of virtual inheritance.

cse/UNSW COMP9242 2002/S2 W12 P40



OVERHEAD OF MANDATORY ACCESS CONTROL

Benchmark no MAC with MAC O/H
ms ms %

OO1 187.8 187.8 0.0
Jigsaw56×56 374 375 0.3
Andrew 672 674 0.3
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EXTENSION SYSTEM PERFORMANCE : M ICROBENCHMARKS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ic

ro
se

co
n

d
s

Create 118 5622 4240

Invoke 100 101 885 1993 768 9319

Mungi SPIN VINO COM omniORB ORBacus
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EXTENSION SYSTEM PERFORMANCE : MACROBENCHMARKS

Environment Time
Linux (RAM disk) 283 ms
Mungi (statically linked) 146 ms
Mungi (extension) 247 ms
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